Accelerometer Calibration and Dynamic Bias and Gravity Estimation: Analysis, Design, and Experimental Evaluation

Pedro Batista, Carlos Silvestre, Paulo Oliveira, and Bruno Cardeira

Abstract—Three axial linear accelerometers are key components in a great variety of applications and, in particular, in Navigation Systems. Nonidealities such as scale factors, cross coupling, bias, and other higher-order nonlinearities affect the output of this sensor, leading, in general, to prohibitive errors. On the other hand, these coefficients are often time-varying, which renders off-line calibration less effective. One such coefficient that usually varies greatly over time and between power-ons is the bias. This paper details the calibration of an accelerometer unit and presents also a dynamic filtering solution for the bias, which also includes the estimation of the gravity in body-fixed coordinates. Simulation and experimental results are presented and discussed to illustrate the performance of the proposed algorithms.

I. INTRODUCTION

Recent advances in materials and production processes have lead to the increasingly miniaturization of a large variety of sensing devices. Among these sensors are a new generation of Micro Electro-Mechanical Systems (MEMS) accelerometers, which are nowadays used in a large variety of applications. These sensors have good dynamic specifications, considering the cost, size, and power requirements, but are often subject to large offsets, cross-coupling factors, and other nonlinearities. While in some cases these nonidealities are of no importance, e.g. in cell phones to detect the vertical direction or in computer hardware for active hard drive protection, they are prohibitive for the design of Navigation Systems, which justifies off-line calibration. Furthermore, the coefficients of these nonidealities are often time-varying, which renders off-line calibration less effective and substantiates the need for on-line parameter estimation. This paper presents the calibration of a low-cost triaxial accelerometer and a novel filtering solution for on-line bias and gravity estimation with application to the design of Navigation Systems for robotic platforms.

High performance accelerometers are a key element and have been extensively used in Inertial Navigation Systems (INS). With the widespread use of MEMS technology, accelerometers are nowadays a fundamental aiding sensor for attitude estimation in low-cost, middle range performance Attitude and Heading Reference Systems (AHRS), with application to autonomous air, ground, and ocean robots. These inexpensive, low power sensors, used as pendula, allow for accurate attitude estimates at very low frequency by comparing the Earth gravitational field vector measurements in body frame coordinates with the vertical. The integration of accelerometer readings with GPS measurements are commonly employed for linear motion estimation in Integrated Navigation Systems.

The topic of accelerometer calibration has been subject of intensive research. Indeed, various methods have been proposed in the literature, from precision centrifuge tests of linear accelerometers [1] to multi-position methods [2] [3] [4]. In [5], error models for inertial sensors, including a solid-state triaxial accelerometer, were explicitly included in an Extended Kalman Filter (EKF) to estimate the position and orientation of a robot, while in [6] Kalman filtering techniques were applied to the calibration and alignment of Inertial Navigation Systems, which was also studied in [7]. More recently, in [8], nonlinear Kalman filters, of first and second order, coupled with position feedback, were used to characterize accelerometers. An optimization-based calibration procedure for triaxial accelerometer-magnetometers was proposed in [9], where a robotic arm is used to generate different angular positions of the body of the sensor. In [10] a fully electrical setup was proposed to test and calibrate accelerometer MEMS sensors. More recently, a case study was presented in [11], where a 4-DOF system is proposed for fully automated accelerometer calibration. An interesting survey on the history of accelerometers, which also includes a section on calibration activities, is found in [12].

The contribution of the paper is twofold: i) an accelerometer calibration technique is proposed and applied to off-line accelerometer calibration that includes the estimation of bias, scalar factors, cross coupling factors, and quadratic coefficients; ii) a time-varying Kalman filter is derived for on-line dynamic bias and gravity estimation. The calibration technique proposed in the paper resorts to attitude relative measurements as provided by a motion and rate table. The a priori knowledge of the gravity vector is not required since it is also explicitly estimated. The second part of paper is of particular importance for the design of Navigation Systems since it allows for online estimation of the accelerometer bias which, for low-cost units, is usually time-varying, rendering off-line calibration less effective. Moreover, the gravity is, again, assumed to be unknown and it is not explicitly canceled out resorting to the knowledge of the attitude of the body, therefore avoiding cancellation problems that would lead to a severe degradation in the performance of the resulting Navigation Systems.

