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Abstract

In this paper we propose algorithms for 3D object recognition from 3D point clouds of rotationally symmetric objects. We base
our work in a recent method that represents objects using a hash table of shape features, which allows to match efficiently features
that vote for object pose hypotheses. In the case of symmetric objects, the rotation angle about the axis of symmetry does not
provide any information, so the hash table contains redundant information. We propose a way to remove redundant features by
adding a weight factor for each set of symmetric features. The removal procedure leads to significant computational savings both
in storage and time while keeping the recognition performance. We analyze the theoretical storage gains and compare them against
the practical ones. We also compare the execution time gains in feature matching and pose clustering. The experiments show
storage gains up to 100x and execution time savings up to 3500x with respect to state-of-the-art methods.

c© 2011 Published by Elsevier Ltd.
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1. Introduction

3-D object recognition plays a role of major importance in the robotics field. Many applications, such as object
grasping and manipulation, critically depend on visual perception algorithms. These must be robust to cluttered
environments and to sensor noise, as well as fast enough for real-time operation, in order for the robot to correctly
interact with the surrounding environment. During the last decades several methods have been proposed to solve
the object recognition problem, but it is still a very challenging task and many research efforts continue to be made.
Due to recent technological advances in the field of 3-D sensing, range sensors provide 3-D points with reasonable
quality and high sampling rates, sufficient for efficient shape-based object recognition. In recent work, Drost et al. [1]
proposed an approach which extracts description from a given object model, using point pair features, encoding
the geometric relation between oriented point pairs. The matching process is done locally using an efficient voting
scheme (see Fig. 3) similar to the Generalized Hough Transform (GHT) [2]. Their method is robust to sensor noise
and outperforms other feature-based state-of-the-art methods like Spin Images [3] and Tensors [4], both in terms of
computational speed in terms, robustness to occlusion and clutter.

In this paper we introduce an important extension to [1] for dealing efficiently with rotationally symmetric ob-
jects [5], which are common in many daily tasks (e.g. kitchenware objects like cups, glasses, cans, plates), showing
improvements both in memory storage and in processing speed with respect to [1].

We also extend the previous approach with a set of rules for re-sampling the point clouds that prevent aliasing
effects related to feature space discretization, and an extensive analytical analysis of the proposed contributions.

Next section addresses the related work, followed by the description of Drost et al. object recognition and pose
estimation algorithm. Then, in section 4 we propose a methodology to efficiently deal with rotational symmetries. In
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section 5 we propose an automatic sampling selection criteria to avoid loss of information caused by sampling aliasing
in the feature space. Lastly, in section 6 we show results that validate our approach.

2. Related work

Symmetry in objects has been extensively studied due to its application to areas such as: object recognition [6],
shape matching [7], object model compression [8], geometric hashing [9] and pose detection [10]. The common idea
across all these areas is that symmetry allows to define invariant models/features to geometric transformations, which
are gathered in the symmetry group [11].

Regarding shape matching, symmetry descriptors (i.e. invariant features) are able to match parts of 3D objects
that hold the symmetry constraints (i.e. partial symmetry). Kazhdan et. al. [7] introduced a collection of spherical
functions that detect symmetry and retrieve objects. The main constraint of this work is the availability of full models
in order to retrieve robustly the objects.

Regarding model compression, detection of symmetry in 3D models provides the parts of the models that can be
compressed. Martinet et. al. [8] demonstrate experimentally the storage gains of the models when symmetries are
detected in the objects.

Regarding geometric hashing, the parameters of symmetric transformations work as some of the indexes of the
hash table. Geometric hashing was initially formulated on a 2D problem [9], and then extended to 3D object matching
[12] and Bayesian hashing [13]. Wolfson and Rigoustsos [14] propose to reduce the size of the hash table by collapsing
the redundant features, which in the case of geometric hashing could lead to storage savings by a factor of two.

