Improving the SIFT descriptor with smooth derivative filters
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Abstract

Several approaches to object recognition make extenswefubcal image information extracted in interest pointspwn as
local image descriptors. State-of-the-art methods perfostatistical analysis of the gradient information arotmedinterest point,
which often relies on the computation of image derivativéh wixel differencing methods. In this paper we show thesadages of
using smooth derivative filters instead of pixel differesmgethe performance of a well known local image descripttie ethod
is based on the use of odd Gabor functions, whose paramegeselectively tuned to as a funcion of the local image pridger
under analysis. We perform an extensive experimental atialuto show that our method increases the distinctiveobkscal
image descriptors for image region matching and objectgeition.

Key words: Gabor filters, SIFT, local features, invariant descriptpnt matching, object recognition

1. Introduction Some extensions of the SIFT descriptor have been proposed

] ) . recently, in order to improve either matching propertiesesr
Successful image based object recognition methods rgcenty, .o computational complexity. For instance, PCA-SIFT[2]

developed are supported on the concept of local image gescriconcatenates the first orderandy image derivatives of every
tors. Image descriptors are localized information chunks e g hregion, and for reducing the feature vector dimensipeiis
tracted in particular points of the image, that remain &tabl ¢, -me4 3 PCA data selection. The main objective of PCA-SIFT
face of common image transformations, and with the abidity t ig keep the SIFT matching properties, reducing the descri
distinguish between different patterns. Several typeGall (o size. On the other hand, the Gradient location-oriéoriat
descriptors have been reported in the literature[1, 2, 3, @], histogram (GLOH) [7] is an extension of SIFT that computes
but only recently a framework was proposed to compare theif,q histogram using a log-polar spatial grid and reducesg¢he
performance [7]. That work compares several types of imaggcriptor size using PCA. The main objective of GLOH is to
descriptors, such as differential operators, gradieno@iams,  jmnrove matching results by using a more robust spatialtgrid
correlation measures and image moments. _ compute the gradient histogram. Both PCA-SIFT and GLOH
In the framework above mentioned, gradient based hisyere tested in the comparison framework mentioned above [7]

tograms showed the best performance. The initial stepsstons 5,4 nave shown better performance than SIFT for some exper-
in the interest point selection in scale space (e.g. HessiaR  ;1antal conditions.

ris), and the computation of the image gradients in the riomgh
hood of interest points (e.g. pixel differences, Canny det.
The descriptor is then obtained by splitting the intereshipo
neighborhood into smaller regions (e.g. cartesian grid; lo
polar grid), and finally for every subregion it is computee th
histogram of the gradient orientation with an appropriafer-
mation selection procedure (e.g. weighting, Principal §om
nent Analysis-PCA). To date, the most remarkable descripto
terms of distinctiveness is the SIFT local descriptor [1hici
computes the image gradient from pixel differences, sutdiv
the interest point regions in a cartesian grid, and for eabhes
gion, compute the gradient orientation histogram weiglugd
the gradient magnitude. The descriptor is the concatemafio
all subregion’s histograms, followed by a unitary normaiian.

In this work we present an extension of the SIFT descriptor,
proposing an alternative approach for gradient computat
ing smooth derivative filters. Using Gabor functions as stinoo
filters, our approach improves the distinctiveness of tHeTSI
local descriptor. In scale-normalized image regions, igrad
computation using pixel differences, as in [1], is sensitig
noise and other artifacts induced by the image sensor and the
normalization procedure. One common approach to diminish
the noise sensitivity is to compute smoother approximatimh
the image derivatives using filters. In this work we use Gabor
filters, which have been shown to approximate any image di-
rectional derivative [8], by suitable tuning their parasrst We
propose a methodology to define the filters parameters based o
local maxima of the magnitude of the filter response. We ana-
lyze the response for several filter widths, selecting thattwin
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experiment [7], and (ii) an object recognition experimefite  are selected by the local extrema at DoG. In order to compute
first experiment evaluates the matching performance ganiof the local descriptor, the regions are scale normalizedrtpeibe
descriptor over SIFT descriptor, while the second expemime the derivatived, andI, of the imagel with pixel differences:
evaluates its impact in an object recognition task.

