Coordinated Path Following of Multiple UAVs for Time-Critical Missions in the Presence of Time-Varying Communication Topologies

NPS: I. Kaminer, V. Dobrokhodov IST: A. Pascoal, A. Aguiar, R. Ghabcheloo **VPI**: N. Hovakimyan, E. Xargay, C. Cao

> The 17th IFAC World Congress July 6-11, 2008, Seoul, Korea

- Time Critical Applications for Multiple UAVs with spatial constraints
 - Sequential Autoland
 - Coordinated Reconnaissance synchronized high resolution pictures

Introduction

- Coordinated Road Search
- Coordinate on the arrival of the leader subject to deconfliction, network and spatial constraints

•An integrated solution to **time-critical coordination** problems that includes

• real-time (RT) path generation accouting for

• vehicle dynamics plus spatial and temporal coordination constraints

• **nonlinear path following** that relies on UAV attitude to follow the given path – leaving speed along the path as a degree of freedom

Introduction

• L_1 adaptation to augment off-the-shelf autopilot to enable it to follow the paths it was not designed to follow

(a RT generated path is significantly more "aggressive" than a typical waypoint path these autopilots are designed to follow)

. Time-critical coordination controlling the speed of each vehicle over time varying faulty networks to provide robustness – account for the uncertainties that cannot be addressed in the path generation step

Introduction

Time Critical Coordination: RT Path Planning

- Assume polynomial paths
- *Decouple space and time in problem formulation* drastic reduction in the number of optimization parameters (suitable for RT implementation), i.e let

$$p_{c}(\tau) \coloneqq \left[x_{1}(\tau), x_{2}(\tau), x_{3}(\tau)\right]^{T} \text{ where } \tau \in \left[0; \tau_{f}\right] \text{ is e.g. virtual arc length}$$

$$x_{i}(\tau) = \sum_{k=0}^{N} a_{ik} \tau^{k}$$

Gritical Coordination: RT Path Planning

Boundary	Table 1. Examples of computation of the coefficients of polynomial trajectories.									
conditions	$x_{i0}\ ,\ x_{i0}'\ ,\ x_{i0}''\ ,\ x_{if}''\ ,\ x_{if}''\ ,\ x_{if}''$									
d_0/d_f	2/2		3 (adding fictitious jerk x_{i0}'')/2							
N^{lpha}/N	5/5		5/6							
Linear algebraic matrix equation to solve for the coefficients <i>a_{ik}</i>	$ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 1 & \tau_f & \tau_f^2 & \tau_f^3 & \tau_f^4 \\ 0 & 1 & 2\tau_f & 3\tau_f^2 & 4\tau_f^3 \\ 0 & 0 & 2 & 6\tau_f & 12\tau_f^2 \end{pmatrix} $	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ \tau_{f}^{5} \\ 5\tau_{f}^{4} \\ 20\tau_{f}^{3} \end{array} \left \begin{array}{c} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \end{array} \right = \begin{pmatrix} x_{i0} \\ x_{i0}' \\ x_{i0}' \\ x_{ij}' \\ x_{if}' \\$	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 6 & 0 & 0 & 0 \\ 1 & \tau_f & \tau_f^2 & \tau_f^3 & \tau_f^4 & \tau_f^5 & \tau_f^6 \\ 0 & 1 & 2\tau_f & 3\tau_f^2 & 4\tau_f^3 & 5\tau_f^4 & 6\tau_f^5 \\ 0 & 0 & 2 & 6\tau_f & 12\tau_f^2 & 20\tau_f^3 & 30\tau_f^4 \end{bmatrix} \begin{pmatrix} a_{i0} \\ a_{i1} \\ a_{i2} \\ a_{i3} \\ a_{i4} \\ a_{i5} \\ a_{i6} \end{pmatrix} = \begin{pmatrix} x_{i0} \\ x_{i0}' \\ x_{i0}' \\ x_{i0}' \\ x_{if}' \\ x_{if}' \\ x_{if}' \\ x_{if}' \\ x_{if}' \end{pmatrix}$							
3500 - 3000 - 2500 - 2500 - 1500 - 1000 - Final point 500 - 0 500 1000	τ _q =var Initial point 1500 2000 2500 3000 3500 4000 x ₁ , ft	4000 - 3500 - 2500 - ≠ × ⁺ 2000 - 1500 - 1000 - 500 - 0 -	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$							
Impact of changing total path length			Impact of changing total path length and initial jerk							

