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7. Feedback Linearization

Feedback Linearization

Given a nonlinear system of the form

& = f(x) + G(z)u
y = h(x)

Does exist a state feedback control law
u = a(x) + Ba)

and a change of variables
z=T(z)

that transforms the nonlinear system into a an equivalent linear system
(2=Az+Bv)?



7. Feedback Linearization

Feedback Linearization

Example: Consider the following system
& = Az + By(z) (u — a(z))
where y(z) is nonsingular for all  in some domain D.

Then,
u = a(z) + B(z)v, with f(z) =~ ()

yields
T = Az + Bv

If we would like to stabilize the system, we design

v=—Kzx such that A — BK is Hurwitz

Therefore
u=ca(z) - B(x)Kz



7. Feedback Linearization
Feedback Linearization
Example: Consider now this example:
1 = asinxa
To = —a:% +u

How can we do this? We cannot simply choose u to cancel the nonlinear term asin z3!

However, if we first change the variables
z1 = x1
zo = asinxgy = o
then
21 = 22
29 = @ COSXoXo = aCos $2(7€E% + u)

Therefore with
2 1
u=gzi+ ——v, —n/2<x3<7/2
acos T3

we obtain the linear system
21 = 22

Zo =0
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Feedback Linearization

e A continuously differentiable map T'(x) is a diffeormorphism if T—1(z) is
continuously differentiable. This is true if the Jacobian matrix ‘g—: is nonsingular

Vz € D.

e T'(z) is a global diffeormorphism if and only if g—z is nonsingular Yz € R™ and
T'(x) is proper, that is, lim|,|| oo [|T(2)]| = oo

Definition
A nonlinear system
& = f(x) + G(z)u (1)

where f: D — R"™ and G : D — R"™*P are sufficiently smooth on a domain D C R"
is said to be feedback linearizable (or input-state linearizable) if there exists a
diffeomorphism T': D — R™ such tat D, = T(D) contains the origin and the change
of variables z = T'(z) transforms (1) into the form

2= Az + By(z)(u — a(z))
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Feedback Linearization
Suppose that we would like to solve the tracking problem for the system

1 = asinxa

To —x%—i—u
Yy =x2

If we use state feedback linearization we obtain

z1 = 1 21 = 2o
zo = asinze = I1 — 20 = 0

— 2 1 _ =1
U= ]t oo y = sin"'(22/a)

which is not good!
Linearizing the state equation does not necessarily linearize the output equation.

Notice however if we set u = :c% + v we obtain

To = v
y=x2

There is one catch: The linearizing feedback control law made x; unobservable from
y. We have to make sure that 21 whose dynamics are given by ©; = asinxg is well
behaved. For example, if y = yq = cte — z1(t) = x1(0) + tasinyg. It is
unbounded!
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Input-Output Linearization
SISO system
&= f(z) + g(z)u
y = h(z)
where f, g, h are sufficiently smooth in a domain D C R™. The mappings f : D — R"
and g : D — R" are called vector fields on D.

Computing the first output derivative...
. Oh, Oh
v =50 = 5o [f@) +gl@)ul = Lgh(z) + Loh(z)u

In the sequel we will use the following notation:
oh
L¢h(z) = 8—f(x) — Lie Derivative of h with respect to f
T

A(Lh)
ox
L‘}h(x) = h(z)

LyLsh(z) =

9(x)
A(Lyh)
o @

oLk~ h)
oz

Fh(z) = LyLh(x) =

() = Ly L5 h(z) =



7. Feedback Linearization

Input-Output Linearization

9y = Lyh(z) + Lgh(z)u
If Lgh(z)u = 0 then y = Lyh(x) (independent of w).
Computing the second derivative...

