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Coordination problems often involve nonlinear manifolds




|. Distributed autonomous sensor networks
can be used e.g. to collect ocean data

Autonomous Ocean Sampling Network (Naomi Leonard et al.)

Latitude

-122.4 -122.2 -122 -121.8
Longitude

Photo by Norbert Wu



Control of the swarm is based on templates
of distributed stable collective motion

Collective motion, sensor networks and ocean sampling,
N.Leonard, D.Paley, F.Lekien et al., IEEE Proceedings, 2006

Autonomous gliders,
sparse communication
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Buoyancy driven,
constant speed ~40cm/s
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Collective motion in the plane
Involves nonlinear manifolds

Common direction for straight motion - agreement on circle

= Q O

General motion “in formation” - Lie group SE(2)

translations R? o |
non-trivial coupling
rotations S’



Vicsek et al. proposed a similar model
for heading synchronization

Novel type of phase transition in a system of self-driven patrticles,
T.Vicsek, A Czirok et al., Physical Review Letters, 1995
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»
- . _ 0
unit velocity : (Zk)+ = zTpte
“average” direction : (0).)+ = arg,i( W 4 Dl & J)

proximity graph (open question): communicate if closer than R



Il. Satellite formations e.g. for interferometry
require attitude synchronization

Darwin space interferometer

(ESA / NASA, concept under revision)
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Collective motion of satellites
Involves nonlinear manifolds

Kinematic model : Q. = Q; [w.]"

- orientation matrices Q, evolve on the Lie group SO(3)

Dynamic model : Jup = (Jwp) X wi + 7

- simplest dynamics involve nonlinear link
between torques 1, and velocities o,



lll. Agreement on the circle also appears for
phase synchronization of oscillator networks

Flashing fireflies Laser tuning

Huygens' clocks Cell / neuron action
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Two types of synchronization on the circle:
phase synch. and frequency synch.

Phase variables 6, € circle, k=1,2,...N

Phase synchronization : 0k =6, V kj
Frequency synchronization : ék = é/- V K|
; 1 N
Kuramoto model 0. W Z:l sin(6; — 0y)
o

Self-entrainment of population of coupled nonlinear oscillators,
Y.Kuramoto, Lecture notes in Physics, vol. 39, Springer 1975



V. Coordination on manifolds relates to
many other engineering problems

Packing Clustering

- points on spheres

- lines, subspaces of R" (Grassmann manifold)

Applications: optimal coding, beam / sensor placement,
numerical integration, data mining, ...
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Coordination problems often involve nonlinear manifolds




Coordination on manifolds
consists of two different tasks

Synchronization: reach the same point on a manifold

& K
.




Collective motions on SE(2)
as a representative example

N autonomous rigid bodies moving in the plane at unit speed

k=1.N 10, .
2 c ~ f‘k = 639k
/ \ O -
%‘% -=-=-L Qk = UL
A' (curvature control)

Goal : design feedback control to stabilize collective motions

Restrictions : limited communication ./ffé

no reference, no leader
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Motivation : parallel motion in the plane
requires agreement on heading direction

U 7 S ?
R A -

Goals : Global phase synchronization on the circle S’
Extension to higher dimension: sphere S?, SO(3)

Related things: mean; balanced configurations



Agreement algorithms on vector spaces are ~easy

Goal : agreeon x, € R"

Distributed algorithm

iy = Y (zj— 1)

jrok

For fixed undirected interconnections

1 2
gradient of cost function 2 Z Z lzj — |
k g~k

converges to average = T = & »  2;(0)
k



Convexity of vector spaces ensures exponential
synchronization for varying & directed graphs

Stability of multi-agent systems with time-dependent communication links,
L.Moreau, IEEE Trans. Automatic Control vol. 50(2), 2005
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Uniformly connected interconnection : 3 T and k such that

the union of links during [t, t+T ] is root-connected to k



Synchronization on the circle is not so obvious

Goal : agreeon 6, € S’

How will agents move Where is the
towards neigbors ? average position ?



An alternative distance measure
yields convenient properties

Geodesic distance Chordal distance

dg(gk'a QJ) — |9k — 9]| dc(gk; 93) = 2sin

Op—0;
2



An alternative distance measure
yields convenient properties

not continuously smooth
differentiable



The mean associated to the chordal distance
IS easily computable in closed form

Induced arithmetic mean = arg4 ( Zk 63'974: )

similar to Vicsek  (0;)+ = argd (eié’k t Ylisk ewj)



A gradient algorithm can be derived
for fixed undirected interconnections

Cost function with chordal distance 3 Z Z c(Or, 0;
k g~k

Gradient algorithm

Qk = Z Siﬂ(@j == Qk)

ek

N
- - 1
similar to Kuramoto 6, = w. + — Z sin(6; — 0y,)



Convergence properties are weaker
on the circle than for vector spaces

For fixed undirected graph
All solutions converge to an equilibrium

Local minima different from synchronization exist
depending on interconnections

For directed / varying graph, convergence is only local



An alternative algorithm with auxiliary variables
recovers vector space properties

Idea : associate to each agent an auxiliary variable x, € IR?

1. synchronize the x, ( vector space consensus)

o " ¢

—)
==
) | X —

2. each 0, tracks the projection of x, on S



The alternative algorithm achieves global
convergence for directed & varying graphs

No reference frame
- variables linked to the agents yp = e Ok

Algorithm yk = Z (yj E'i(gj_gk) — yk) — @Qk Y.
ok

- T
0, = yp —ei1ey yy

Convergence : for uniformly connected interconnections,
this algorithm ensures (almost) global synchronization.