In the local descriptor evaluation framework, several $ype I(z,y) =1(z + 1,y) — I(z — 1,y) 1)
of images and image transformations are employed inthe eval I, (z,y) = I(z,y + 1) — I(z,y — 1). @)
uation process. The procedure comprises five main steps: (i)
Apply a specific transformation to each image in the data sefnage gradient magnitude and orientation is computed for
and create pairs of images (original and transformed);irii) €very pixel in the image region:
each pair of images find regions with suitable interest paént
tectors (e.g. blobs, corners, ridges) and correspondingaie M(z,y) = \/Iz(%y)Q + Iy (z, y)? @)
ization parameters (e.g. scale, rotation, affine); (iiijmalize _ -1
regions to a fixed size and compute a set of local descrigtors i O,y) = tan™ (1 (z,9)/z(,))- @
the regions; (iv) for every pair of images, match the desorfp  The interest region is then divided in subregions in a repiéar
computed in the vicinity of the regions provided by the ier grid. In Figure 1 we see examples of the gradient magnitude

point detection procedure; (v) the evaluation criteriokdsn-  and orientation for an image region and its corresponding 16
posed by precision-recall curves of regions matched betweesybregions (4 per dimension).

two images. We utilize this evaluation framework to compare
the distinctiveness of our descriptor proposal against $ié-
scriptor.

In the object recognition experiment, we model object cat-
egories by a bunch of local descriptors, using an appearance
only model, that disregards pose between local descripfdes :
detect nine different object categories, considering eztb- (a) normalized image  (b) M(z,y) ©) O(z,y)
gory as a two-class problem (object samples and backgroundregion
samples). Objects are modeled by a feature vector congainin
the similarity of the descriptors to one of the classes.  or _ _ _ o
der to estimate class models, we use two learning algorithms Figure 1: Example of gradient magnitude and orientation images
AdaBoost and SVM. In order to evaluate recognition perfor- ) _ ) )
mance, we compute the equal error point of the Receiver Oper- 1he next step is to compute the histogram of gradient ori-
ator Characteristic (ROC) curve for several object mod@&ts. entation, weighted by gradient magnitude, for each subregi
build different object models, we vary: (i) the local depéor, Orientation is divided into 8 bins and each bin is set with the
and (ii) the number of local descriptors that represent each ~ SUM of the windowed orientation difference to the bin center
egory. weighted by the gradient magnitude:

In Section 2 we explain the modification proposed to the
SIFT descriptor. In Section 3 we describe in more detail the |
cal descriptor evaluation framework. In Section 4 we déscri ~ hy, ,,, (k) = Z M(z,y)(1 —|O(z,y) — cx|/Ak),
the object recognition experiment in detail. The experitakn TYET (1,m)
results and discussion are included in Section 5, followed b O(z,y) € bink, (5)
conclusions in Section 6.

wherec;, is the orientation bin centef, is the orientation bin
width, and(z, y) are pixel coordinates in subregiop ).
The SIFT local descriptor is the concatenation of the sévera

In this section we first review the SIFT local descriptor com-dradient orientation histograms for all subregions:
putation. Then we present a modification of the SIFT descrip- — b b 5
tor, using odd Gabor filters to compute first order image deriv U= (Argays s g ) 6)
atives.

2. Alocal descriptor using smooth derivative filters

The final step is to normalize the descriptor in Eq.(6) to unit
i norm, in order to reduce the effects of uniform illumination
2.1. SIFT local descriptor changes. The gradient orientation is not invariant to st
In the original formulation of the SIFT descriptor[1], alea of the image region, so the descriptor is not invariant. T pr
normalized image region is represented with the concadtenat vide orientation invariance, Lowe proposed to compute tie 0
of gradient orientation histograms relative to severalaiegu-  entation of the image region, and set the gradient oriemtati
lar subregions. First, to obtain the scale-normalizedipgca relative to the region’s orientation. The orientation igeyi by
salient region detection procedure provides image poiigire the highest peak of the gradient orientation histogramefiti
borhoods. The saliency function is the scale-space Diffsge age region. In further object recognition tests, we compotéa
of Gaussians (DoG), and the image regions (position ané)calinvariant and non-invariant descriptors.
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We have based our work in an approach similar to the on@.3. Gabor Filters for Image Derivative Computation