v = 28 (50 1 gyl = L30(@) + L Lshiayu

If LgLh(z)u = 0 then §(?) = L?h(x) (independent of u).
Repeating this process, it follows that if
Lngrlh(x) =0, i=1,2,...,p—1
-1
LgL? h(z) #0

then u does not appear in y,7,...,y%»~1 and

v = Loh(x) + LyL'Y ™V h(z)u



7. Feedback Linearization

Input-Output Linearization

-1
y'?) = LOh(x) + Ly L h(z)u
Therefore, by setting

- [ fh@) 4o
v LgLf;*lh(:c)[ Lyh(@) ]

the system is input-output linearizable and reduces to
y(”) =v — chain of p integrators
Definition

The nonlinear system

&= f(z) + g(x)u
y = h(z)

is said to have relative degree p, 1 < p < n, in the region Do C D if for all x € Dy
1 )
LgL; h(z) =0, i=1,2,...,p—1
—1
LgL’f’ h(z) #0
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Examples
Example 1: Van der Pol system

T1 = x2
b2 =~z +e(l—af)zz+u, €>0
l.y=z
Calculating the derivatives...
y=1=1 =2
j=do=—21+e(l —z)z2 +u

Thus the system has relative degree p = 2 in R2.

2. y=1x2
Then
g=io=—x1 +e(l —aP)z2 +u

In this case the system has relative degree p = 1 in R2.

3. y=x1+ x%
Then
¥ =z + 2wa(—z1 + e(1 — 23)z2 + u)
In this case the system has relative degree p = 1 in Dy = {z € R? : x2 # 0}.

10



7. Feedback Linearization

Examples

Example 2:

T =x1
To = X9 +u

y=2x1

Calculating the derivatives...
g=ir=a1=y — yW =y==z, ¥n>1

The system does not have a well defined relative degree!

Why? Because the output y(t) = x1(t) = e*x1(0) is independent of the input wu.

11



7. Feedback Linearization

Examples

Example 3:

_ b s™ “l’b*rn—ls’m'71 + -+ bg

H
(=) s"+ap—18""1 4 -4 ao

where m < n and by, # 0.

A state model of the system is the following

= Ax + Bu
y=Cx
with
0 1 0 - 0 0
0 0 1 0 :
A= : - - o B=|: C =
0 . 0 1 o
—ag —ay roman—1 ] pwn idnx1

What is the relative degree p 7

[bo by -

by O 0}

1xn

12



7. Feedback Linearization

Examples

y=CAx + CBu
Ifm=n—-1 — CB=b, #0 — p=1
Otherwise, CB =0
y? = CA%z + CABu
Note that CA is obtained by shifting the elements of C one position to the right and
CA* by shifting ¢ positions.
Therefore,
CA™1B=0, fori=1,2,...n—m—1
CA"™ ™ 1B =, #£0

g™ = CA" "z 4+ CA" ™ By — p=n—-m

In this case the relative degree of the system is the difference between the degrees of
the denominator and numerator polynomials of H(s).

13



7. Feedback Linearization

Consider again the linear system given by the transfer function

degD = n

N

H(s) = N(s) with deg N = m<n
D(s) p = n—m

D(s) can be written as

D(s) = Q(s)N(s) + R(s)
where the degree of the quotient deg Q = n — m = p and the degree of the reminder
deg R<m

Thus N
N(s) 2G)
H(s) = =
N 1 R(s)
QUINGE) +R() 1+ i 20

and therefore we can conclude that H(s) can be represented as a negative feedback
connection with 1/Q(s) in the forward path and R(s)/N(s) in the feedback path.

14



7. Feedback Linearization

Note that the p-order transfer function 1/Q(s) has no zeros and can be realized by

where

and (Ae, Be, C.) is a canonical form representation of a chain of p integrators:

0 1

0 0
A=

0

é = (Ac + Bc)\T)f + Bcbme

y=Cc§

t=[y ¥

y(P=1

01

=]

)

JT

€ RP

A €RP

1xp

15



7. Feedback Linearization

R(s) U
N(s) w

Aon + Boy
Con

The eigenvalues of Ag are the zeros of the polynomial N(s), which are the zeros of
the transfer function H(s).