In a recent work Thomas [10] reduces the size of the hash table for pose detection, exploiting symmetries. Each
object is represented on a hash table that indexes features computed on point pairs and triplet pairs. The storage size
of the hash table is reduced by considering rotational symmetries.

In this work we follow the idea of Wolfson and Rigoustsos [14], which is also applied by Thomas [10]. Similarly
to Thomas [10], we build a hash table indexed by point pairs. We apply the hash table reduction of [14] to the method
of [1] and, in contrast to previous works, we analyze the theoretical computational storage savings and confirm these
results with experiments on real data.

3. Method Overview

The basic units to describe surface shape are surflets [15] s = (p,n), where p represents sample points in the
surface and n are the associated surface normals. Let M be the set of all model surflets, M = {sm

i , i = 1..N} and let S
be the set of all scene surflets, S = {ss

i , i = 1...N}.
The recognition process consists in matching scene surflet pairs (ss

r , ss
i ) to model surflet pairs (sm

r , sm
i ). Being sr and

si two surflets, the Point Pair Feature (PPF) F ∈ F ⊂ R4 is defined as a 4-tuple composed by: the distance between
the reference, pr, and secondary, pi, points; the angle between the normal of the reference point nr and the vector
d = |pi − pr |; the angle between the normal of the secondary point ni and d; and the angle between nr and ni as
illustrated in Fig. 1. This could be formally described by

F = PPF(sr, si) = ( f1, f2, f3, f4) = (‖d‖,∠(nr,d),∠(ni,d),∠(nr,ni)) (1)

The data structure chosen to represent the model description was a hash table, for fast lookup during the matching
phase, in which the key value is given by the discrete PPF while the mapped value is the respective surflet pair. In a
more rigorous sense, the hash table is a multi-valued hash table since one key could be associated with several surflet
pairs. Thus, each slot of the hash table contains a list of surflet pairs with similar discrete feature. The hash function
samples the 4-tuple PPF and converts the resulting discrete feature to a single integer I which serves as an index of
the hash table. This conversion is given by the multi-dimensional array addressing formula:

I = hash(F, nα) =

= f bin
1 + f bin

3 · nd · nα + f bin
4 · nd · nα · nα (2)

2



/ Procedia Computer Science 00 (2014) 1–15 3

pr pi

nr ni

f4

f2 f3

d
f1 = ‖d‖

Figure 1. Point Pair Feature

The hash function is thus a mapping from the PPF space F to the model description A, which can be formally expressed
by the following:

hash : F ⊂ R4 → A ⊂ M2 (3)

3.1. Pose Estimation

A set of reference surflets on the scene Rs ⊂ S is uniformly sampled from S and each of them is paired with
all the other surflets on the scene. The number of reference points is given by |Rs| = ξ |S | where ξ ∈ [0; 1] is the
reference points sampling ratio control parameter. For each scene surflet pair (ss

r , ss
i ) ∈ S 2, PPF(ss

r , ss
i ) is computed

and set of similar model surflet pairs is retrieved from the hash table. From every match between a scene surflet pair
(ss

r , ss
i ) ∈ S 2 and a model surflet pair (sm

r , sm
i ) ∈ M2, one is able to compute the rigid transformation that aligns the

matched model with the scene. This is done first by computing the transformations Tm→g and Ts→g that align sm
r and

ss
r , respectively, to the object reference coordinate frame x axis, and secondly by computing the rotation α around the

x axis that aligns pm
i with ps

i . The transformation that aligns the model with the scene is then computed considering
the ensuing expression:

Tm→s = T−1
s→gR(α)Tm→g (4)

In detail, the transformations Tm→g and Ts→g translate pm
r and ps

r , respectively, to the reference coordinate frame
origin and rotates their normals nm

r and ns
r onto the x axis. After applying these two transformations, pm

i and ps
i are

still misaligned. The transformation R(α) applies the final rotation needed to align these two points. The previous
reasoning is depicted in Fig. 2.
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Figure 2. Pose acquisition by surflet pair aligment

The transformation expressed in eq. (4) can be parametrized by a surflet on the model and a rotation angle α.
In [1], this pair (sm

r , α) is mentioned as the local coordinates of the model with respect to reference point ss
r .