described here, proposing modifications only in the local de  Gabor functions are defined by the multiplication of a com-

scriptor computation. However, the gradient computatiotheé  plex exponential function (the carrier) and a Gaussiantfanc
original SIFT descriptor is done with pixel differences et (the envelope).
are very sensitive to noisy measurements. In next section we

explain an alternative way to compute the image derivaifes _ L
Eq.(1) and Eq.(2), using smooth derivative filters wheredire J2:0 = oroion
gree of smoothing is appropriately selected. ( (rcosf +ysinf)?  (ycos® — xsinf)?
exp | — - .
203 203 )

2.2. Smooth derivative filters

e <'2”( cos 6 + ysi 9)) @)
. . . . . . . - eX 1— X 5 Sin
The computation of image derivatives with pixel differesice P 4

is an inherently noise sensitive process. Pixel differerioe In the previous expressiorz, ) are the spatial coordinates
lement zhigh-pasdiltering operation on the image spectrum, ' . . . -SSIURE, Y :
P gnh-p g9op ge sp 0 is the filter orientation\ is its wavelength, and; and o,

amplifying the high frequency range, which is mainly com- . _— !
posed by noise. To avoid such sensitivity, it is common e the Gaussian envelope standard deviations, orierted al

combine alow-passfilter (image blurring or smoothing) with dlr_?ctlonse a{]dfh+ :/2,[ rejpegtlvely. derivati dI

the high-passderivative filter, resulting in dand-pasdilter, .”0 cortrr:pu Zd € first order |mflgfezther]:}|/f\ “_’?ﬁan fy We
which we denote bgmooth derivative filterThis effect can be W!” gse@ 7600 dgnlag|n2afry) part o i el ! tehr, h e_orletl mlm; d
implemented by either pre-smoothing the image followed b))N' pe =1 andv = m/2 for, respectively, the horizontal an
the derivative computation, or by convolving the image veéth vgrtlcal derivatives. To approxmatg the shape of an oddoGab
band-pasdilter combining both phases. The important ques—FIIter to.that of a Gaussian de_r|vat|ve, we Bt = g2 = 0,
tion to address at this point is “how much blurring should weand we introducey = A/o, a variable that is proportional to the

apply to the image 2", or equivalently, “which frequency an number of wave periods within the filter width. By fixing an
should theband-pass f,iltefocus on 2" ' appropriatey value, we will obtain an expression of the Gabor

Several smooth derivative filters have been proposed for imf—"ter with a single parameter, the filter width
brop If we look at the shape of the first order Gaussian deriva-

age filtering. Both Gaussian derivatives [8] and Gabor §lter . ) L S .
; ; . tives at any scale in the derivative direction, there is oagev
[9, 10] are common choices because of their properties and th

availability of fast computation methods [11]. Gaussiande period within the spatial supp_ort Of. the filte_r, Whif\:h _roughl
atives [8] are smooth filters that can compute the image aeriv coire6's pgndrz t‘ltlcTn 60.7Replaicmg :]AZ VaEJ% Ii: E: 3 (37/')6\'\?\2
tives of any order. They have good noise attenuation prigsert gb?ain. thgﬁltzr beir?a u;g& ithrTé'rema?naer of thg. a ;ar'
due to an implicit image Gaussian filtering. On the other hand 9 paper.
Gabor filters are composed by Gaussian-modulated complex

exponentials and provide an optimal trade-off betweenialpat 1 22 + 12

and frequency resolution, allowing simultaneously gocatisp Jo,y,0(0) = g2 PP <— 902 ) ‘

localization and description of signal structures [9]. Tde 5

plication of Gabor functions to perform computer vision and - sin (W(x cos @ + ysin 6)) , (8)
image processing tasks has been motivated by biological find 6o

ings in the low-level areas of primate visual cortex [12]dan  \yhered = 0 computesl,, and = 7/2 computes/,. The
more recently by simulations of primate/human visual syste cnojice ofs will be done by an optimization procedure, based

