Project funded by the Portuguese Science Foundation, FCT PTDC/EEA-CRO/105413/2008, Jan.2010 - Dec.2012
[Bouguet08] Jean-Yves Bouguet, Camera Calibration Toolbox for
Matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/, Last updated June 2nd, 2008
[Crutchfield90] J. P. Crutchfield. Information and its metric. In L. Lam and H. C. Morris, editors, Nonlinear Structures in Physical Systems–Pattern Formation, Chaos and Waves, pages 119–130.
Springer-Verlag, 1990.
[Freeman00] W. T. Freeman, E. C. Pasztor, and O. T. Carmichael. Learning low-level vision. International Journal of Computer Vision, 40(1):25–47, 2000.
[Hartley00] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, 2000 (or 2nd ed 2004).
[Hyvarinen08] A. Hyvarinen, J. Hurri, and P. O. Hoyer. Natural Image Statistics — A probabilistic approach to early computational vision. to be published by
Springer-Verlag, 2008. Preprint available at http://www.naturalimagestatistics.net/.
[Karlsson05] Karlsson, N.; Bernardo, E.D.; Ostrowski, J.; Goncalves, L.;
Pirjanian, P. & Munich, M. The vSLAM Algorithm for Robust Localization and Mapping Proc. IEEE Int. Conf. on Robotics and Automation, 2005, 24 - 29
[Kohler62] I. Kohler. Experiments with goggles. Scientific American, 206:62–72, 1962.
[Krzanowski88] W. J. Krzanowski. Principles of Multivariate Analysis: A User’s Perspective. Clarendon Press, Statistical Science Series, 1988.
[Lowe04] "Distinctive image features from scale-invariant keypoints", D. Lowe, Int. Journal of Computer Vision, 2004, 60, 91-110
[Olsson04] L. Olsson, C. L. Nehaniv, and D. Polani. Sensory channel grouping and structure from uninterpreted sensor data. In
NASA/NoD Conference on Evolvable Hardware, 2004.
[Paninski03] L. Paninski. Estimation of entropy and mutual information. Neural Computation, 15:1191– 1254, 2003.
[Pierce97] D. Pierce and B. Kuipers. Map learning with uninterpreted sensors and effectors. Artificial Intelligence Journal, 92(169–229), 1997.
[Potetz06] B. Potetz and T. S. Lee. Scaling laws in natural scenes and the inference of 3d shape. In NIPS – Advances in Neural Information Processing Systems, pages 1089–1096.MIT Press, 2006.
[Ramalingam05] S. Ramalingam, P. Sturm, and S. Lodha. Towards complete generic camera calibration. In Proc.
CVPR, volume 1, pages 1093–1098, 2005.
[Sammon69] J. W. Jr. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18:401–409, 1969.
[selfRef05] D. Nistér, H. Stewenius, and E. Grossmann. Non-parametric self-calibration. In proc.
ICCV, 2005.
[selfRef06] E. Grossmann, E-J Lee, P. Hislop, D. Nistér, and H. Stewénius. Are two rotational flows sufficient to calibrate a smooth non-parametric sensor? In proc. IEEE
CVPR, 2006.
[selfRef07] E. Grossmann, F. Orabona, and J. A. Gaspar. Discrete camera calibration from the information distance between pixel streams. In Proc. Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras,
OMNIVIS, 2007.
[selfRef08] E. Grossmann, J. A. Gaspar, and F. Orabona. Calibration from statistical properties of the visual world. In European Conf. on Computer Vision, 2008, 2008.
[Snyder52] F. W. Snyder and N. H. Pronko. Vision with spatial inversion. University of Wichita Press, 1952.
[Stratton96] G. M. Stratton. Some preliminary experiments on vision without inversion of the retinal image. Psychological Review, 3(6):611–617, Nov 1896.
[Torralba03] A. Torralba and A. Oliva. Statistics of natural image categories. Network: Computation in Neural Systems, 14:391–412, 2003.
[Torralba06] R. Fergus, A. Torralba, and W. T. Freeman. Random lens imaging. Technical Report MIT CSAIL TR 2006-058, Massachusetts Institute of Technology, 2006.
[Tsai86] R. Tsai. An efficient and accurate camera calibration technique for 3D machine vision. In IEEE Conf. on Computer Vision and Pattern Recognition, 1986.
[Wexler03] Learning epipolar geometry from image sequences, Yonatan Wexler, Andrew W. Fitzgibbon and Andrew
Zisserman, CVPR'03, pp:II- 209-16 vol.2
[Wu04] Y. N. Wu, S.-C. Zhu, and C.-E. Guo. From information scaling of natural images to regimes of statistical models. Technical Report 2004010111, Department of Statistics, UCLA, 2004.
Prof. José Gaspar Instituto de Sistemas e Robótica, Instituto Superior Técnico, Torre Norte Av. Rovisco Pais, 1 1049-001 Lisboa, PORTUGAL |
Office: Torre Norte do IST, 7.19 phone : +351 21 8418 293 fax : +351 21 8418 291 www : http://www.isr.ist.utl.pt/~jag e-mail: |
Institute for Systems and Robotics , Computer and Robot Vision Lab