These results have been
extended in various ways

Beyond synchronization: stabilize balancing, splay states

Beyond the circle : compact homogeneous manifolds

S2: sphere (heading in 3D)
SO(3) : rotation matrices (satellite attitudes)



The developed geometric methods solve the
problem of reaching the same point on manifolds

Heading for ;'j i ﬁ‘%’
parallel motion k% %

Synchronization of

body orientations @’t{g }1‘@ i @ @ @

What about more complex motions in formation ?
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SE(2) is a manifold with translation operation
= a Lie group

% 'Z_‘_‘Lfi’k o= {ng Tk\ e SE(2)
A \o 0 1}
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Velocities on Lie groups are compared
thanks to the translation operation

e e
S = <—o o
g g
TgG TgG
—_ / ® — r
g gi g gl

= & = g& g' = Ad(g) & with & and & e T,G = g



Lie group velocities have a
physical meaning on SE(2)

C(Ray TRY( O e wl\ (0 e o \( Ry, TE)

by = , ,
e \0 0 1}\? 0 0 } \%k 0 0 }\0 0 1}
o, rotation rate in the plane

v, linear velocity in body frame ( steering control : v/, = ey )

v If o, =0, velocity in inertial frame
If o, # 0, characterizes position of the center of curvature



Two types of relative positions on Lie groups
yield to definitions of “collective motion”

gk'1 g = on SE(2) / jo_gk R—Qk (TJ - Tk)\

0 0 1 }

Def : Left-invariant coordination : constant g,' g;

g 9x' = onSEQ) / Ro, g, Tj_RQj_rik\

\00 1 }

Def : Right-invariant coordination : constant g; g’



Collective motion corresponds to
equal Lie group velocities

Thm : Left-invariant coordination < &, = &;’

d/ —1 R R g
79, 95) = 9, 9 & — &9k 9)
1 gl 1 | 1
=9, (95€ 9, — 9k&p9; ) 9

= g, (& =€) g5
Thm : Right-invariant coordination < &, = &'

Advantage : Lie group velocities are in g = vector space



Both types of collective motion
have a physical meaning on SE(2)

right coordination: left coordination:
same velocity in body frame constant relative position & heading

Y v
A I~ ‘?ﬂw

Steering control implies additional constraints
o2 Se-
/

A



Agents can use only
left-invariant variables for control

no reference tracking

= relative positions and headings in the plane for SE(2)

= left relative Lie group positions g, g;

= velocities in body frame for SE(2)

= left Lie group velocities &}/



Right-invariant coordination is straightforward
with vector space consensus

Right-invariant coordination < equal &/

Vector space consensus algorithm

&= > (& —¢)

jrk
For steering control on SE(2) :
v’ = v;' = e, already
W agree on rotation rate

wﬂ p = 2 (W) —wp)

jok



Left-invariant coordination is not so obvious
and involves control of positions

Analogy with right-invariant coordination

FAdg &) = D~ (Adg, ] — Adg, €]

g~k
& F&= D (Adg—lg_fjl — &
s ko 9i

However, this does not satisfy N
steering control constraints. ) = e

\
Not just velocities, but } );:
positions must be controlled \\.x /
to agree on circle centers i ?A



The solution involves a combination of
consensus and Lyapunov-derived control

Consensus algorithm to agree on “desired” rotation rate

wp = Y (wj — wy)

jok

Cost function for positions :
circle center differences assuming desired rotation rate

2
[ [
1 (255 (i

ny
k g~k

J

derived algorithm for left-invariant coordination

wp = wy (14 (Rog, Sjup (i —75)) - e )



The geometric setting facilitates extensions

Coupling collective motion with particular configurations

7o 7Y

?\o

Other Lie groups, e.g. SE(3) : rigid bodies in 3 dimensions




The Lie group framework allows to characterize
and design control for coordinated motion

“Relative positions”, “coordination”, “movement in formation”
are defined by Lie group properties

Collective motion < synchronization of Lie group velocities
(consensus in vector space)

Motion “in formation” is not trivial for underactuated agents,
but combining consensus and geometric Lyapunov functions
yields appropriate controls.
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Conclusion:

Appropriate geometric tools allow to solve
the ubiquitous problem of control design
to stabilize collective motions on manifolds.

Remaining issues : Convergence analysis of other models

Behavior of simple algorithms (Kuramoto, Vicsek,..)
State-dependent communication graphs

Coupling all these planning algorithms
together / with other task / with complex dynamics
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More on the subiject...

Agreement / consensus on manifolds

*Consensus optimization on manifolds, A.Sarlette & R.Sepulchre, to be publ. SIAM/SICON

Collective motion in 2D and 3D
Stabilization of planar collective motion with all-to-all communication,
R.Sepulchre, D.Paley & N.Leonard, IEEE Trans. Automatic Control vol. 52(5), 2007

Stabilization of planar collective motion with limited communication,
R.Sepulchre, D.Paley & N.Leonard, IEEE Trans. Automatic Control vol. 53(3), 2008

*Stabilization of three-dimensional collective motion,
L.Scardovi, N.Leonard & R.Sepulchre, submitted to Comm.Inf.Syst., 2008

Collective motion on Lie groups (general theory)

Coordinated motion on Lie groups,
A.Sarlette, S.Bonnabel & R.Sepulchre, to be submitted to IEEE Trans. Automatic Control