Thus, the system H(s) can be realized by the state model

1= Aon+ BoCc§
€= A+ BATE = bynCon+ binu)
y=Cc§

Note that y = C.£ and

b = &
. &2 = &3
€= A+ B:(A\T€ = by Con + bpu) «——
£ = AT&€—bmCon+ bmu

and therefore y(?) = X\T¢ — b, Con + bmu

16



7. Feedback Linearization

y® = AT¢ — b, Con + bmu
Thus, setting
1
uw=—[-AT€&+ b, Con + v
bm
results in
n = Aon+ BoCc{ — Internal dynamics: It is unobservable from the output y
£ = A.£ + Bov —> chain of integrators
y=Cc§

Suppose we would like to stabilize the output y at a constant reference r, that is,
§—¢& = (r0,...,00T.
Defining { = £ — £* we obtain )
¢=Ac(+ Bev

Therefore, setting

v=—K(= -K(E-¢€")
with (Ac. — BcK) Hurwitz we obtain the closed-loop system

n = Aon + BoCe(§" +¢)

(= (Ac — BeK)¢

y=Cc§
where the eigenvalues of Ag are the zeros of H(s). If H(s) is minmum phase (zeros in
the open left-half complex plan) then Ag is Hurwitz.

17



7. Feedback Linearization

Feedback Linearization

Can we extend this result
1= Aon+ BoCcn

€= Ack+ Be (A\T€ — b Con + bmu)

y=Cex
for the nonlinear system (SISO)

& = f(2) + g(@)u

y = h(z)
that is find a z = T'(x), where
$1(z)
a= | M| = Pn—p(@)
Tle]T h(z)
LY h(z)
such that T'(z) is a diffeomorphism on Dy C D and %‘iﬁ

1<i<n-—p, Vx € D. Note that

Ox Ox
Does exist such T'(z)?

Wi = 2 p@) + P glapu

g(z) =0, for

18



7. Feedback Linearization

Normal form

Theorem (13.1)
Consider the SISO system
& = f(x) + g(z)u
y = h(z)
and suppose that it has relative degree p < n in D. Then, for every xog € D, there
exists a such diffeomorphism T'(x) on a neighborhood of xg.

Using this transformation we obtain the system re-written in normal form:

7.7 = fO(va)
€ = Ack + Boy(@)[u — ()]
y=Ccf

where £ € R?, n € R and (Ac, Be, C.) is the canonical form representation of a
chain of integrators, and

=2 = Ly LN
=500 @=Ll ) = -

19



7. Feedback Linearization

77 = fo(ﬁm’f)
€= Ak + Bey(a)[u — a(z)]
y=Cc

The external part can be linearized by
u = a(@) + Bla)v
with 8(z) = v~ 1(x). The internal part is described by

n= fo(n,ﬁ)

Setting £ = 0 result

7= fo(n,0) — This is called the zero-dynamics

Note that for the linear case we have 1 = Agmn, where the eigenvalues of Ag are the
zeros of H(s).

20



7. Feedback Linearization

Definition

The system is said to be minimum phase if 77 = fo(n,0) has an asymptotically stable

equilibrium point in the domain of interest.

The zero dynamics can be characterized in the original coordinates by notting that
y®) =0,vt >0 = £(t) =0 = u(t) = a(z(t))

where the first implication is due to the fact that £ = [y, ¥, ...]T and the second due
to &€ = Ao€ + Boy(z)[u — a(z)).

Thus, when y(t) = 0, the solution of the state equation is confined to the set
7F = {z € Do : h(z) = Lyh(z) = ... = Lf 'h(z) = 0}

and the input
u=u"(x) = a(r)| ez
that is
&= f"(z) == [f(z) + g(x)v(2)]we 2z~

In the special case that p = n =- 1) does not exist. In that case the system has no zero
dynamics and by default is said to be minimum phase.

21



7. Feedback Linearization

Example
Example 1
T1 = X9
o= —x1 +€(1— x%)zg +u
Yy=x2

It is in the normal form (( =y, n = 1)
Zero-dynamics?

&1 = 0, which does not have an asymptotic stable equilibrium point. Hence, the
system is not minimum phase.