[13, 14_]- ) _ ) on the filter energy at locations with high gradient magretud
In this work we will use Gabor filters for the computation of
smooth image derivatives due to the following facts: 2.4. Scale-selection

. . ' In this section we propose a methodology to select a value for
* With appropriate parameters, odd Gabor filters can ®Pihe scale parameter, such as to maximize the energy output
proximate odd order Gaussian directional derivatives [8]. P T . : gy outp
of the smooth derivative filters in the analysis of the normal
e Gabor filters have a larger number of parameters tha#?€d regions obtained in the interest point selection ptoce
Gaussian derivatives, thus being more easily customize$/e notice that, at this point, we have image regions thatlare a
to each particular purpose. For instance, using the Gabdfady scale-normalized, therefore the scale-selectiocepiure
filter parameters in the edge cost function in order to findWe are proposing here should choose one single scale value fo

the appropiate filter parameters [15, 16]. all regions. _
In Figure 2 we see examples of the odd Gabor filter to com-

Notice that the first fact listed above, tells us that the pedor-  pute thel, at severab values. In order to select the best scale
mance with Gaussian derivative filters can also be achieitbd w we will use the gradient magnitude over all selected featire
Gabor filters, and the second fact suggests that a more tarefall images, due to its key role of weighting the gradient mrie
parameter tuning of the Gabor parameters may eventually leaation histogram in the SIFT computation. In fact, the scale

to better performance. normalized gradient magnitude has been used to measure edge



Gabor filtersC' = 60* operations per pixel [19, 20], anfd de-
. . pends on the type of multi-scale filter implementation arel th
size of the normalized region. As we are dealing with scale-

normalized regions, the search alofAgscales of Eqgs. (9-13)

can be replaced by a single scale suitable for all normalized
Figure 2: Examples of odd Gabor functionséat= 0, v = 6, ando = images, thus yielding a complexity 61(52 x O).
{2v/2/3,4/3,4/2/3,8/3,8/2/3,16/3}. In the following sections we describe how to evaluate the

effect of the scale selection of smooth derivative filter&qs.

strength in scale-space [17]. However, this measure isergt v (9-13) in SIFT performance. We compare performances using
stable for sufficiently large scales, leading to the sebectf & very recent local descriptor evaluation framework.

larger scale values in features with actual small scale [Lfis

issue has been addressed in th_e conte>§t of_ edge scaletmlect|3_ Local descriptor evaluation

based on the concept 9fnormalized derivatives [18].

We have made some preliminary test with this methodology Recently was proposed a framework whose aim is to com-
but the results were not promising, mainly because theffesitu pare local image descriptors [7]. The method to compare is
obtained in the interest point selection phase are not alig®  comprised by the steps we explain as follows:
but also blobs, corners, junctions and other structuresdi-Ad  Several image pairs are used for evaluation, each one having
tionally, the image regions we are considering are alreeales g particular type of image transformation. Each pair is obdi
normalized, so the scale selection procedure is a locatisear py taking two pictures of the same scene in different condi-
as opposed tg-normalized derivatives in [18]. We, therefore, tions (position, camera/image settings). Figure 3 showsest
propose the following methodology to avoid the bias towardset images used to perform the local descriptor evaluatien,
large scales in the scale-normalized gradient magnitude: same as used in [7] for the sake of the comparison with the othe

« Considering independently the components of the normalMethods. For each image, one of five possible image transfor-

ized gradient magnitude. We have noticed that the horMations is applied: Zoom + rotation, viewpoint, image blur,

izontal and vertical derivatives are often better behaved™ECG compression, and illumination. For viewpoint transfo
than their combination in the gradient magnitude. mations, scale + rotation and image blur, two classes of@mag

are considered: (ihatural images containing a large amount
e Biasing the scale selection criterion to smaller scaleeslu of randomly oriented textures; and (8jructured imageson-
for each component, to avoid the non-decreasing behaviaaining many distinctive long edge boundaries. In the cdse o
of the normalized derivatives for large scales [17]. JPEG compression and illumination transformations, omiy i
ages from thestructuredtype are employed.
For the generation of ground truth data (computing the cor-
rect matches between the two images), each pair of images is

Following these criteria, we pick the Gabor filter with lastje
energy in ther andy directions, and, from these, we select the

smaller scale: related by a projective transformatidih. The homography is
computed in two steps: (i) a first approximation to the horaegr
G = argmax |(I * gy, 4,,0=0(0))] 9) phy is computed using manually selected points, then tinstra
R 7 formed image is warped with this homography, and (ii) a ro-
Oy = argax |( % gas i ,0=r/2(0))] (10) bust small baseline homography estimation algorithm isluse
& (s, yi) = min(G,,6,), (11)  tocompute the residual homography between the reference im

(12) age and the warped one.

