Performance Limitations in Stabilization and Tracking

Li Qiu
Hong Kong University of Science & Technology

Sevilla, December 2005
Objective and Background

- Find simple explicit relationship between the plant characteristics and the best achievable performance in certain stabilization and tracking problems.

- A recent book:

Minimum Energy Regulation

- The control energy:
 \[E = \int_0^\infty u^2(t) dt. \]
- The minimum energy required to stabilize the system
 \[E^* = \inf_{C \text{ is stabilizing}} E. \]
• **Theorem:** Let P have anti-stable poles p_1, \ldots, p_μ. Then

$$E^* = 2 \sum_{i=1}^{\mu} p_i.$$

• Two possible ways to prove this theorem:

 – “Expensive control”: Let $P = \begin{bmatrix} A & B \\ C & 0 \end{bmatrix}$. Then

$$E^* = \lim_{\epsilon \to 0} \min_u \int_0^\infty \left[\epsilon^2 y^2(t) + u^2(t) \right] dt, \quad x(0) = B.$$

 Observation: (Kwakernaak and Sivan, 1972) In the state feedback case, the total shift of eigenvalues when closing the loop is $2 \sum_{i=1}^{\mu} p_i$, i.e.,

Minimum energy = modal shift.

 – \mathcal{H}_2 model-matching: Let $P(s) = N(s)M^{-1}(s)$ be a corpime factorization. Then

$$E^* = \min_{Q \in \mathcal{H}_\infty} \| I - M(s)Q(s) \|^2_2.$$
• $\sum_{i=1}^{\mu} p_i$ serves as an instability index.

• It also appears in the Bode sensitivity integral (Freudenberg and Looze, 1985):

- $L(s)$ has relative degree at least 2.
- $L(s)$ has anti-stable poles p_1, \ldots, p_μ.
- $S(s) = \frac{1}{1+L(s)} \in \mathcal{H}_\infty$.
- Then

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \ln |S(j\omega)| d\omega = \sum_{i=1}^{\mu} p_i.$$
• It has an “entropy” interpretation.

 – Consider a linear system
 \[
 \dot{x}(t) = Ax(t), \quad x(t) \in \mathbb{R}^n.
 \]
 The solution is
 \[
 x(t) = e^{At}x_0.
 \]

 – Define a new norm in \(\mathbb{R}^n \) as
 \[
 \|x_0\|_T = \sup_{t \in [0,T]} \|e^{At}x_0\|.
 \]

 – Let \(B \) be the closed unit ball in the original norm \(\| \cdot \| \). Fill up \(B \) with as many \(\| \cdot \|_T \) balls with radius \(\epsilon \) as possible. Denote the number of such \(\| \cdot \|_T \) balls as \(r_T(\epsilon) \).

 – Define
 \[
 r(\epsilon) = \limsup_{T \to \infty} \frac{1}{T} \ln r_T(\epsilon).
 \]
 \(r(\epsilon) \) is a decreasing function of \(\epsilon \).

 – Define the topological entropy of the system as
 \[
 h(A) = \lim_{\epsilon \to 0} r(\epsilon).
 \]
Theorem: \(h(A) = \sum_{i=1}^{\mu} p_i \) where \(p_1, \ldots, p_\mu \) are the anti-stable eigenvalues of \(A \).
• What if the disturbance or the states of the plant cannot be measured?

\[C \quad u \quad P \]

\[\delta \]

\[y \]

• We have

\[
\inf_{C \text{ is stabilizing}} \|u(t)\|_2^2 = 2 \sum_{i=1}^{\mu} p_i
\]

if and only if \(P(s) \) is minimum phase.

• Historic notes:

 − Qiu and Chen, in *Learning, Control, and Hybrid Systems*, 1998.
Minimum Error Step Tracking

Here

\[P = \begin{bmatrix} G \\ H \end{bmatrix}. \]

Wish to design \(C \) so that the closed loop system is internally stable and \(z \) tracks a unit step \(\sigma(t) \).

The tracking error:

\[J = \int_0^\infty [\sigma(t) - z(t)]^2 dt. \]

The minimum tracking error:

\[J^* = \inf_{C \text{ is stabilizing}} J. \]
Theorem: Let $G(s)$ have nonminimum phase zeros z_1, \ldots, z_ν. Then under mild conditions,

$$J^* = 2 \sum_{i=1}^\nu \frac{1}{z_i}.$$

Two ways to prove this theorem:

- “Cheap control”:

 $$J^* = \lim_{\epsilon \to 0} \min_u \int_0^\infty e^2(t) + e^2[u(t) - u(\infty)]^2 dt$$

- \mathcal{H}_2 model-matching: Let $P(s) = N(s)M^{-1}(s)$ be a coprime factorization. Then

 $$J^* = \min_{Q\in\mathcal{H}_\infty} \| [I - N(s)Q(s)]^{-1}_s \|_2^2.$$
\[\sum_{i=1}^{\nu} \frac{1}{z_i} \] defines a degree of difficulty in tracking a step.

- It also appears in the Bode complementary sensitivity integral (Middleton, 1991)

\[L(s) \] is at least of type 2.
- \(L(s) \) has nonminimum phase zeros \(z_1, \ldots, z_\nu \).
- \(T(s) = \frac{L(s)}{1+L(s)} \in \mathcal{H}_\infty \).

\[\ln |T(j\omega)| \frac{d\omega}{\omega^2} = \sum_{i=1}^{\nu} \frac{1}{z_i} \]

- Does it have an entropy interpretation? The instability index of the zero dynamics?
• What if a unity feedback is used?

\[
\begin{align*}
\text{r} & \quad e \quad C \quad u \quad G \quad z \\
\end{align*}
\]

• It holds

\[
\inf_{C \text{ is stabilizing}} \|e(t)\|_2^2 = 2 \sum_{i=1}^{\nu} \frac{1}{z_i}
\]

iff \(G(s)\) is semi-stable.