3.1.1. Voting Scheme
This method uses a voting scheme similar to the Generalized Hough Transform (GHT) for pose estimation. For

each scene reference surflet, a two-dimensional accumulator array that represents the discrete space of local coordi-
nates is created. The number of rows, Nm, is the same as the number of model sample surflets |M|, and the number of
columns Nα is equal to the number of sample steps of the rotation angle α. A vote is placed in the accumulator array

ss
r ss

i

hash(PPF(ss
r , ss

i ))

α1 αNα

sm
1

sm
Nm

sm
r′

sm
i′

sm
r

sm
i

+1

+1

Model Description Accumulator Space

Figure 3. Feature Matching and Voting Scheme

by incrementing the position associated to the local coordinates (sm
r , α), by 1 (see Fig. 3). After pairing ss

r with all ss
i ,

the highest peak – i.e. the position with most votes – in the accumulator, corresponds to the optimal local coordinate.
In the end, all retrieved pose hypotheses whose position and orientation do not differ more than a predefined

threshold are clustered together.
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3.1.2. Pose Clustering
As shown in the pseudo-code of Algorithm 1, the voting process is done for several reference surflets on the scene

to ensure that at least one of them lies on the object we want to detect. For each reference surflet, a set of pose
hypotheses – each corresponding to a peak in the accumulator array and weighted by its associated number of votes
– is generated. After the voting procedure, we consider an additional pose clustering step that brings stability and
increases the accuracy of the final result since the retrieved poses only approximate the ground truth due to sensor
noise and sampling artifacts. The pose clustering procedure (see Algorithm 1) outlined in this subsection is a clustering
algorithm that aggregates all pose hypotheses that do not differ in position and orientation for more than predefined
thresholds diam(M)

σd
and 2π

σα
where σd and σα are two clustering control parameters. The procedure starts by sorting

all poses in decreasing order according to their number of votes. A cluster is created for the first pose, i.e., the pose
with more votes. The algorithm iterates over the remaining hypotheses and similar hypotheses are grouped together
in the same cluster. If a hypothesis differs in position or orientation, more than specified thresholds, from the existing
clusters, then a new cluster is initialized. In the end, each cluster has a score equal to the sum of the scores of the pose
hypotheses contained in it and its resulting pose is the average of the poses contained in that cluster. The resulting
clusters are sorted again in decreasing order and the top ranked clusters are returned. The number of returned clusters,
ζ, is equal to the object instances that one expects to be in the scene.

begin
1: for all ss

r ∈ Rs do
2: reset the Hough accumulator
3: for all ss

i ∈ S \ ss
r do

4: compute PPF(ss
r , s

s
i ) and the corresponding hash table index

5: for all feature matches do
6: vote on the Hough accumulator
7: end for
8: end for
9: get highest peaks on the accumulator and compute the corresponding pose transforms

10: end for
11: pose clustering
end

Algorithm 1: Pose estimation

4. Dealing with Rotational Symmetry

We consider an object to be rotationally symmetric if its shape appearance is invariant to rotations around a given
axis of symmetry (see Fig. 4). In order to efficiently deal with this kind of objects, we incorporate a strategy that
reduces the size of the model description A, by discarding redundant surflet pairs, thus obtaining significant gains in
storage and speed. To accomplish this, a Euler angle representation [16], is used to describe orientation. In our work
we chose the X-Y-Z Euler representation since we assume that the object axis of symmetry Ψ is aligned with the z
axis of the object reference coordinate frame:

Ψ = (0, 0, z) (5)