L. (xi,yi) = (I % ge, 4, 0(0)) (T3, Y; . . . L . .
220 4i) = (14 Gai0(9)) (2, i) Salient image regions are computed using invariant region

Iy(@i, yi) = (1% Go, yom/2(0)) (6, i) (13)  detectors. This process outputs elliptic regions in the itwo
where(z;, ;) is a point in the scale-normalized region, and 29€S that are good candidates for posterior matching. Fesur d
is the adequate filter width at positién;,, ;). tectors are tested:

¢ the Harris-affine detector[21] computes corners and junc-

2.4.1. Computational complexity tions covariart to affine transformations up to a rotation

The local minima selection of Egs. (9-13) has an obviously

. . : . . factor;
higher computational complexity than the pixel differerafe
Egs. (1) and (2). In a scale-normalized image of $izeS, the ¢ the Hessian-affine[22] detector computes blobs and ridges
complexity of the pixel difference and filtering (52), while covariant to affine transformations up to a rotation factor;
the odd Gabor scale selection of Egs. (9-13) have a complexit . .
value of o the Harris-laplace[23] detector computes corners and junc

O(S? x (C x F+2F +1)), (14) tions covariant to scale and rotation changes; and

whereC' is the number of operations per pixel to compute the
response of one Gabor filter adis the number of Gabor fil- LConsidering an isotropic and non-zero mean Gabor filter imphéatien
ters applied. Using the state-of-the-art fast implemeémntaof 2Corresponding regions in the two images are called covariant



e the Hessian-laplace[l, 21] detector computes blobs andersusl — precision curve. Additionally, we perform further
ridges covariant to scale and rotation changes. tests in object category recognition, in order to compagedial

_ o _performance of local descriptors in object recognitiord euill
These methods provide not only the localization of the sélie g the subject of the next section.

regions but also geometrical information regarding the siz

the image region. Then, the region’s dominant orientaarbi

tained by selecting the peak of the gradient histogram. Witgh 4. Object Recognition Experiment
information, each image region can be associated to arsellip . .
(R(u)) representing its dominant shape. Knowing the ground In th'? group of e_xperlments we apply the appearance only
truth projective transformatio/ between the images, cor- merI, n wh|ch ObJ?CtS are mgdel-ed by a-bunch of local de-
respondence tess proposed to evaluate the quality of the in- scriptors. The idea is to combine information of hundreds of

variantimage detection process. Two image regi@s, ) and thousanc}s of local descriptors, being robust to occlusimh a
R(u) are corresponding if the overlap error is less than thresh(-)ther NoISe Sources [24, 25, 26]. This type of appearange onl
old g, object model is adequate to compare the performance of local

R(pa) N R(HT ju, H) descriptors_ when matching _object;, bepause !t considdys on
1— Rlpa) O RO, H) < €. (15) local descnpto_r.matches to ﬁnq objects in new images.
@ The recognition of each object category is addressed as a
In the previous equatioR() is the elliptic region defined by two-class supervised problem (class labet {0, 1}), using
2T pz = 1, wherep has the ellipse parameters, aHdis the  positive (objects¢ = 1) and negative (no objects,= 0) class
homography between images. samples to learn the category model. The model consists of a

Candidate image regions are normalized for affine and ilclass-similarity feature vector, that contains the matgho the
lumination transformations using, respectively, thepélire-  descriptors of the class. The steps for the superviseditearn
gions parameters computed in the previous steps, and imag$the model of an object category are as follows:
region graylevel statistics.