Example 2

To = I3
T3 = xTox3 +u
Yy=2x2

What is the relative degree and the zero dynamics?

22



7. Feedback Linearization

T = —x1 +

To = x3

I3 = xox3 +u

Computing the time-derivative...

y=1x2 =23
j=a3=x123+u

Thus, the relative degree is p = 2. Analyzing the zero-dynamics we have

y=0

y=0

i=0
we have zo = x3 = 0 and from the last we have u = —x123 = 0. Therefore,
&1 = —x1 and the system is minimum phase.

23



7. Feedback Linearization

Full-State Linearization
The single-input system
& = f(x) + g(z)u
with f, g sufficiently smooth in a domain D C R" is feedback linearizable if there
exists a sufficiently smooth h : D — R such that the system

&= f(z) + g(z)u
y = h(z)

has relative degree n in a region Do C D.

This implies that the normal form reduces to

2= Acz+ Bey(z)[u — a(z)]

y=Cecz
Note that
z =T(x)
Thus
. oT,
= —1u
ox

which is equivalent to

Acz 4 Ber(@)lu— ala)] = 2L (1(z) + g(e)

24



7. Feedback Linearization

Splinting in two we obtain

oL 1) = AT(@) - Bor(@a)

oT

Equation (2) is equivalent to

o 4(@) = Ber(@)
T @) = o)
e fw) =Ts(@)
T f@) = Ta(a)
2 f(a) = ~alon (@)

)

3)

25



7. Feedback Linearization

and (3) is equivalent to

o
g @) =0

Ty

B @) =0

aTn—l

oz (2) =0

aTn _

~g(a) =(2) # 0

Setting h(x) = T4, we see that
Tip1(z) = LgTi(z) = Lih(z), i =1,2,...,n—1
and 1
LyLi ' h(z) =0, i=1,2,..,n—1

LgL;}_l £0 (4)

Therefore we can conclude that if h(.) satisfies (4) the system is feedback linearizable.

26



7. Feedback Linearization

The existence of h(.) can be characterized by necessary and sufficient conditions on
the vector fields f and g. First we need some terminology.

Definition
Given two vector fields f and g on D C R™, the Lie Bracket [f, g] is the vector field
of
[f, g(z) = f( )= 5,9@)
Note that

JSg=cte>[f,=0

Adjoint representation

adpg(z) = g(x)
adyg(z) = [f, g)()
ad’;g(:c) [ ,adk L), k>1

27



7. Feedback Linearization
Example 1

T2 (x) = 0
—sinzy —x2 |’ 9 T x
Then,

992 092 Of2  Ofz
Oz dzo

1o)
T2 _ 0 1 0
—sinxz) — a2 —cosx; —1 T
x1 o —x1
—z1 | | x1+a2

dad 0
ad}g = [f,adgg] = 52 f() ~ L adgg(o)

| -1 0 ) _ 0 1 —x1
- 1 1 —sinz1 — 22 —cosx1 —1 T, + xo

_ —x1 — 2x2
" | z1 +x2 —sinzy —x1cosz

991 9g1 of1  8f1
[f,g](x)—agf(x)axg(w)={ T ]f(x){ o }g@c)

I
—
= O




7. Feedback Linearization

Example 2: f(z) = Az and g(z) = g is a constant vector field.

Then,
adso(a) = 1, 61@) = 22 f(z) ~ 2L g(a) =~ Ag
ad}o(w) = I, adgal(@) = 2222 f ~ W adpg = —a(-ag) = 4%
adlg = (-1)F Akg
Definition

For vector fields f1, fa, ..., fi on D C R™, a distribution A is a collection of all vector
spaces A(z) = span { f1(x), ..., fx(x)}, where for each fixed z € D, A(z) is the
subspace of R™ spanned by the vectors f1(z), ..., fx(z).

The dimension of A(xz) is defined by
dim(A(z)) = rank[fi (), f2(2), ..., fx ()]

which may depend on z.

If f1, f2,..., fx are linearly independent, then dim(A(z)) =k, Va € D. In this case,
we say that A is a nonsingular distribution on D. A distribution A is involutive if

g1 €A, g2 €A =[g1,92] €A.