The paper is organized as follows. The accelerometer models are presented and discussed in Section II. Section III details the off-line calibration technique proposed in the paper, while the on-line dynamic bias and gravity estimation solution is derived in Section IV. Simulation and experimental results are given in Sections V and VI, respectively, including both the off-line calibration of a low-cost MEMS
accelerometer and dynamic bias and gravity estimation tests. Finally, Section VII summarizes the main conclusions and contributions of the paper.

A. Notation

Throughout the paper the symbol $0_{n \times m}$ denotes an $n \times m$ matrix of zeros, I_n an identity matrix with dimension $n \times n$, and $\text{diag}(A_1, \ldots, A_n)$ a block diagonal matrix. When the dimensions are omitted the matrices are assumed of appropriate dimensions. If x and y are two vectors of identical dimensions, $x \times y$ and $x \cdot y$ represent the cross and inner products, respectively. For $x = [x_1 \ldots x_n]^T \in \mathbb{R}^n$, the vector x' is defined as the vector that results of the element-wise power operation, i.e., $x^k := [x_1^k \ldots x_n^k]^T \in \mathbb{R}^n$, while the vector $x^{[i]}$ is defined as

$$x^{[i]} := \begin{bmatrix} \text{sign}(x_1) x_1^i \\ \vdots \\ \text{sign}(x_n) x_n^i \end{bmatrix}. $$

The rotation matrix from a coordinate frame $\{A\}$ to a coordinate frame $\{B\}$ is denoted by \mathbf{R}. Finally, the Dirac delta function is denoted by $\delta(t)$.

II. ACCELEROMETER MODEL

The simplest accelerometer model for single axis sensors considers only a scale factor and a constant offset, as given by

$$a_m(t) = f a(t) + b, $$

where a_m is the output of the accelerometer, f is the scale factor, b denotes the bias, and $a(t)$ stands for the acceleration that should be measured, which includes not only the acceleration of the body of the accelerometer but also a term due to the gravitational field. This last term appears regardless of the accelerometer technology as all objects are subject to the gravitational force, which induces a force of opposite direction to the gravity on the mass whose acceleration is actually measured, see [13] and [2] for further details.

For navigation purposes, three axial accelerometers, composed of three, single-axis, orthogonally mounted linear accelerometers, are employed. The generalization of the simplest single-axis model for three axial accelerometers, which accounts for scale factors and bias, reads as

$$a_m(t) = F a(t) + b, $$

where $F \in \mathbb{R}^{3 \times 3}$ is a diagonal matrix that encodes the scale factors, $b \in \mathbb{R}^3$ is the bias, and

$$a(t) = \dot{v}(t) + S[\omega(t)] \dot{v}(t) - g(t),$$

where v and ω denote the linear and angular velocities of the body-fixed frame $\{B\}$, respectively, expressed in body-frame coordinates, $S[\omega(t)] \in \mathbb{R}^{3 \times 3}$ is the skew symmetric matrix such that $S[\omega(t)] \dot{v}(t) = \omega(t) \times v(t)$, and $g(t) \in \mathbb{R}^3$ is the acceleration of gravity, expressed in body-fixed coordinates. In practice, the set of single-axis accelerometers is not orthogonally mounted, which introduces cross coupling between the acceleration felt on the different accelerometer axes. This nonideality may be simply modeled by no longer considering F as a diagonal matrix. Instead, F is just assumed to be an invertible matrix, which accounts simultaneously, in this case, for scale and cross coupling factors.