To represent the detected regions in a way suitable for match . . L ;
ing, an extended description of its photometric properiest ence 0]: Gaus?ans (BOG) operator in the training set im-
be provided. Each candidate image region is represented by ages{If, .. "It""’IT]_" . ) ,
the SIFT descriptor and our proposal. Matching testleter- 2. Compute a local descriptor at interest point locatiarjs,
mines if two candidate regions (one on each image of the pair) *~ L.y M, ce{0,1}. ) _ _
are similar. Three different matching methods are emplpyed 3- Pick randomlyN << M interest points from the posi-
(i) thresholded euclidean distance between the two descsip tive class samples as the category model. The respective
(i) nearest-neighbor, and (iii) nearest-neighbor disearatio. picked local descriptors are denoted by
Based on the ground truth data, matches are classified &storr
or false. In the case of threshold-based matching, two gescr
torsu, andw; are matched if the euclidean distance is below
a threshold. In the case of nearest neighbor, a match ekists i
uy, IS the nearest neighbor tg, and the euclidean distance be-
tween descriptors is below a threshold. In the case of neares
neighbor distance ratio, we have the descriptgrthe nearest
neighboru, and the second nearest neighlgr The descrip-

1. SelectM interest points locations by applying the Differ-

Ugyy ooy g, yeensUsy 1< 8, <M (18)

4. Compute the class-similarity feature vectdi® =
[v§,...,v5,...,v%] for each image in the training set.

Pick the descriptors$ that belong to imagé;, and com-
pute the similarity{ of the descriptok,,

c

j— 3 — . 2
torsu, andu, are matched ifjug — upl|/||uq — ue|| < t. The vp = min fJus, — |,
thrgshold-bgsed method may assign seyeral matches to one de i=1,..., M i#sy,ul €I (19)
scriptor, while the other two method assign at most one match
to each descriptor. 5. Input the class similarity vectokg®, ..., V¢, ..., V5 with
An evaluation metric is defined, based on precision and re-  their respective label to the learning algorithm, in order
call. recall versusl — precision curve are computed for each to estimate the category model.
image pair. The recall of the regions detected in two images i . : .
defigedpaS' g a8 After learning the object model, the steps to detect an in-
' I #correct matches (16) stance of the object category in a new image are as follows:
recatt = .
#correspondences 1. Select/ interest point locations.
The ratio between false matches and the total number of 2. Compute local descriptors in the new imaggj =
matches is given by — precision value: 1,...,J atinterest point locations.
3. Create class-similarity feature vectorV =

#false matches ] [v1,...,Vn,...,oy] by matching each class model
#correct matches + # false mafc}be«i?) descriptoru,, against all descriptors;.
After completing the steps above, one is able to compare the
matching performance of any local descriptor usingrthe:ll

1 — precision =

v, = min|Jus, —uyl|*, j=1,...,J  (20)
K3



Figure 3: Data set used for local image descriptor evalua#foom + rotation 3(a) and 3(b), viewpoint 3(c) and 3(d), imhge 3(e) and 3(f), JPEG compression
3(g), and illumination 3(h)

Figure 4: Typical images from selected databases.

4. ClassifyV as object or background image, with a binary scale value of the Gabor filter, in order to reduce the computa
classifier. tional complexity of the image derivative method.

The experiments are performed over a set of classes provided
by Caltech® : airplanes side, cars side, cars rear, camels, faces5.1. Gabor filter scale selection
guitars, leaves, leopardand motorbikes side plus Google L . . .
thingsdataset [27]. We use categaBoogle thingss negative Aiming to reduce the .compL.Jtatlongl' complexity presentgd in
samples. Each positive training set is comprised of 100 &mag EU- (14), we select a single filter suiting all cases. Thelsing
drawn at random, and 100 images drawn at random from thiilter selection reduces the complexity of the image desreat

unseen samples for testing. Figure 4 shows some sample ifi@MPutation fronO (52 x (C'x F +2F +1)) to O(5? x C).

