### ### Bayes Filter Demo ### ~~~~~~~~~~~~~~~~~ ### ### (C) 2009 Rodrigo Ventura, ISR / IST ### Email: rodrigo.ventura@isr.ist.utl.pt ### import sys import math import random import Tkinter def p_normal(x, u, sigma2): return math.exp(-(x-u)**2/(2*sigma2)) / math.sqrt(2*math.pi*sigma2) class Viewer(Tkinter.Tk): VERSION = "1.1 (5-Oct-2009)" ### <<< VERSION STRING N = 20 ## Interface functions def __init__(self): Tkinter.Tk.__init__(self) self.title("Bayes filter demo "+self.VERSION) self.geometry("%sx300"%(110+25*self.N)) Tkinter.Label(self, text="(C) 2009 Rodrigo Ventura, ISR / IST", font="verdana 9").pack(side="bottom", expand=True, anchor="sw") self.canvas = c = Tkinter.Canvas(self) c.pack(side="bottom", expand=True, fill="both") self.var_meas = Tkinter.IntVar() Tkinter.Button(self, text="Init", command=self.init).pack(side="left") Tkinter.Button(self, text="<", command=self.do_left).pack(side="left") Tkinter.Button(self, text="=", command=self.do_stay).pack(side="left") Tkinter.Button(self, text=">", command=self.do_right).pack(side="left") # filter menu mb = Tkinter.Menubutton(self, text="Filter") m = Tkinter.Menu(mb) m.add_command(label="Discrete", command=lambda : self.set_filter("discrete")) m.add_command(label="Kalman", command=lambda : self.set_filter("kalman")) mb.configure(menu=m) mb.pack(side="left") # Tkinter.Checkbutton(self, text="Measurements", variable=self.var_meas).pack(side="left") Tkinter.Button(self, text="About", command=self.do_about).pack(side="right") c.bind("", self.mouse_press) # map slots for i in xrange(self.N): self.canvas.create_line(50+i*25, 200, 70+i*25, 200) self.m = Kalman(self) def set_filter(self, name): self.m.cleanup() if name=="discrete": self.m = Discrete(self) elif name=="kalman": self.m = Kalman(self) self.m.init() self.m.update_pdf() def update_robot(self): self.canvas.delete("robot") self.canvas.create_oval(50+self.x*25, 190, 70+self.x*25, 170, tags="robot") def show_measure(self, z): self.canvas.delete("meas") if z: self.canvas.create_text(50, 210, text="z = %.2f"%z, \ fill="blue", anchor="nw", tags="meas") u = 60 + z*25 self.canvas.create_line(u, 150, u, 160, fill="blue", tags="meas") def do_left(self): if self.x>0: if random.random()>0.2: self.x -= 1 self.do_step(-1) def do_stay(self): self.do_step(0) def do_right(self): if self.x0.2: self.x += 1 self.do_step(1) def do_step(self, u): self.update_robot() z = self.measure() if self.var_meas.get() else None self.show_measure(z) self.m.do_filter(u, z) self.m.update_pdf() def mouse_press(self, ev): x, y = ev.x, ev.y if y>=170 and y<=190: i = (x-50)//25 if i>=0 and i\nISR / IST, Lisbon, Portugal").pack(expand=True) ## Core functions def init(self): self.m.init() self.m.update_pdf() self.x = random.randint(0, self.N-1) self.update_robot() self.show_measure(None) def measure(self): """Simulate a measurment""" return random.gauss(self.x, 1) def main(self): self.init() self.mainloop() class Discrete(): ## Interface functions def __init__(self, viewer): self.v = viewer self.N = viewer.N def update_pdf(self): self.v.canvas.delete("pdf") for i in xrange(self.N): self.v.canvas.create_rectangle(50+i*25, 120, 70+i*25, 120-100*self.px[i], \ fill="#888", tags="pdf") m = 0 for i in xrange(self.N): m += i*self.px[i] u = 50 + (m+0.5)*25 self.v.canvas.create_line(u, 130, u, 140, fill="#888", tags="pdf") def cleanup(self): self.v.canvas.delete("pdf") ## Core functions def init(self): self.px = self.N*[1.0/self.N] def do_filter(self, u, z): """Discrete filter algorithm: given control u and measurment z, updates px distribution""" bel1 = self.N*[0] for j in xrange(self.N): for i in xrange(self.N): bel1[j] += self.p_trans(i, u, j)*self.px[i] if z: bel2 = [] for j in xrange(self.N): bel2.append(self.p_meas(z, j)*bel1[j]) else: bel2 = bel1 eta = 1.0/sum(bel2) self.px = map(lambda p: eta*p, bel2) def p_trans(self, x1, a, x2): """State transition model""" if a==0: return 1 if x1==x2 else 0 else: y = x1+a if y<0 or y>=self.N: return 1 if x1==x2 else 0 else: if x2==y: return 0.8 elif x2==x1: return 0.2 else: return 0 def p_meas(self, z, x): """Measurment model""" sigma2 = 1 return p_normal(z, x, sigma2) class Kalman(): ## Interface functions def __init__(self, viewer): self.v = viewer self.N = viewer.N # plot axis arrows self.v.canvas.create_line(60, 120, 60+25*self.N, 120, fill="#888", arrow="last", tags="axis") self.v.canvas.create_line(60, 120, 60, 20, fill="#888", arrow="last", tags="axis") def update_pdf(self): self.v.canvas.delete("pdf") pts = [] for u in xrange(25*self.N): x = u/25.0 px = p_normal(x, self.ux, self.sx) pts.extend([60+u,120-100*px]) self.v.canvas.create_line(pts, tags="pdf") v = 60 + self.ux*25 self.v.canvas.create_line(v, 130, v, 140, fill="#888", tags="pdf") def cleanup(self): self.v.canvas.delete("pdf", "axis") ## Core functions def init(self): self.ux = self.N/2.0 self.sx = 2.0*self.N def do_filter(self, cmd, z): """Kalman filter algorithm: given control u and measurment z, updates px distribution""" sigma2_state = 0.16 sigma2_meas = 1.0 u = 0.8*cmd # scaling to get state transition mean value if u==0: u1, s1 = self.ux, self.sx else: # (1) predict step u1 = self.ux + u s1 = self.sx + sigma2_state if z is None: u2, s2 = u1, s1 else: # (2) update step k = s1/(s1+sigma2_meas) u2 = u1 + k*(z-u1) s2 = (1-k)*s1 self.ux, self.sx = u2, s2 # Main entry if __name__=="__main__": Viewer().main() # EOF