If A is a nonsingular distribution on D, generated by fi, ..., fx then it is involutive if
and only if [f;, fi] € A, V1 <i,j <k

29



7. Feedback Linearization
Example 3

Let D =R3, A = span {f1, f2} and

2x9 1
flz 1 ’ f2: 0
0 T2

dim(A(z)) = rank[f1, f2] =2, Vz € D

T

Checking that [f1, f2] € A is the same to see if [f1, f2] can be generated by f1, fa,
that is if rank[f1(z), f2(x), [f1, f2](z)] = 2,Vz € D. But

2x2 1 0
rank 1 0 0| =3 VreD

0 xo 1

is A involutive?

0 0
[f1, f2] = %fﬁ%h = [

o o o
= o o
[e=]

Hence, A is not involutive.

0
1

30



7. Feedback Linearization

Theorem 13.2

Theorem
The system & = f(z) + g(x)u, with x € R™, u € R is feedback linearizable if and only
if there is a domain Do C D such that

1. The matrix G(z) = [g(x), adfg(x), ...,ad}“lg] has rank n Yz € Dyg.

2. The distribution D = span{g, adsg(x), ..., ad:}*Qg} is involutive in Dy.

Example

we have seen that

_ _89 af _ 0 a cos T2 0| | —acosxa
adfg—[f,g}—%f—ag——{ Comy 0 1= 0

0 —acosxe
1 0
distribution D = span {g} is involutive. Thus, we can conclude that there exists a
T(z) in Do = {x € R? : coswz # 0} that allow us to do feedback linearization.

The matrix G = [g,adsg] = [ } has rank G = 2, Vcosza # 0. The

31



7. Feedback Linearization

Now we have to find h(x) that satisfies

h O(L¢h

O o, ML Lo hoy =0

oz

[ oh  oh ] 0]_0r _,
dxq Oxo 1 Oz

Thus, h(.) must be independent of z2.
‘9 asin zo oh
Lyh(z) = ( )= [ 311 0 ] [ —:v% } a—lasmxg

8§£hg: [ % (gzhlasma:z) % (gzhla&nm) ] [ (1] } = aa—jlacosm#o

In conclusion, a‘?—h # 0 and aah =0.
T To
Examples of such h(z) include h(z) = z1 or h(z) = z1 + 23. Given h(z) we can now

perform input-output linearization.

32



7. Feedback Linearization

Example 2

A single link manipulator with flexible points

&= f(z) +gu
2
flz) = —asinz ;4b(x1 — x3) L g=
c(x1 — x3)

G = [g,adsg, ad}g, ad}g)

0 1
Jg af —acoszy —b 0
c 0
d(ad
ad}g = [f,adsg) = (a;g)f - Z—iadfg
0 1 0 0 0
—0— —acosx1 —b O b 0 0
- 0 0o 0 1 —d
c 0 —c O 0

QU O OO

a,b,c,d >0
0 0 0
b 0 0
0 1 0
—c 0 d
0
bd
0
—cd

33



7. Feedback Linearization

dad3g b
cady9 . _of
fg =/ ad gl = O f= o fg
0 1 0 0 0 —bd
-0 —acosz1—b 0 b O bd - 0
R 0 0 0 1 0 | cd
c 0 — O —cd 0
Thus,
0 o0 0 —bd
G= g _Od bél c(:i — rank G =4, Vo € R*
d 0 —cd 0

The distribution A = span {g, adyg, ad2} is involutive since g,ad;g, ad are
constant vector fields ([g, adsg] = 0).
Therefore, we can conclude that there exists an h(z) : R* — R and a T'(z) that make
the system full state feedback linearizable. In particular, h(z) must satisfy
i1
BLf h
oz

g=0,i=1,2,3.