The accelerometer model (1) is still, and in spite of capturing already a different number of nonidealities, only an approximation of the real model. Indeed, the electrical devices involved in the measurement process, from transducers to amplifiers, are not linear, do not have constant coefficients, and are subject to different types of noise. A more complete (and complex) model [1], that includes higher-order terms, is given by

$$a_m(t) = F a(t) + b + F_2 a^2(t) + F_3 a^3(t) + \ldots$$

where $F_2 \in \mathbb{R}^{3 \times 3}$, $F_3 \in \mathbb{R}^{3 \times 3}$, and $F_3 \in \mathbb{R}^{3 \times 3}$ are diagonal matrices. While it could be an interesting work to derive very complex nonlinear time-varying models for accelerometers, that is not so appealing from the practical point of view, mainly due to three reasons: i) for very highly nonlinear time-varying dynamic models the complexity of the inversion of the model could be overwhelming. Closed-form solutions are obviously not available and iterative numerical solvers would be required to operate in real-time; ii) time-varying models would be likely to depend on other variables such as temperature, which would require additional sensors; and iii) the effect of higher-order nonlinearities is often very mild, particularly when compared to the magnitude of the electrical noise. Therefore, that is not pursued in this work. In fact, the model assumed for the accelerometer, and after successful experimental validation, is

$$a_m(t) = F [a(t) + F_2 a^2(t)] + b + n_a(t),$$

where $n_a(t)$ denotes the accelerometer noise. The quadratic even term was chosen as it was evident, from experimental evaluation, that this was the most dominant nonlinear term. Moreover, there exists a closed form solution to obtain $a(t)$ from (2), which is a precious advantage for real-time navigation applications since no iterative solvers are required.

III. ACCELEROMETER OFF-LINE CALIBRATION

There exists a multitude of tests and calibration procedures described in the literature. In this paper it is assumed that the accelerometer is exposed to several different known rotations and a rather large number of measurements is taken at each static position. This can be achieved resorting to a three axial calibration table, e.g., the Ideal Aerosmith Model 2103HT, used in this work to obtain the experimental data.

The calibration table outputs the rotation from body-fixed to inertial coordinates apart from an installation error due to non-horizontal mounting of the table. If there is a precision level available, this installation error is known and it is possible to compute the rotation matrix \mathbf{R}. Otherwise, it is necessary to consider

$$\mathbf{R}(t) = \mathbf{R}_0(t) \mathbf{R}_1 \mathbf{R}_2 \mathbf{R}_3 \mathbf{R}(t),$$

where \mathbf{R}_0 is the rotation from body-fixed coordinates to the table installation fixed reference frame, which is given by the calibration table, and \mathbf{R}_1 corresponds to the matrix that encodes the installation offset.

Since measurements are considered only at static positions, it is true that

$$v(t) = \dot{v}(t) = 0.$$
Therefore, using (2), the nominal accelerometer readings are given by
\[
a_m(t) = F \left(-g(t) + F_2 g^2(t) \right) + b. \tag{3}
\]
The acceleration of gravity in body-fixed coordinates may be expressed as
\[
g(t) = R^T(t)^T g,
\]
where \(g \) is the acceleration of gravity expressed in inertial coordinates. Nowadays, there exist very accurate models for the acceleration of the gravity, e.g., using the 1984 World Geodetic System (WGS84), see [14] for further details. Therefore, if \(R \) is known, the computation of \(F, F_2, \) and \(b \) corresponds to the simple determination of linear coefficients. In the case considered in the paper only \(\frac{\partial}{\partial t} R \) is known, which means that the direction of the gravity must also be determined. In this case, it is possible to rewrite (3) as
\[
a_m(t) = F \left(-\frac{T}{\partial t} R^T(t)^T g + F_2 \left[\frac{T}{\partial t} R^T(t)^T \right]^2 \right) + b, \tag{4}
\]
where
\[
\frac{T}{\partial t} g = \frac{\partial}{\partial t} R^T(t)^T g
\]
is the acceleration of gravity expressed in table-fixed coordinates. Multiplying (4) on the left by \(F^{-1} \) gives
\[
F^{-1} a_m(t) + \frac{T}{\partial t} R^T(t)^T g - F_2 \left[\frac{T}{\partial t} R^T(t)^T \right]^2 - b' = 0, \tag{5}
\]
where
\[
b' = F^{-1} b.
\]

The proposed algorithm is detailed in Table I.

