Instituto Superior Técnico

Artificial Intelligence and Decision Systems (IASD)
 Final exam, 2009/2010
 First date (6 pages)

NAME:

NUMBER:

- The answers should be given exclusively on these sheets
- Read carefully each question before answering
- Justify all your answers (except the multiple choice ones)
- This exam is to be executed without any consultation (a small formulec can be found in the last page)

- Exam duration: 1h30m

1. [1 val] Whose scientific domains did not contributed to the Artificial Intelligence area? (more than one answer might be correct)
\square Neurosciences
\square Mathematics
\square Physics
\square Linguistics
\square Chemestry
2. [1 val] Concerning the search strategies breadth-first and depth-first, whose of the following statements are true? (more than one answer might be correct)
\square the spatial complexity of depth-first is lower than the one of breadth-first
\square the temporal complexity of depth-first is lower than the one of breadth-first

depth-first is appropriate for problems where the solution is at a known depth (not very high)depth-first is complete
depth-first is optimal
3. [1.5 val] Consider the problem of fitting a set \mathcal{S} of N Tetris pieces into a M by M grid. Formulate this problem as a constraint satisfaction problems (CSP).
4. [2.5 val] For each of the following pair of terms, specify the most general unifier (or specify if not possible):
(a) $P(x, G(x), G(G(x)))$ and $P(C, z, G(y))$
(b) $P(y, x, y)$ and $P(B, B, z)$
(c) $P(x, x)$ and $P(A, B)$
(d) $P(x, x)$ and $P(G(D), G(z))$
(e) $P(S(S(0)), S(S(S(0))))$ and $P(x, S(x))$
5. [1 val] Whose action definitions ${ }^{1}$ are not valid STRIPS operators? (more than one answer might be correct)
$\square \operatorname{Action}(\operatorname{Rename}(\mathrm{x}, \mathrm{y}),(\operatorname{File}(\mathrm{x}) \vee \operatorname{Dir}(\mathrm{x})) \wedge \operatorname{NotExists}(\mathrm{y})$, \neg File $(x) \wedge$ File $(y))$
\square Action(Rename(x, y), FileOrDir(x) $\wedge \operatorname{NotExists}(\mathrm{y})$,
$\neg \operatorname{File}(x) \wedge \operatorname{File}(y))$Action(Rename (x, y), (File $(x) \vee \operatorname{Dir}(x)) \wedge \neg \operatorname{Exists}(y)$,
$\neg \operatorname{File}(x) \wedge \operatorname{File}(y))$
\square Action(Rename(x, y), FileOrDir(x) $\wedge \neg \operatorname{Exists}(\mathrm{y})$,
$\neg \operatorname{File}(x) \wedge \operatorname{File}(y))$$\operatorname{Action}(\operatorname{Rename}(\mathrm{x}, \mathrm{y}),(\operatorname{File}(\mathrm{x}) \vee \operatorname{Dir}(\mathrm{x})) \wedge \operatorname{NotExists}(\mathrm{y}), \operatorname{File}(y))$
$\square \operatorname{Action}(\operatorname{Rename}(\mathrm{x}, \mathrm{y}), \operatorname{FileOrDir}(\mathrm{x}) \wedge \neg \operatorname{Exists}(\mathrm{y})$, File $(y))$
6. Consider three elephants named Virgil, Ovid, and Horace. Assuming that

- Virgil is pink
- Ovid is gray and likes Horace
- Horace is either pink or gray (but not both) and likes Virgil
(a) [2 val] Represent these three facts using first-order logic sentences

[^0](b) [2 val] Convert the obtained sentences into the clausal normal form (CNF)
(c) [2.5 val] Prove, using resolution, that a grey elephant likes a pink elephant
7. Consider a 1-D grid with four cells, denoted A, B, C, and D, in which a robot can move from one cell to an adjacent one. Two actions are considered - Left and Right - to move a single cell in each direction, for which there is a probability of 0.8 of success and 0.2 of staying in the same cell (and probability of 1 of staying in the same place if the movement is not possible). There is a reward of +1 for state C, and 0 for the others. Assume that the initial state is A.
(a) [1 val] Specify the Markov Decision Process $\left\langle Q, \sum, T, s_{0}\right\rangle$ that models this problem, where Q is the set of states, \sum the set of actions, T the transition function, and s_{0} the initial state.
(b) [3 val] Determine the state utilities using the value iteration algorithm (perform two iterations at most, $\gamma=0.9$)
(c) [2.5 val] Determine the optimal policy using the computed utility values (or use the utilities $[0.52,0.98,1.73,0.98]$ if unable to compute them)

Formula

$$
\begin{aligned}
& U(s)=R(s)+\gamma \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right) \\
& U_{i+1}(s) \leftarrow R(s)+\gamma \max _{a} \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U_{i}\left(s^{\prime}\right) \\
& U^{\pi}(s)=R(s)+\gamma \sum_{s^{\prime}} T\left(s, \pi(s), s^{\prime}\right) U^{\pi}\left(s^{\prime}\right) \\
& \pi^{*}(s)=\underset{a}{\arg \max } \sum_{s^{\prime}} T\left(s, a, s^{\prime}\right) U\left(s^{\prime}\right)
\end{aligned}
$$

[^0]: ${ }^{1}$ Notation: Action (n, p, e) where n is the action designation, p the preconditions and e the effects.