During the creation of the model description, for each surflet pair, we compute the transformation with respect to
the object model reference frame (see section 3.1) that aligns it with each similar pair already stored in the hash table.
If the aligning transformation has a very low translation t and if the axis of rotation raxis is aligned with the z axis,
then this surflet pair corresponds to a rotation around the symmetry axis. Thus, the surflet pair is redundant because
can be represented jointly with the other similar pairs (homologous):

2acos (raxis · z) < φth and ‖t‖ < tth (6)

The weight w of the homologous surflet pair, stored in the hash table, is then incremented by 1. This process is
clearly illustrated in Fig. 5.
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Figure 4. An example of a rotationally symmetric object model. All illustrated surflet pairs have similar discrete feature. In the figure, pairs
represented with similar color are redundant.

Due to the fact that the sampled model point clouds are not perfect, i.e., only approximate the true shape of the
object, the αth and dth thresholds must take into account these sampling imperfections. Higher thresholds increase the
number of jointly represented surflet pairs but reduce the stringency with which we consider two given model surflet
pairs redundant.

By representing redundant features jointly we decrease the number of feature matches thus decreasing the compu-
tations during the voting process. Each feature match contributes with a weight equal to the model feature weight, w,
instead of 1. The peaks in the accumulator – originated by redundant surflet pairs – which were previously scattered
throughout the local coordinates are now concentrated at single local coordinates. This is the result of keeping only
one surflet pair, i.e., one local coordinate, representing all the redundant ones which correspond to different local
coordinates.

Before clustering, we collapse all poses that only differ on the yaw component, i.e., redundant hypotheses, to
a single pose. This is achieved by means of an additional step – after knowing the final transformation Tm→s (see
equation (4)) – which removes the rotational component around the object axis of symmetry, i.e., φyaw = 0, ensuring
that all redundant poses are gathered in the same cluster, therefore allocating less resources and reducing the number
of computations during the pose clustering step. In the following section we provide a mathematical analysis of the
computational gains of our method.

4.1. Computational effiency

To analytically model the computational savings of our approach let us consider a generic rotationally symmetric
object surface, represented by a set of surflets. Given the axis of symmetry, we assume the surflets are sampled on
a set of planar sections orthogonal to the axis. The intersection of the sections with the object are circles of several
radii, which represent a one-dimensional signal in polar coordinates. On these circular paths the surflets are sampled
uniformly according to the perimeter of each circle. Let us denote by L = {l1, . . . , li, . . . , ln} the set of circular paths,
where the surflets are sampled at each circle (i.e. section) with frequency f i

0 (deg/surflet) so the number of surflets at
section i are 360/ f i

0.
We consider two sets of surflet pairs : (i) The pairs computed from all surflet combinations on a circular path (i.e.

intra-section) and (ii) the pairs computed from all surflet combinations between two circular paths (i.e. inter-section).
Let Ml j = {sm,l j

1 , . . . , sm,l j

i , . . . , sm,l j

360/ f j
0

} be the set of surflets at level l j, having the sampling frequency f j
0 and radius r j.

The frequency f j
0 express the periodicity of the intra-section surflet pairs, because a rotation of a surflet pair by k f j

0
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Figure 5. Example of surflet pairs with similar feature stored in the same slot of the hash table, during the creation of the object model description.

is equivalent to the surflet computed at k f j
0 . Thus, the frequency f j

0 yields the storage gain of the intra-section surflet
pairs.

Let Ali = {(sm,li
r , sm,li

j ), r , j} be the set of intra-section surflet pairs at level li, with cardinality given by all possible
surflet pairs: ∣∣∣Ali

∣∣∣ =
∣∣∣Mli

∣∣∣ × (∣∣∣Mli
∣∣∣ − 1

)
. (7)

Since f j
0 provides the storage gain of the intra-section surflet pairs, the number of representative features of this set is

as follows: ∣∣∣Ali,r
∣∣∣ =

∣∣∣Ali
∣∣∣

f i
0

. (8)

The inter-section set of the surflet pairs belonging to two distinct circular paths li and l j is denoted by Ali,l j =