Table I

Algorithm to Calibrate the Accelerometer

1. Compute the SVD of \(X \). Select the vector associated with the minimum singular value.
2. Normalize the SVD solution obtained in Step 1 according to the magnitude of the gravity and its direction (sign of the z-coordinate).
3. Use the gravity estimate obtained in Step 2 and compute the SVD of \(X_2 \). Select the vector associated with the minimum singular value.
4. Normalize the SVD solution obtained in Step 3 according to the magnitude of the gravity and its direction (sign of the z-coordinate).
5. Use the current gravity estimate in \(X_2 \) and go to Step 3. Stop once the difference between the previous gravity estimate and the most recent goes below a predefined threshold.

The magnitude of the acceleration of gravity, as well as its direction, are used to normalize the resulting SVD solution.

The solution of this first step, in particular the gravity vector, is used as an estimate for the quadratic term in (5), which allows to also consider (5) as linear in the parameters, with
\[
\begin{bmatrix}
D_a(t_1) & \frac{T}{\partial t} R^T(t_1) & -I
\end{bmatrix}
\begin{bmatrix}
f \\
T g \\
b
\end{bmatrix}
= 0,
\]
where
\[
D_a(t) = \begin{bmatrix}
a_m^T(t) & 0 & 0 \\
0 & a_m^T(t) & 0 \\
0 & 0 & a_m^T(t)
\end{bmatrix}
\in \mathbb{R}^{3 \times 9}
\]
and
\[
f = \begin{bmatrix}
f_1 \\
f_2 \\
f_3
\end{bmatrix}
\in \mathbb{R}^9, \quad F^{-1} = \begin{bmatrix}
f_1^T \\
f_2^T \\
f_3^T
\end{bmatrix}.
\]

In the presence of sensor noise a simple solution is easily obtained from the vector associated with the minimum singular value of the Singular Value Decomposition (SVD) of the stack matrix
\[
X = \begin{bmatrix}
D_a(t_1) & \frac{T}{\partial t} R^T(t_1) & -I \\
D_a(t_2) & \frac{T}{\partial t} R^T(t_2) & -I \\
\vdots & \vdots & \vdots \\
D_a(t_N) & \frac{T}{\partial t} R^T(t_N) & -I
\end{bmatrix}.
\]
It was shown in [15] that, assuming that the accelerometer has been previously calibrated, removing the effect of scale and cross factor errors and ignoring higher-order nonlinearities, the bias may be estimated under some mild assumptions. Therefore, it is assumed in this section that the accelerometer has been previously calibrated using the technique proposed in the previous section, which allows to use the model
\[
a_m(t) = \mathbf{v}(t) + S[\omega(t)] \mathbf{v}(t) - g(t) + \mathbf{b} + n_a(t). \tag{8}
\]
The acceleration of gravity \(g \) is not known in robotic applications. While there are models for its magnitude, its direction depends on the attitude of the robot, and it is used, in fact, to estimate this variable. A common assumption when designing attitude filters is that the magnitude of the acceleration of gravity dominates, for sufficiently low frequencies, the other terms, see [16] for an example of such application. The direction of the gravity is approximated, in that case, by
\[
d_g \approx \frac{a_m(t)}{\|a_m(t)\|},
\]
which induces errors in the attitude estimates. While these errors are in general negligible, they may prove to be prohibitive for highly maneuvering vehicles, e.g. aerial robots, vehicles executing trajectories with approximately constant accelerations, or applications where high-accuracy requirements are in place, such as space applications. Therefore, the gravity acceleration in body-coordinates is also considered as an unknown in this framework.