ages from each category. For all experiments, images have'§¢ compute the relative frequency (i.e. histogram) of thee fit

fixed size (height 140 pixels), keeping the original image asWidth o in Eq. (11), using all the scale-normalized image re-
pect ratio and converted to gray-scale format. We vary th&ions of the image data set presented in Figure 3. To avoid

number of local descriptors that represent an object catego noisy ¢ values, we pick pixels with gradient magnitude above
N = {5,10,25,50,100, 250,500}. In order to evaluate the a certain threshold. We plot the marginalized (structuned a

influence of the learning algorithm, we utilize two classifie (€xtured) histograms and the total histogram in Figure 5. Whe

SVM [28] with linear kernel, and AdaBoost [30] with deci- comparing structureds textured images, we observe that in

sion stumps. The evaluation criterion of every experiment i the case of textured images the bins located at the left dide o
the histogram peak are all larger than the equivalent bins in

the performance at the equilibrium point of the Receiver©pe ! ) e
ator Characteristic (ROC) curve, when the false positite-+a the structured images histogram. This is an expected behav-
#pr, because the high gradient magnitude points in veryitexit

miss rate. Now we present the results when comparing the SIF

descriptor, and our smooth derivative SIFT, using the atin ~ IMages have a very small spatial support, while in strudture
tools presented in this and the previous section. images the points with high gradient magnitude have a larger
spatial support. We also notice the difference of peak lonat

_ between structuredr(= 1.88) and texturedg = 1.58) images.
5. Experimental results Although we biased the filter width selection to small values

We evaluate the impact of our proposed approach to comput%smg Eq. (11), it still will select high filter width values some

: . 0 : X )
the SIFT local descriptor in two related tasks: (i) imageageg .Of the image p0|_nts (around 10/0 of 'mage plxe_ls), blurrirg th

. -~ : S . image gradient in some regions. This behaviour would lead
matching, and (ii) component-based object recognitionstFi

. : . __to lose important histogram information in some subregions
we present the experiments that allow the selection of desing In order to avoid these high filter width values, and keeping

high frequency information of the textured images, we gelec

3Datasets are available at: http://www.robots.ox.acvgigfdata3.html the_pe?-k of the _histogram. of _Figure 5 .tO compute the image
4Implementation provided bljbosvii29] derivatives. The image derivatives are given by




Pixel difference of Egs. (1-2) 0.44 ms
Multi-scale optimization (Gabor) of Egs. (9-13)9.75 ms
Single scale (Gabor) of Egs. (21-22) 1.01 ms

Table 1: Execution time of C implementations, in a Pentium 40 Z3$z.
Average value of the: derivative computation for all the normalized regions
(size41 x 41) selected in the images of Figure 3.

(I % gz.4,0(1.58))(z,y)
(I*ga:,y,w/2(1-58))(x’y)'

(21)
(22)

. . .
I structured
[ textured ||
I 2l images

094 1.12 1.33 158 1.88 224 2.66 3.17 3.77 4.48 533

relative freq (pdf)

Figure 5: Histograms aof for various image types.

original SIFT curve for the three matching criteria. We peti
the same behavior for all the experiments, thus improvif S|
matching performance. In order to evaluate quantitativiedy
improvement of our descriptor over the original SIFT dgscri
tor, in every experiment we compute the difference in recad
for a fixed precision value of 0.5, obtaining the recall vahye
a linear interpolation using the two closest points.

Harr | Hess| Struc | Text | Total

Threshold| 2.7 | 4.3 3.7 2.3 3
NN 0.36 | 0.75| 0.59 | 0.56| 0.54
NN ratio | 0.23| 1.33| 0.5 | 1.02| 0.68

Table 2: Mean recall difference (%) between our SIFT degarignd original
SIFT [1], atprecision = 0.5

We see in Table 2 that the improvement value depends on:
(i) detectors and (ii) threshold criterion. Performanceiave-
ment of Hessian detectors is greater than Harris deteators f
every matching criteria. Also the improvement dependsliiiigh
on the matching criterion, as recall improvement in theghre
old based method is about 10 times than the improvement in
the nearest neighbor methods. This difference is relatéeto
difficulty of improving the performance of the nearest neigh
bor methods, because demand a high precision rate with very
few correspondences. Nevertheless, our method for comput-
ing SIFT local descriptor improves SIFT distinctivenessédth
the matching experiments. Now we present the improvement
results in the object recognition tests.