{(sm,li
r , sm,l j

k )} ∪ {(sm,l j
r , sm,li

k )}, and its corresponding cardinality given by:∣∣∣Ali,l j
∣∣∣ =

∣∣∣Mli
∣∣∣ ∣∣∣Ml j

∣∣∣ (9)

In the case of inter-section surflet pairs, given the periodicity of each level one has to find the periodicity of the new
rigid object. The periodicity of the attached section is another periodic signal with frequency:

f i, j
0 = GCD

(
f i
0, f j

0

)
= GCD

(∣∣∣Mli
∣∣∣ , ∣∣∣Ml j

∣∣∣) (10)

where GCD : N2 7−→ N is the Greatest Common Divisor function. Similarly to the intra-section frequency, the
inter-section frequency f i, j

0 express the periodicity of the inter-section surflets, providing the storage gain for each
inter-section. Thus, the set of representative features (i.e., features that are sufficient to describe the object) for a
combination of two sections is given by: ∣∣∣Ali,l j,r

∣∣∣ =

∣∣∣Ali,l j
∣∣∣

f i, j
0

. (11)

The set of representative features Ar is obtained by the union of all the intra-section and inter-section sets. The size of
Ar is simply the summation of all intra and inter-section representative features as follows:

|Ar | =

|L|∑
i=1

∣∣∣Ali
∣∣∣

f i
0︸   ︷︷   ︸

intra−plane

+

|L|∑
i=1

 i−1∑
j=1

∣∣∣Ali,l j
∣∣∣

f i, j
0

+

|L|∑
j=i+1

∣∣∣Ali,l j
∣∣∣

f i, j
0

 .︸                                 ︷︷                                 ︸
inter−plane

(12)

7



/ Procedia Computer Science 00 (2014) 1–15 8

The total number of surflet pairs initially computed on the object is as follows:

|A| =
|L|∑
i=1

∣∣∣Ali
∣∣∣︸  ︷︷  ︸

intra−plane

+

|L|∑
i=1

 i−1∑
j=1

∣∣∣Ali,l j
∣∣∣ +

|L|∑
j=i+1

∣∣∣Ali,l j
∣∣∣ .︸                                ︷︷                                ︸

inter−plane

(13)

The storage saving provided by our method is G = |Ar | / |A|. In the following we compute the storage gains for two
extreme cases of rotationally symmetric geometries: Cylinder and cone.

4.1.1. Case studies
We proceed with the analysis of the storage gains of two basic parametric shape primitives.

Cyllinder. We first consider the cyllinder since it is the simplest parametric rotationally symmetric shape. Taking into
account that the cylinder radius is constant for all cutting-planes, we have

∣∣∣Mli
∣∣∣ = f0,∀li∈L. Therefore the number of

representative features and the correspondent storage gain are as follows:

|Ar | =

|L|∑
i=1

( f0 − 1)︸       ︷︷       ︸
|M|−|L|

+

|L|∑
i=1

 i−1∑
j=1

f0 +

|L|∑
j=i+1

f0

︸                     ︷︷                     ︸
|M|(|L|−1)

= |L| (|M| − 1) (14)

Gcyl =
|A|
|Ar |

=
|M| (|M| − 1)
|L| (|M| − 1)

=
|M|
|L|

= f0. (15)

The total gain of Eq. (15) is a simple expression, which is independent of the cyllinder height, depending only on the
number of samples, i.e. sampling frequency, per cutting-plane, which is constant. Figure 6(a) illustrates this fact, by
varying the number of levels |L| and the frequency of the cylinder’s base, f base

0 .