The direction of the acceleration of gravity is locally constant in inertial coordinates. Therefore, the time derivative of \(g \) is simply given by
\[
\dot{g}(t) = -S[\omega(t)] g(t).
\]
The bias is assumed to be constant, which means that
\[
b(t) = 0.
\]
Finally, from (8), it is possible to write
\[
\mathbf{v}(t) = a_m(t) - S[\omega(t)] \mathbf{v}(t) + g(t) - \mathbf{b} - n_a(t).
\]
In the present work it is assumed that linear velocity readings are available in order to estimate \(\mathbf{b} \) and \(g \). Nevertheless, extending the framework to also estimate \(\mathbf{v} \) considering linear position measurements is trivial, see [15] for further details. The final system dynamics, considering state disturbances and measurement noise, are given by
\[
\begin{align*}
\dot{x}(t) &= A(t)x(t) + B a_m(t) + n_x(t), \\
y(t) &= C x(t) + n_y(t),
\end{align*}
\tag{9}
\]
where \(x(t) = [v^T(t) \ g^T(t) b^T(t)]^T \) is the system state,
\[
A(t) = \begin{bmatrix} -S[\omega(t)] & I \\ 0 & -S[\omega(t)] & -I \\ 0 & 0 & 0 \end{bmatrix},
\]
\[
B = \begin{bmatrix} I \\ 0 \\ 0 \end{bmatrix},
\]
\[
C = [I \ 0 \ 0], \text{ and } n_x \text{ and } n_y \text{ are assumed to be zero-mean white Gaussian noise, with}
\]
\[
E[n_x(t_1)n_x^T(t_2)] = \Xi \delta(t_1 - t_2),
\]
\[
E[n_y(t_1)n_y^T(t_2)] = \Theta \delta(t_1 - t_2),
\]
and
\[
E[n_x(t_1)n_y^T(t_2)] = 0,
\]
where \(\Xi \) and \(\Theta \) are the process and noise intensity matrices, respectively. The linear time-varying system (9) is observable on \([t_0, t_f]\) if and only if the direction of the angular velocity \(\omega(t) \) changes for some \(t_1 \in [t_0, t_f] \) or, equivalently,
\[
\forall \exists \ d \in \mathbb{R}^3 : \ |S[\omega(t_1)]d| \neq 0.
\]
The proof of this result can be found in [15]. Therefore, the estimation problem is well-posed and the time-varying Kalman filter design is straightforward, see [17] and [18]. For the sake of completeness, the Kalman filter equations are given by
\[
\dot{x}(t) = A(t)\dot{x}(t) + K(t)[y(t) - Cx(t)]
\]
for the state estimate, while the covariance matrix evolves according to
\[
P(t) = A(t)P(t)A(t)^T + E(t) - P(t)C^T\Theta^{-1}CP(t).
\]
The Kalman gain matrix is given by
\[
K(t) = P(t)C^T\Theta^{-1}(t).
\]

V. SIMULATION RESULTS

This section presents simulation results that were carried out prior to the experimental tests in order to assess the performance of the proposed solutions. The simulations attempt to replicate the experimental trials so that the results are comparable. The multi-position accelerometer calibration algorithm is evaluated in Section V-A, while simulation results with the proposed filtering solution for dynamic bias and gravity estimation are presented in Section V-B.