• Historic notes

Minimum Error Tracking of Sinusoidal Signals

Here

- ξ is the state of exo-system S. (Full information)
- $r(t) = a \sin \omega t + b \cos \omega t$.
- $P = \begin{bmatrix} G \\ H \end{bmatrix}$.

- Wish to design C so that the closed loop system is internally stable and z tracks r.

• The averaged tracking error:

\[J = \mathbb{E}\{ \int_0^\infty \|e(t)\|_2^2 \, dt : \mathbb{E} \begin{bmatrix} a \\ b \end{bmatrix} = 0, \mathbb{E} \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a & b \end{bmatrix} = I \} \].

• The minimum tracking error

\[J^* = \inf_{C \text{ is stabilizing}} J. \]
• **Theorem:** Let G have nonminimum phase zeros z_1, \ldots, z_ν. Then

$$J^* = \sum_{i=1}^{\nu} \left(\frac{1}{z_i^* + j\omega} + \frac{1}{z_i - j\omega} \right).$$

(Su, Qiu, Chen, *IEEE TAC* 2003)
• What if the controller can only access the reference signal, not the state of reference generator. (Partial information)

```
\begin{figure}
\begin{center}
\begin{tikzpicture}
\node (r) at (0,0) {$r$};
\node (C) at (1,0) {$C$};
\node (P) at (2,0) {$P$};
\node (u) at (1,1) {$u$};
\node (z) at (2,1) {$z$};
\node (y) at (1,-1) {$y$};
\draw[->] (r) -- (C);
\draw[->] (C) -- (u);
\draw[->] (u) -- (P);
\draw[->] (P) -- (z);
\draw[->] (z) -- (y);
\end{tikzpicture}
\end{center}
\end{figure}
```

• **Theorem:** Let G be rational and have nonminimum phase zeros z_1, \ldots, z_ν.

$$J^* = \sum_{i=1}^{\nu} \left(\frac{1}{z_i^* + j\omega} + \frac{1}{z_i - j\omega} \right) + \frac{1}{\omega} \sin^2 \left[2 \sum_{i=1}^{\nu} \angle(z_i - j\omega) \right].$$

• The extra term in the partial information case is due to the cost of estimating the full information optimal control.

(Su, Qiu, Chen, *IEEE TAC* 2005)
Minimum Energy Stabilization under Disturbance

- \(d\) is \(L_2\) norm bounded
 \[\|d\|_2 \leq \epsilon.\]
- The worst case energy
 \[E = \sup_d \int_0^\infty u^2(t)dt.\]
- The best achievable worst case energy
 \[E^* = \inf_{C \text{ is stabilizing}} E.\]
Theorem:

\[E^* = 2 \sum_{i=1}^{\mu} p_i + \epsilon^2 \inf_{C \text{ is stabilizing}} \|T_{ud}\|_{\infty}^2. \]
Here Δ is a possible nonlinear time-varying uncertainty with bounded \mathcal{L}_2 induced norm:

$$\|\Delta\| \leq \epsilon.$$

- The worst case stabilization energy

$$E = \sup_{\Delta} \int_0^\infty u^2(t) dt$$

- The best achievable worst case stabilization energy

$$E^* = \inf_{C \text{ is stabilizing}} E.$$
Theorem: Let

\[\gamma = \inf_{C \text{ is stabilizing}} \|T_{ud}\|_{\infty}. \]

Then

\[E^* = \frac{2}{1 - \epsilon^2 \gamma^2} \sum_{i=1}^{\mu} p_i. \]
Minimum Error Tracking under Disturbance

- Here d is \mathcal{L}_2 norm bounded:
 \[\|d\|_2 \leq \epsilon. \]

- The worst case error
 \[J = \sup_d \int_0^\infty \|\sigma(t) - z(t)\|_2^2 dt \]

- The best achievable worst case error
 \[J^* = \inf_{C \text{ is stabilizing}} J. \]
• **Theorem:** Let G have nonminimum phase zeros z_1, \ldots, z_ν. Then under mild conditions,

$$J^* = 2 \sum_{i=1}^{\nu} \frac{1}{z_i} + \epsilon^2 \inf_{C \text{ is stabilizing}} \| T_{ed} \|_\infty^2.$$

(Su, Petersen, and Qiu, IFAC Congress, 2005)
Minimum Error Tracking under Uncertainty

Here Δ is a possibly nonlinear time-varying uncertainly with bounded \mathcal{L}_2 induced norm:

$$\|\Delta\| \leq \delta.$$

The worst case error

$$J = \sup_{\Delta} \int_0^\infty \|\sigma(t) - z(t)\|_2^2 dt,$$

and the best achievable worst case error

$$J^* = \inf_{C \text{ is stabilizing}} J.$$
• **Theorem:** Let \[\gamma = \inf_{C \text{ is stabilizing}} \|T_{ed}\|_\infty. \]

Then

\[J^* = \frac{2}{1 - \epsilon^2 \gamma^2} \sum_{i=1}^{\nu} \frac{1}{z_i}. \]

(Su, Petersen, Qiu, IFAC Congress, 2005)
Conclusions

• Simple and explicit expressions for certain performance limitations have been obtained.

• These limitations reveals inherent system structures and properties.

• Extensions to
 – multivariable systems,
 – discrete time systems,
 – sampled-data systems,
 – system with delays,
 – nonlinear systems,

are available.