State of the second

• essentially a 2D solution

<i>t</i> _{<i>f</i>1}	dt	AM	V _{min}	v ₁	<i>v</i> ₂	<i>v</i> ₃	V _{max}	d_{min}
235s	.005s	48s	15 m/s	16m/s	21m/s	30.2m/ s	35m/s	203m

8

$$t_f = 324 \; sec, \; AM = 271 \; sec$$

In this case the paths intersect, but if each vehicle follows the nominal speed profile they will maintain a minimum separation distance at all times – disturbance rejection is addressed at the **coordination level**

UAV Path Following Concept

- **Objective:** follow predefined spatial 3D paths
 - →paths are time-independent:
 - decoupling between space and time = separation of 3D path and speed
 - → speed can be used as an additional DOF for time coordination
- Limitation: Traditional UAV AP is not designed to follow an aggressive 3D path.
- □ Solution: Adaptive augmentation without any modifications to commercial autopilot
 - Conventional solution backstepping requires modification of source code of A/P
 - → Global results but cancels inner loop

Intuitive Analogy

Analogous to "Tunnel in the Sky" concept familiar to pilots of 3D path and speed profile following

- Eliminate path following (both distance and attitude) errors using angular rates
- Follow speed profile to keep the a/c within its dynamic limitations.

Problem Geometry

□ F: Serret-Frenet frame W: wind frame I: inertial frame $p_c(l)$ desired trajectory *v*(*t*) UAV speed γ flight path angle ψ heading angle path length τ \square $q_I = [x_I \quad y_I \quad z_I]$ position of UAV in inertial frame

3D Kinematics Equations

$$dx_{I} / dt = v \cos \gamma \cos \psi$$

$$dy_{I} / dt = -v \cos \gamma \sin \psi$$

$$dz_{I} / dt = v \sin \psi$$

$$dz_{I} / dt = v \sin \psi$$

$$\int \left[\frac{d\gamma}{dt} \right]_{v} = \left[\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos^{-1} & \gamma \end{bmatrix} \right] \left[\frac{q}{r} \right]$$

$$d\tau / dt = \tau_{v}$$

UAV Path Following

Given the path Key idea: use virtual target to determine desired location on the path

- > Minimize the distance from the UAV to the virtual target on the path
- > Reduce the angle between the vehicle velocity vector and local tangent to the path
- □ Virtual target's motion *extra degree of freedom*

UAV Path Following (cont.)

Control the evolution of the virtual target : added degree of freedom

Kinematic Control Law

$$V_c = \frac{1}{2c_1}(x_F^2 + y_F^2 + z_F^2) + \frac{1}{2c_2}(\theta_e - \delta_\theta)^2 + \frac{1}{2c_3}(\psi_e - \delta_\psi)^2$$

Desired shaping functions $\delta_{\theta}(t) = \sin^{-1} \left(\frac{z_F(t)}{|z_F(t)| + d_1} \right), \quad \delta_{\psi}(t) = \sin^{-1} \left(\frac{y_F(t)}{|y_F(t)| + d_2} \right)$

$$\begin{bmatrix} q_c \\ r_c \end{bmatrix} = T^{-1} \left(t, \theta_e \right) \left(\begin{bmatrix} u_{\theta_c} \\ u_{\psi_c} \end{bmatrix} - D \left(t, \theta_e, \psi_e \right) \right)$$

Path following control laws

$$\dot{\tau} = K_1 x_F + v \cos \theta_e \cos \psi_e$$

$$u_{\theta_c} = -K_2 \left(\theta_e - \delta_{\theta}\right) + \frac{c_2}{c_1} z_F v \frac{\sin \theta_e - \sin \delta_{\theta}}{\theta_e - \delta_{\theta}} + \dot{\delta}_{\theta}$$

$$u_{\psi_c} = -K_3 \left(\psi_e - \delta_{\psi}\right) - \frac{c_2}{c_1} y_F v \cos \theta_e \frac{\sin \psi_e - \sin \delta_{\psi}}{\psi_e - \delta_{\psi}} + \dot{\delta}_{\psi}$$