A. Accelerometer Calibration

In order to access the effectiveness of the proposed calibration method, Monte Carlo simulations were first carried out considering an accelerometer with
\[
F^{-1} = \begin{bmatrix} 0.990 & 0.001 & -0.002 \\ 0.020 & 1.005 & 0.003 \\ -0.010 & -0.004 & 1.010 \end{bmatrix},
\]
\[
b' = \begin{bmatrix} 0.05 \\ -0.01 \\ 0.04 \end{bmatrix} \ (m/s^2),
\]
and
\[
F_2 = 10^{-4}\text{diag} (2.5, 1.5, -0.75).
\]
In addition to that, sensor noise was considered. In particular, zero-mean additive white Gaussian noise was added to the acceleration measurements, with standard deviation of 0.0013 m/s^2. In each simulation the altitude of the accelerometer varies according to Fig. 1, where the evolution of the roll, pitch, and yaw Euler angles is depicted. The corresponding evolution of the resulting gravity vector is shown in Fig. 2. As it is possible to observe, the attitude trajectory evolves in steps. A transition time of 2 s is used between steps and each step lasts 22 s. The data is sampled, at a sampling rate of 100 Hz, during a period of 4 s on each step, in which the accelerometer is static, for calibration purposes. The first and last periods of 180 s of the simulation are presented solely because they will be required for hardware synchronization purposes.
The resulting mean of the errors of the estimated parameters is below 10^{-9} for all variables, which evidences that the estimates are unbiased. On the other hand, the standard deviation of the error stays below 10^{-7}, which corresponds to very accurate estimates of the accelerometer parameters. These values show that the proposed calibration procedure should yield good results in practice.

B. Dynamic Bias and Gravity Estimation

In order to evaluate the performance of the proposed bias and gravity estimation solution, simulations were carried out considering a setup very similar to the experimental one, which will be presented in the following section. In particular, the rotation of the accelerometer is parameterized by roll, pitch, and yaw Euler angles, whose evolution is depicted in Fig. 3.

Additive zero-mean white Gaussian noise was considered for all sensors, which were sampled at 100 Hz. The standard deviations were chosen as 0.001 m/s^2 for the acceleration measurements, $0.05 \degree/\text{s}$ for the angular velocity measurements, and 0.01 m/s for the linear velocity measurements. In addition, the bias of the accelerometer was set to

$$\mathbf{b}' = \begin{bmatrix} 0.1 \\ -0.05 \\ 0.025 \end{bmatrix} \text{ (m/s}^2\text{).}$$

The filter parameters were chosen as

$$\Xi = \text{diag}(10^{-3}\mathbf{I}, 10^{-4}\mathbf{I}, 10^{-5}\mathbf{I})$$

and

$$\Theta = 0.1\mathbf{I}.$$

The evolution of the gravity and bias estimates are depicted in Figs. 4 and 5, respectively. As it is possible to observe, the bias converges quickly to the true values. In order to better access the performance of the filter, the evolution of the errors of the linear velocity, gravity, and bias are depicted in Figs. 6, 7, and 8, respectively. Clearly, the errors converge to zero. Moreover, the error on the bias and gravity estimates stay well below the noise of the accelerometer, which evidences good filtering performance of the proposed solutions.

VI. EXPERIMENTAL EVALUATION

Experimental results were carried out in order to evaluate the performance of the proposed solutions. The experimental setup is detailed in Section VI-A, while the accelerometer calibration procedure and results are presented in Section VI-B. Finally, the proposed filtering solution for dynamic bias and gravity estimation is analyzed in Section VI-C.

A. Experimental Setup

To obtain high quality results, a calibration procedure requires the execution of specific maneuvers, involving the acquisition of high accuracy ground truth data to evaluate the estimated quantities produced by processing accelerometer
data. The Model 2103HT from Ideal Aerosmith [19] is a three-axis Motion Rate Table that provides precise angular position, rate and acceleration for development and testing of inertial components and systems. This table, presented in Fig. 9, was used to generate the desired calibration trajectories and provide the required ground truth signals. The accelerometer that was employed is presented in Fig. 10. It is a Silicon Design Inc. triaxial analog accelerometer [20], sampled at 100 Hz using three Texas Instruments ADS1210, which are directly connected to a microcontroller board built around the Phillips XAS3 16-bit microcontroller with CAN (Controller Area Network) Bus interface [21]. The ADS1210 is a high precision, wide dynamic range, delta-sigma analog-to-digital converter (ADC), with 24-bit resolution, and operates from a single +5V supply. The ADS1210 differential inputs are ideal for direct connection to transducers, guaranteeing 20-bits of effective resolution, which is a suitable accuracy for the inertial sensor used in the present application. Finally, a PC104 board, connected to the CAN Bus, logs the data in a solid state disk for post-testing analysis. The table top is autonomous in terms of power and logging capabilities.