Cone. The inter-section storage gains of this primitive cannot be simplified like in the cylinder, because of the solution
of Eq. (10) is in several cases 1. Given the frequency of the base section f l1

0 = f base
0 ; and the frequency of the top

section f l|L|
0 = f top

0 ; we constrain the frequency of a given level as follows:

f li
0 = f li−1

0 +
f base
0

|L| − 1
with f li

0 ∈ N (16)

In Figure 6(b) we plot the storage gains on a cone in function of the frequency at the base section f base
0 ⊂ N and the

number of levels |L|. On one hand, for a given cone base radius f li
0 , the storage gains decrease exponentially as we

increase the number of levels |L| of the cone. On the other hand, for a constant |L| the gains are highly dependent on
the solution of GCD which is a discontinuous function. Having the curves of Figure 6 in mind, one expect that other
objects have storage gains between the cylinder and the cone, as rotationally symmetric objects can be decomposed
in a set of cylinders and clipped cones.

5. Automatic Sampling Selection

In order to ensure that the surface points displacement correspond to the feature distance space sampling level, and
also to normalize the number of points in the scene with respect to the model, both models and scene point clouds are
primarily downsampled using a space quantization step sstep =

diam(M)
ns

, where ns is the number of quantization steps.
This is done by partitioning the 3-D space using a voxel (i.e., a sstep× sstep× sstep 3-D square box, analogous to the pixel,
that represents a discrete value in 3-D space) grid and approximating (i.e., downsampling) each voxel by the centroid
of the points contained in it. Bigger sampling step sizes (i.e., bigger voxels or at lower resolution) reduces the number
of considered sample points and consequently the algorithm’s computational effort. Bigger sampling step sizes also
decreases the noise levels but at the cost of removing the surfaces fine details thus losing discriminative power which

8
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Figure 6. Theoretical storage gains

is essential if we want to be able to distinguish similar surfaces (e.g. at low resolutions a wrinkled surface becomes
smooth). Since the noise level depends mainly on the sensor characteristics, the selection of the sampling step size
should be chosen according to the sensor noise model and not according to the scene which is unpredictable. After
the downsampling step, the surface normals are calculated – or re-calculated in the case of the off-line construction
of the model description phase. This step also ensures that the surface normals correspond to the sampling level. To
avoid the loss of information in the feature space caused by sampling aliasing, the space quantization step must be
chosen such that the Nyquist criterion is verified:

nd > 2ns (17)

Taking this into account we select nd according to the following rule:

nd = 2ns + 1 (18)

The feature angle quantization step αstep is further obtained by constraining it to be equal to the angle between two
neighbour points on the model section with bigger radius, at the feature sampling level:

d2
step =

(
rsin(αstep)

)2
+

(
r − rcos(αstep)

)2
⇐⇒ αstep = 2acos

1 − 0.5
(

dstep

r

)2 (19)

where r is the radius of the biggest model section and is obtained by searching for the furthest model surface point to
the axis of symmetry:

r = max
(∥∥∥pi

z=0 − Ψ
∥∥∥) (20)

6. Results

Several experiments were done in simulation in order to validate and evaluate the storage and performance gains
of the proposed strategies to deal efficiently with symmetry. Not only the method performance and storage gains were
evaluated but also its robustness when dealing with different levels of noise and clutter. The performance dependence
on the methods parameters were also evaluated. All algorithms were implemented in C++ and the experiments were
run on a single core of a dual-core 2.6 GHz computer with 4GB of RAM. In all our experiments we set the pose
thresholds to φth = αstep and tth = dstep. During recognition, all peaks in the accumulator having an amount of votes
at least higher than 75% relatively to the highest peak were retrieved. To ensure this, the parameter ρ was set to 0.75.
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The clustering control parameters were set to σd = nd and σα = nα meaning that all aggregated poses inside a cluster,
did not differ in orientation and position more than αstep and dstep, respectively.