8L3h
h(0) =0




7. Feedback Linearization

For i = 1, we have %g =0= % =0 and so h(x) must be independent of x4.

th(z):%f(z)— Oh g, +8h[ as1nmlfb(mlfx3)}+azsx4

dxq
From OL;h OLsh oh
f f
=0= =0= =0

ox 7 04 Ox3
Thus, h(z) is independent of z3.
Thus,

Oh Oh
Lsh(z) = 8—961962 —+ a—m[fasinxl — b(z1 — x3)]

L%h(a:) =LyLyh(x) = B(th) f(z) = oLysh) z2 + oL sh) [—asinz1 — b(z1 — x3)]

(L) . o(Lsh) . o
A(L¢h L:h
+ azfg T4+ 81f4 C(

x1 — x3)
For i = 2,
o (L3n) 9
") (Lgh) _  Oh _
ox 9=0= 0w _0:>8$2_

Thus h is independent of x2.



7. Feedback Linearization

Hence,

L3h(z) = L, L3h =

2051 pay = 2080, 1+ 203 (i, — ban — o)

2
—0—8(th) T4 +

dxs

Also, from condition

CEN
a(L%n
(azf4 ) c(z1 — 23)

AL3h(x) OL2h OL .h oh
f f f
— 0= ——#0= ——#0= — #0
oz 97 Oxs 7 Oxo 7 o1 7>
Therefore, let h(x) = 1. Then, the change of variables
z1 =h(z) =21
2o = Lgh(x) =2
z3 = Lgh(z) = —asinz; — b(z1 — x3)
24 = th(ac) = —acosx1 &1 — bk, + btz = —axo cosx] — bxa + bry

transforms the state equation into

z1 =
Zo =
z3 =
24 =

22
Z3
24
—(acosz1 +b+c)zz + a(23 — c)sinz + bdu

36



7. Feedback Linearization

Example - field controlled DC motor

Consider the system

&= f(z)+gu
with
—axy 1
flz) = —bro+k—crizs |, g=| 0
Ox122 0

Computing the

a

a2
adpg = [f,g] = { cx3 } , ad}g = [f,adsg] = { (a+0b)cxs ]
—Bxo (b—a)bxs — 0k

1 a a2
G= [g,adfg,adfrg] =10 cr3 (a+b)cxs
0 —0zz (b—a)bze—0k

Rank of G?

37



7. Feedback Linearization

det G = c(—k + 2bxa)xs.

Hence G has rank 3 for x2 # % and x3 # 0. Let's check the distribution
D = span{g,adsg}

0 0 0 1 0

d(ad
[9,adsg] = Sladsg) fg)g =0 0 ¢ 0ol=1]o0
Oz 0 -0 0 0 0

Hence D is involutive because [g,adsg] € D.

Therefore, the conditions of Theorem 13.2 are satisfied in particular for the domain

- k
Doz{x€R5:22>%,x3>O}

38



7. Feedback Linearization

&= f(z)+gu
with
—azxri 1
flz) = —bro+k—czrizs |, g=|0
Ox122 0

Equilibrium points: 1 =0, z2 = %, x3 = cte.

Suppose we are interested in the desired operating point z* = [0 % wo]T.

Then, h(z) must satisfy (n = 3)

oh A(Lsh) d(L%h)
—g=0; =0; 0
7.9 =0 5s 9=0 o a
and h(z*) = 0.
oh oh
—g=0=>—=0
8:Eg = 611

that is, h must be independent of ;.

Lih(z) = ...



7. Feedback Linearization

State feedback control

Consider the system
z = f(x) + G(z)u

and let z = T'(x) = [T1(x), T2(x)]T such that

7= fo(n.€)
€= At + By(2)[u — a(2)]

Suppose that (A, B) is controllable, v(x) is nonsingular Vo € D, fo(0,0) =0 and
fo(ﬁyf),a(m)ﬁ(fv) € ct.

Goal: Design a state feedback control law to stabilize the origin z = 0.
Setting u = a(z) + B(z)v, B(z) = v~ 1(x), we obtain the triangular system

77:f0(777§)
§=A¢+ Bo

Let v = — K¢ with (A — BK) Hurwitz then we can conclude the following:

40



7. Feedback Linearization

State feedback control

Lemma (13.1)
The origin z = 0 is asymptotically stable (AS) if the origin of 1 = fo(n,0) is AS (that
is, if the system is minimum phase).