B. Dynamic Accelerometer Calibration

The accelerometer unit previously introduced was subject to several tests, taken on different days and in different conditions. The calibration results show that the scale and cross factors, as well as the quadratic coefficient, do not change significantly between tests, which validates the calibration of the accelerometer prior to its usage in Navigation Systems. However, the bias estimates resulting from the calibration test proposed in Section III change greatly between tests, including tests where the accelerometer power was never turned off. This evidences that dynamic bias estimation is essential for this type of sensor.

The estimated parameters, which were used to correct the acceleration measurements afterwards during dynamic bias and gravity estimation, were

$$F^{-1} = \begin{bmatrix}
0.9946 & 0.0037 & -0.0061 \\
-0.0091 & 0.9998 & 0.0079 \\
-0.0071 & -0.0186 & 1.0047
\end{bmatrix}.$$
Fig. 9. Experimental setup mounted on the Ideal Aerosmith calibration table

Fig. 10. Accelerometer

\[b' = \begin{bmatrix} -0.7368 \\ -0.2803 \\ 0.3995 \end{bmatrix} \text{(m/s}^2) \]

and

\[\mathbf{F}_2 = 10^{-4} \text{diag}(-2.362, 1.055, 3.666). \]

These are all within the specifications provided by the manufacturer.

Figure 11 presents the error between the corrected accelerometer measurements at static positions and the expected measurements, which are due only to the acceleration of gravity. It is possible to observe that, even after accelerometer calibration, the mean of the error at each position is not always zero. This is due not only to higher-order nonlinearities but also to the time-varying nature of the parameters. There exist some positions at which the standard deviation of the error is much higher. This is not due to the accelerometer but to the calibration table, which exhibited some oscillations at some positions. Finally, a vibration was detected in the outer axis of the calibration table around 11Hz, which is most likely a natural resonance frequency of the body. That also contributes to the increased standard deviation of the error, and that is not present in real applications. Interestingly enough, both the oscillations and the vibrations of the table are so small that a slightly lower grade accelerometer is unable to detect them.

Fig. 11. Error of the accelerometer measurements after calibration correction

C. Dynamic Bias and Gravity Estimation

The experimental results relative to dynamic bias and gravity estimation are presented in this section. The evolution of the attitude is the same as the one presented in Section V-B, so that the results are comparable. The filter parameters and sampling rate are also the same. Notice that with this trajectory, the system dynamics for on-line dynamic bias and gravity estimation are uniformly completely observable, so that the Kalman filter error dynamics are globally asymptotically stable.

The evolution of the gravity and bias estimates are depicted in Figs. 12 and 13, respectively. It is possible to observe that the filter keeps very good tracking of the acceleration of gravity, which is essential for attitude estimation purposes in Navigation Systems. It is also possible to see the time-varying nature of the bias.

In order to better assess the performance of the filter, the evolution of the errors of the linear velocity and gravity acceleration are depicted in Figs. 14, 15, respectively. Clearly, the errors converge to zero. Moreover, the error on
the gravity stays well below the noise of the accelerometer, which evidences very good filtering performance.

VII. CONCLUSIONS
Three axial linear accelerometers are key components in a great variety of applications and, in particular, in Navigation Systems. Nonidealities such as scale factors, cross coupling, bias, and other higher-order nonlinearities affect the output of this sensor, leading, in general, to prohibitive errors. On the other hand, these coefficients are often time-varying, which renders off-line calibration less effective. One such coefficient that usually varies greatly over time and between power-ons is the bias. This paper detailed a calibration technique for an accelerometer unit and presented a dynamic filtering solution for the bias, which also includes the estimation of the gravity in body-fixed coordinates. Simulation and experimental results were presented and discussed that illustrate the performance of the proposed algorithms.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the expertise and contributions of Luís Sebastião during the mounting process of the Ideal Aerosmith Calibration Table and the help with the delogging software provided by André Oliveira.

REFERENCES