Kinematic Control Law

Problem Reformulation

UAV with autopilot

$$q(s) = G_q(s) \left(q_c(s) + z_q(s) \right)$$
$$r(s) = G_r(s) \left(r_c(s) + z_r(s) \right)$$

Design objective

- The cascaded system is UUB
- The UUB can be reduced via selection of the filter bandwidth and the reference system bandwidth
 - Reducing the UUB leads to reduced robustness
- L1 guarantees that the region of attraction for kinematic errors does not change

Hardware-in-the-Loop Simulation

• comparison: with and without adaptation

ÚAV1 Fin.Ć.

Cmd

UAV

1000

800

600

Hardware (Second Generation

Networked Aircraft

- Airframe; Sig Rascal 110
 - 2.8 meter span, 8 kg
 - 26 cc gas engine
 - 2-3 hour endurance
 - 15-35 m/s velocity
- Payload:
 - Cannon G9 12Mp gimbaled Camera
 - PC104 with Wave Relay Mesh card
 - PC104 for gimbal control and AP interface
 - ADL MSMT₃SEG
 - PELCO-NET 350 video server

Feature Following using Path Following

Desired Trajectory Generation

-120.788 -120.786 -120.784 -120.782 -120.78 -120.778 -120.776 -120.774 X - Long

Feature Selection

Resulting Mosaic using Overlaid G9 images

Google Earth Overlay

Divide to Conquer Approach

IN-LINE FORMATION

Each vehicle runs its own PATH FOLLOWING controller to steer itself to the path Vehicles TALK and adjust their SPEEDS in order to COORDINATE themselves (reach formation)

Coordination state / error

Coordination error l'_{12} (in-line formation): l'_{12}

Normalized Path lengths l'_1 and l'_2

R. Murray [2002], *B. Francis* [2003], *A. Jadbabaie* [2003]

Communication Constraints

 J_i - set of vehicles that

Communication Delays

Temporary Loss of Comms

Switching Comms Topology

Asynchronous Comms

vehicle i communicates with

Links with Networked Control and Estimation Theory

Time-Critical Coordinated Motion Control

Coordination Control Law

Remember from Path Following

 $dl_i / dt = \kappa_1 x_{Fi} + v_i \cos \theta_{e,i} \cos \psi_{e,i}$

Adjust at the Coordination Level!

$$v_{c_i} = \frac{u_{\text{coord}_i} l_{fi} - k_1 x_{F_i}}{\cos \theta_{e,i} \cos \psi_{e,i}} , \quad i = 1, \dots, n ,$$

Time-Critical Coordinated Motion Control

Coordination Control Law

Time-Critical Coordinated Motion Control *Key results (example) Suppose the Graph satisfies* $\frac{1}{T} \int_{t}^{t+T} x^{T} QL(\tau) Q^{T} x \ d\tau \ge \mu, \ \forall t \ge 0, \ \forall x \in \mathbb{R}^{n-1}$

for some T, $\mu > 0$

(graph does not even have to be connected at any time!)

"sensible" performance of the complete Path Following + *Coordination Controllers* **Time-Critical Coordinated Motion Control**

$$\|\zeta(t)\| \le k_1 \|\zeta(0)\| e^{-\lambda t} + k_2 \sup_{\tau \in [0,t)} |\dot{v}_{d,1}(\tau)|$$

A function of normalized path lengths

$$\lim_{t \to \infty} \sup \left| l'_i(t) - l'_j(t) \right| \le k_4 \lim_{t \to \infty} \sup \left| \dot{v}_{d,1}(t) \right|$$

An ISS-like result

Time-Critical Coordinated Motion Control (HIL)

(a) UAV trajectories: 2D projection.

(b) Coordination states $l'_i(t)$.

Coordinated Path Following of Multiple UAVs for Time-Critical Missions in the Presence of Time-Varying Communication Topologies

NPS: I. Kaminer, V. Dobrokhodov IST: A. Pascoal, A. Aguiar, R. Ghabcheloo VPI: N. Hovakimyan, E. Xargay, C. Cao

> The 17th IFAC World Congress July 6-11, 2008, Seoul, Korea