5.3. Component-based object detection
In this experiment we evaluate the impact of the perfor-

The Egs. (21, 22) provide a fast approximation of the scalénance improvement of our descriptor in an object category de
selection of Egs. (9-13), keeping the advantage of a smootheection task. We test several variations of SIFT local dpscr

image derivative approximation versus the pixel diffeenof

tors to build the experimental set-up: (i) original SIFTKS),

Egs. (1) and (2). In the next sections we present the perforgi) original SIFT non-rotation-invariant (SIFT-NRI),i{ mod-
mance improvement of the SIFT descriptor by using Eqgs. (2lified SIFT (SIFTGabor), and (iv) modified SIFT non-rotation-
22). However, we pay the price of performance improvemeninvariant (SIFTGabor-NRI).

by increasing the computational load of the image derieativ

We compute the Equal Error Point (EEP) of the ROC curve of

computation, as shown in Table 1. Despite that the theaietic every type of: (i) Local descriptor, (ii) object categorpdafor
complexity analysis indicates a 60 times slow down with our(jii) two matching criteria: (a) threshold-based and (bt
approach, in practice we verified that it only slows down 2-3neighbor. We see in Fig. 7 an example of the performance

times, thus maintaining a real-time functionality. The lexp

evolution as a function of the number of features, in the odse

nation may be related to the pixel access times to perform theotorbikes category. This example shows the general riesult

subtraction, that were not considered in the theoreticallyais.
Additionally, the fixed computational cost of the image natm
ization will further smooth out the differences betweentthie
methods.

5.2. Image region matching

We computerecall vs 1 — precision curves for all types of:
(i) image transformations, (ii) image detectors, and §tiuc-

tured and textured images. We observe in Figure 6 examples

of the recall vs 1 — precision curve in the case of the view-
point transformation applied between the wall images ofifgg
3(a), remarking that our descriptor curve is located abbee t

7

all categories, where the best performance comprisesV{) S
algorithm, (ii) NRI descriptors, (iii) threshold-based tclaing,
and (iv) our modified SIFT descriptor.

5 10 25 50 | 100 | 250 | 500
T | -058| 036 | 1.51| 2.76 | 1.22| 0.89 | 0.46
NN | -0.66 | -0.32 | 0.04| 0.21| 0.45| 0.27 | .07

able 3: Mean difference (%) of the recognition rate at th&@BEROC curve
between our SIFT descriptor and original SIFT [1]. The midaifel bottom
row contain the results, respectively, for the threshokkblgT) and the nearest
neighbor (NN), for different number of descriptas (shown in the top row).
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Figure 7: Equal error point of ROC curve vs. number of locakdesors for the motorbike dataset, for various combinatidescriptor-rotation option-classifier.

We observe in Table 3 the mean performance difference ofearning algorithm used to classify objects, and (ii) theéaha
(i) all categories, (ii) non-rotation invariant descriggpand (iii)  ing criterion used to build the feature vector. The bestltesie
SVM learning algorithm. The improvement of the thresholdobtained using the SVM learning algorithm and the threshold
based criterion is at most 10 times the improvement of the-neabased matching criterion. The setup of the object recagniti
est neighbor matching criteria. experiment presented in this work can be used to evaluate the

Considering the matching criteria and the performance difimpact of any kind of local descriptor, being able to compare
ference between our descriptor and original SIFT, we noticdocal descriptor performances.
in general very similar results in this experiment to thegma
region matching results, having the best performance iagaro
ment in threshold-based criterion. We are able to maintaen t
performance improvement in a very challenging object racog Research partly funded by the FCT Programa Opera-
tion task, remarking the differences between both experisne cional Sociedade de Informag(POSI) in the frame of
in: (i) image datasets, and (i) interest point detector@s.  QCA |lI, the Portuguese Foundation for Science and Tech-
Hessian/Harris). nology Project 61911 - GESTINTERACT, the Portuguese
Foundation for Science and Technology PhD Grant FCT
SFRH\BD\10573,2002 and partially supported by Fundac
para a Céncia e a Tecnologia (ISR/IST plurianual funding)
hrough the POSConhecimento Program that includes FEDER
unds
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