In all our experimental scenarios the models library comprised only one model at a time, since we were interested
in evaluating the quality of the poses recovered by the algorithms. With this purpose, for all experimental scenarios
we generated 200 synthetic scenes containing a single instance of a given object model, on a random pose. By using
synthetically generated scenes, we were able to compare the algorithm pose results with a known ground truth. A
recovered pose was considered to be correct if the error relative to the ground truth pose (i.e. position and orientation)
was smaller than diam(M)

20 for the position and 12◦ for the orientation.
In the next subsection we provide results that support the proposed algorithms and the computational gains math-

ematical analysis described in 4.1. We also evaluate its computational gains and robustness in the presence of noisy
data. Then, in subsection 6.1.2 we evaluate our method with common objects which were acquired with noisy range
scanners.

6.1. Performance evaluation

The aim of our first experiment was to validate our method gains by numerically compare our implementation
against the theoretical gain obtained in section 4.1, and to quantify the algorithm robustness to noise. For this purpose,
we synthetically generated a set of cyllinders and cones with varying parameters.

Cyllinder. The cyllinder surface was uniformly sampled by constraining the distance between connected neighbour
surflets (i.e. surface sampling sstep) to be constant, i.e. sstep = 1. The cyllinder radius r was then obtained according
to:

r =

√√√
s2

step

2 − 2cos
(

2π
f0

) with sstep = 1 (21)

where f0 ⊂ N is de point sampling frequency at the cyllinder radius, i.e. the number of points per level section. The
cyllinder height h was set to be given by h = |L| sstep, such that h ⊂ N.

Cone. The cone shapes generation was similar to the cyllinder with h = |L| sstep and constrained to the possible
solutions of eq.(16) with fixed f base = 120. In our experiments we first fixed f top

0 = 20 and varied |L| in [2, 60] and
then fixed |L| and varied in f top

0 in [20, 80].

6.1.1. Computational gains
In our first experimental scenario we were interested in measuring the feature storage and time savings of our

method, in the absence of noise. Thus, only one scene point was selected as reference point and only the highest
peak in the accumulator was retrieved. To evaluate the time performance we measured only the feature matching
gains since the other steps – except the clustering step – of the online pose estimation (algorimth 1) are constant. It
is important to remark that the clustering step is not performed when only a single scene reference point is selected
and the highest peak is retrieved from the accumulator. We first set f0, r, and vary the number of sections |L|, i.e.,
h. As exhibited in figure 7 the obtained storage gains are equal to the ones determined analitically while the feature
matching time savings are upper bounded by the storage gains.
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Figure 7. Performance evaluation results of our approach in terms of storage (continuous lines) and speed-up (dashed lines) gains.
Gains: model storage space compression (theoretical , real ), time performance (matching )

6.1.2. Robustness to noise
In order to evaluate the quality of the poses recovered by the algorithm, in the presence of noise, we created an

experimental scenario in simulation similar to the one referred in [1]. Each of the 200 synthetically generated scenes
containing a single instance of a cyllinder or a cone was corrupted by different levels of additive gaussian noise, with
standard deviation σ proportional to the model diameter diam(M). Both for the cyllinder and the cone, the shape
parameters were constant. During recognition we chose 5% of the scene points as reference points by setting ξ to
0.05. A higher percentage would increase the robustness to noise but also the recognition runtime. In these tests we
also measured the clustering time gains, given that more than one pose was retrieved from the Hough accumulator. As
depicted in figure 8 we achieved speed-up gains up to 327x (6.41 against 2095.6 seconds) for the cylinder and 3336x
(1.46 against 4871.2 seconds) for the cone, at the cost of residual losses in recognition rate. The main computational
gains are in the clustering step, which are proportional to the levels of noise. This is due to the decreasing consensus
for the ground truth pose in the Hough Accumulator which leads to pose hypotheses more scattered around the axis
of symmetry, which are collapsed together with our method.
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Figure 8. Performance evaluation results of our approach in terms of robustness to sensory noise and performance. Left: Recognition rate (%) of
our method ( ) vs Drost et al. ( ), Middle: model storage space of our method (theoretical , real ) vs Drost et al. ( ), Right:
time performance of our method (matching , clustering , total ) vs Drost et al. (dashed lines)

6.2. Dealing with household objects

To evaluate the performance gains of our methodologies with non-parametric objects we selected a set of house-
hold objects which are common on everyday scenarios and repeated the aforementioned experiments. However, this
time, both models and scene were subsampled before training and recognition with dstep.We assume that our database
has only one object, as well as the generated scene. The objects are part of the ROS household objects library (see
Figure 9(a)), on a random pose.

