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Research Interests
Control Systems & Robotics
• Autonomous Control of Robotic Vehicles 

– e.g., guidance, navigation, and control of unmanned air/ground vehicles
• Cooperative Control of Multiple Autonomous Vehicles

– e.g., swarms of multiple unmanned air/ground vehicles, multi-robot coordination, 
distributed algorithms, spacecraft formation flying 

Platforms in the COoperative VEhicle Networks (COVEN) Laboratory at Utah State University
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Civil and Commercial:
• Automated Mining
• Monitoring environment 
• Monitoring disaster areas
• Communications relays 
• Law enforcement
• Precision agriculture
Military:
• Special Operations: Situational 

Awareness
• Intelligence, surveillance, and 

reconnaissance
• Communication node
• Battle damage assessment
Homeland Security:
• Border patrol
• Surveillance
• Rural/Urban search and rescue

Potential Applications for Autonomous Vehicles

Epson 
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Cooperative/Coordinated Control
• Motivation:

While single vehicles performing solo missions will 
yield some benefits, greater benefits will come from the 
cooperation of teams of vehicles.

• Common Theme:
Coordinate the movement of multiple vehicles in a
certain way to accomplish an objective.
- e.g. many small, inexpensive vehicles acting together can
achieve more than one monolithic vehicle.

e.g., networked computers
Shifts cost and complexity from hardware platform to 
software and algorithms.

• Multi-vehicle Applications:
Space-based interferometers, future combat systems, 
surveillance and reconnaissance, hazardous material 
handling, distributed reconfigurable sensor networks …
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Cooperative Control Categorization
• Formation Control

- Approaches: leader-follower, behavioral, virtual 
structure/leader, artificial potential function, graph-rigidity
- Applications: mobile robots, unmanned air vehicles, 
autonomous underwater vehicles, satellites, spacecraft, 
automated highways 

• Task Assignment, cooperative transport, cooperative role 
assignment, air traffic control, cooperative timing
- Cooperative search, reconnaissance, surveillance (military, 
homeland security, border patrol, etc.)
- Cooperative monitoring of forest fires, oil spills, wildlife, etc.
- Rural search and rescue.
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Cooperative Control: Inherent Challenges

• Complexity:  
• Systems of systems.

• Communication: 
• Limited bandwidth and connectivity.
• What? When?  To whom?

• Arbitration:
• Team vs. Individual goals.

• Computational resources:
• Will always be limited
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Cooperative Control: Centralized vs Distributed Schemes

• Centralized Schemes
Assumptions: availability of global team knowledge, 
centralized planning and coordination, fully connected 
network
Practical Issues: sparse & intermittent interaction 
topologies (limited communication/sensing range, 
environmental factors)

• Distributed Schemes
Features: Local neighbor-to-neighbor interaction, evolve 
in a parallel manner
Strengths: reduced communication/sensing requirement; 
improved scalability, flexibility, reliability, and 
robustness
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Distributed Consensus Algorithms
• Basic Idea

Each vehicle updates its information state based 
on the information states of its local (possibly 
time-varying) neighbors in such a way that the 
final information state of each vehicle 
converges to a common value.

• Extensions
Relative state deviations, incorporation of other 
group behaviors (e.g., collision avoidance)

• Feature
Only local neighbor-to-neighbor interaction 
required

 

R

Vicsek’s Model

Boids: http://www.red3d.com/cwr/boids/
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Consensus Algorithms – Literature Review

• Historical Perspective
biology, physics, computer science, economics, load 
balancing in industry, complex networks

• Theoretic Aspects
algebraic graph theory, nonlinear tools, random network, 
optimality and synthesis, communication delay, 
asynchronous communication, …

• Applications
rendezvous, formation control, flocking, attitude 
synchronization, sensor fusion, …

Wei Ren, Randal W. Beard, Distributed Consensus in Multi-vehicle Cooperative Control, 
Communications and Control Engineering Series, Springer-Verlag, London, 2008 
(ISBN: 978-1-84800-014-8)



10

Modeling of Vehicle Interactions

A graph that has a spanning 
tree but not strongly connected

A directed graph that 
is strongly connected

A undirected graph 
that is connectedA directed spanning tree

(i) Separated groups

(ii) Multiple leaders
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Modeling of Vehicle Interactions (cont.)

adjacency matrix Laplacian matrix
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Outline
•• Part 1: Consensus for SinglePart 1: Consensus for Single--integrator Kinematics integrator Kinematics ––

Theory and ApplicationsTheory and Applications

• Part 2: Consensus for Double-integrator Dynamics –
Theory and Applications

• Part 3: Consensus for Rigid Body Attitude Dynamics 
– Theory and Applications

• Part 4: Synchronization of Networked Euler-
Lagrange Systems – Theory and Applications
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Consensus Algorithm for 1st-order Kinematics
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Convergence Result (Fixed Graph)

The Laplacian matrix has a simple zero eigenvalue and all 
the others have positive real parts.