(a) (b)

Figure 9. (a) ROS Household object models. From left to right: coke can, champagne glass and cup. (b) Our method correctly detecting a
Coca-Cola can. Figure best seen in color.
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Our main goal was to measure if our algorithm was suitable for object models acquired by noisy 3D range scanners
and applicable in noisy and cluttered scenarios.

6.2.1. Computational gains
In the following experiment we varied the number of points in the objects surface by chosing different sampling

steps, sstep. Analogous to the experiment 6.1.2, this corresponded to varying the object radius, f0 and height, |L|, at
the same time. As shown in Figure 10 there is a strong correlation between the gain values and object shape. Constant
radius shape such as the Coke can exhibit linear gains similar to the cyllinder, while less structured objects such as
the champagne glass tend to have non-linear gains. The cup is in between the other two objects, being similar to a
cyllinder. The shown computational gains of our methodologies allow its application in multi-object recognition and
pose estimation scenarios [17].
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Figure 10. Performance evaluation results for real objects. Gains: model storage space compression ( ), matching time performance gains
( )

6.2.2. Robustness to noise and clutter
In order to test the algorithm’s robustness to clutter we repeated the experimental scenario described in 6.1.2 but

in this case each scene was corrupted by noise before the downsampling step. This way, the number of points in the
scene increased directly proportionally with the noise which were considered as clutter.

For the cup model we were able to discard 84.5% surflet pairs during the creation of the model description,
and reduce the number of computations during pose recognition. As shown in Fig. 11, the recognition rate drops
slightly for high levels of noise due to sampling effects, but the recognition time performance increases significantly.
For |S | ≈ 5000, our method achieves a recognition time 55.6 times faster than [1] (597.6 against 33205 seconds).
However, the number of jointly represented surflet pairs depends heavily on the object geometric configuration. For
objects whose shape has a smaller radius relative to the axis of symmetry, and also lower surflet density on the surface,
less performance gains can be achieved. For the tests comprising the coke can model we were only able to discard
62.5% surflet pairs during the creation of the model description. Fig. 9(b) shows qualitative results of our method with
real data, in a cluttered scenario. Overall, we were able to obtain major improvements on recognition speed without
significant cost on recognition performance. For all objects, the time savings were mainly on the clustering step so
the computational savings are mostly due to collapsing of pose hypotheses around the axis of rotational symmetry,
during the pose clustering step.
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(b) Coke can.
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(c) Champagne glass.

Figure 11. Performance evaluation results of our approach in terms of robustness to sensory noise and clutter and performance. Left: Recognition
rate (%) of our method ( ) vs Drost et al. ( ), Middle: model storage space of our method ( ) vs Drost et al. ( ), Right: time
performance of our method (matching , clustering , total ) vs Drost et al. (dashed lines)

7. Conclusions

Symmetry can be exploited in order to reduce the storage of object models, which has an association with the
gains in execution time during pose recognition. Given the axis of symmetry of an object, we show how to collapse
surflet pair features, keeping the representative features. The theoretical analysis of storage gains shows the upper
bounds of our method, which were verified experimentally on scans of actual objects. This reduced representation
induces storage gains up to 100x and execution time savings up to 3000x the object recognition approach of [1]. On
one hand, the storage gains depend on the surface properties of the object, so more complex geometries lead to low
storage gains. On the other hand, the execution time savings are directly related to the level of noise and clutter in the
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environment. It is important to remark that our method allows to have symmetric and non-symmetric objects in the
database and the feature collapsing brings a more robust response of the classifier in the pose of symmetric objects.
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