Directed graph 
has a directed 
spanning tree.

Consensus is
reached.
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Sketch of the Proof

(1)

(2) (3)

An inductive approach

• Step 1: find a spanning tree 
that is a subset of the graph

• Step 2: show that consensus 
can be achieved with the 
spanning tree (renumber each 
agent)

• Step 3: show that if 
consensus can be achieved for 
a graph, then adding more 
links will still guarantee 
consensus
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Consensus Equilibrium (Fixed Topology)

The initial condition of a node contributes to the equilibrium value 
if and only if the node has a directed path to all the other nodes.
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Convergence Result (Switching Graphs)
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Sketch of the Proof
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Examples - Consensus and Directed Spanning Trees

Cases when consensus cannot be achieved:

(i) Separated groups (ii) Multiple leaders
Union of (i) and (ii)

Consensus can be achieved:

Consensus can be achieved:

Equilibrium determined by
vehicles 1 and 2
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Rendezvous ‐ Experiments

Union Topology

Switching Topologies

Experiment was performed in CSOIS (joint work 
with Chao, Bougeous, Sorensen, and Chen)
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Rendezvous Demos ‐ Switching Topologies

Union TopologySwitching Topologies



22

Axial Alignment



23

Consensus with a Virtual Leader
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Sketch of the Proof
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Examples – Consensus Tracking
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Example - Virtual Leader/Structure Based Formation Control (Centralized)
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Example - Virtual Leader/Structure Based Formation Control (decentralized)
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A Unified Scheme for Distributed Formation Control

Communication Network

Consensus-based Formation 
State Estimator Module #i

Consensus-based Formation 
Control Module #i

Vehicle #i

Group Leader Follower
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Formation State Estimation Level
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Vehicle Control Level
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Experimental Platform at USU
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Mobile Robot Kinematic Model
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Experimental Specification
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Formation Control with a Simple Group Leader
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Experimental Demonstration (formation control)

Four robots maintaining a square shape Three robots in line formation
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Outline
• Part 1: Consensus for Single-integrator Kinematics –

Theory and Applications

•• Part 2: Consensus for DoublePart 2: Consensus for Double--integrator Dynamics integrator Dynamics ––
Theory and ApplicationsTheory and Applications

• Part 3: Consensus for Rigid Body Attitude Dynamics 
– Theory and Applications

• Part 4: Synchronization of Networked Euler-
Lagrange Systems – Theory and Applications
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Consensus Algorithm for Double-integrator Dynamics
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Convergence Analysis (Relative Damping)
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Example – with Relative Damping
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Switching Topologies – Directed Case 
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Sketch of the Proof
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Application - Cooperative Monitoring with UAVs

Single UAV Experiment
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Application - Cooperative Monitoring with UAVs (cont.)
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Coupled Second-order Harmonic Oscillators



45

Convergence Analysis (Leadless Case)



46

Application - Synchronized Motion Coordination
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Outline
• Part 1: Consensus for Single-integrator Kinematics –

Theory and Applications
• Part 2: Consensus for Double-integrator Dynamics –

Theory and Applications

•• Part 3: Consensus for Rigid Body Attitude Dynamics Part 3: Consensus for Rigid Body Attitude Dynamics 
–– Theory and ApplicationsTheory and Applications

• Part 4: Synchronization of Networked Euler-
Lagrange Systems – Theory and Applications
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Consensus for Rigid Body Attitude Dynamics
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Sketch of the Proof
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Unavailability of Angular Velocity Measurements



51

Sketch of the Proof



52

Application - Spacecraft Attitude Synchronization

Synchronized spacecraft rotations
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Experimental Demonstration (attitude control)



54

Reference Attitude Tracking
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Reference Attitude Tracking Control Law
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Sketch of the Proof
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Application - Spacecraft Reference Attitude Tracking
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Outline
• Part 1: Consensus for Single-integrator Kinematics –

Theory and Applications
• Part 2: Consensus for Double-integrator Dynamics –

Theory and Applications
• Part 3: Consensus for Rigid Body Attitude Dynamics 

– Theory and Applications

•• Part 4: Synchronization of Networked EulerPart 4: Synchronization of Networked Euler--
Lagrange Systems Lagrange Systems –– Theory and ApplicationsTheory and Applications
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Synchronization of Networked Euler-Lagrange Systems
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