Proof.
By the converse theorem 3V7 () : aa—‘;lfo(n,O) < —aa(||z||) in some neighborhood of

17 =0, where az € K. Let P = PT > 0 be the solution of the Lyapunov equation
P(A—-BK)+(A-BK)TP=—1.

V=Vi+kVETPE, k>0

. oVi k
V< L -
< Sy Fom O+ e

< 20 fo(,0) + 22 fo(n.) ~ Joln,0)] -
Ul on

£'[P(A— BK)+ (A— BK)TPJ¢

keTe

2/ETP¢

IN

—az([lnl) + kL llgll — kkall€ll, K1, k2 >0

where the last inequality follows from restricting the state to be in any bounded
neighborhood of the origin and using the continuous differentiability property of V3
and fo. Thus, choosing k > k1/ko ensures that V' < 0, which follows that the origin
is AS. O
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7. Feedback Linearization

State feedback control

Lemma (13.2)
The origin z = 0 is GAS if 1 = fo(n, &) is ISS.

Note that if 7 = fo(n,0) is GAS or GES does NOT imply ISS. But, if it is GES +
globally Lipschitz then it is ISS.
Otherwise, we have to prove ISS by further analysis.

Example:
0= -n+n%
E=v
Zero dynamics: 7 = —n — n =0 is GES
but 7 = —n + n2¢ is not ISS, e.g., if £(t) = 1 and 5(0) > 2 then 7(t) > 2, Vt > 0,
which implies that 1 grows unbounded.

However with v = — K¢, K > 0 we achieve AS.
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7. Feedback Linearization

To view this, let v = 7§, then
v =né+né
= v —né + 7’
= —Kng —n¢ +n¢?
=—(1+K)v+v2=-[1+K)-v]?
Thus, with v(0) <14 K = v — 0 and therefore we can also conclude that

T >to:v(t) <%, VST

Consider now V = 1/2n2. Then

V=mnn
-1 +n*¢
=-n(1-nf) =—n*(1-v)<0, Vt>T

Thus,  — 0 and note also that § = —K¢. Therefore, the control law v = —K¢ can
achieve semiglobal stabilization.



7. Feedback Linearization

One may think that we can assign the eigenvalues of (A — BK) to the left
half-complex plane to make £ = (A — BK)¢ decay to zero arbitrarily fast. BUT this
may have consequences: the zero-dynamics may go unstable! This is due to the
peaking phenomenon.

Example

i=—5(1+&)n*
&1 =&
§2=v
. 2 0 1
Setting v = —K§ = —k?*¢; — 2k§{a — A — BK = _k2 9k
and the eigenvalues are —k, —k. Note that

pa-Bry _ | (14 kt)e te~Ht
- —k2tekt (1 — kt)e™k?

which shows that as k — oo, £(t) will decay to zero arbitrary fast.

However, the element (2,1) reaches a maximum value k/e at ¢t = % There is a peak
of order k! Furthermore, the interaction of peaking with nonlinear growth could
destabilize the system.



7. Feedback Linearization

E.g., consider the initial conditions

(0) Ul
£(0)=1
&(0)=0
Then,
£(t) = —k%te™*t
and

. 1
n= —5(1 + &2)n°
1
— _5(1 _ thefkt)n?)

In this case the solution 7(t) is given by

n?(t) = i: :
L+ 03[t + (1 + kt)e=kt —1]

which has a finite escape if 7o > 1.
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7. Feedback Linearization

Tracking
,'?: fO(W:f)
£ = Ao€ + Bov(z)[u — a(z)]

y = Cof
Goal: Design u such that y asymptotically tracks a reference signal 7(¢). Assume that
7(t),7(t), ...,m(P) are bounded and available on-line. Note that the reference signal
could be the output of a pre-filter.
Example: If p = 2, the pre-filter could be

2
G(s) = 2#
82 + 28wn s + wp,
Then
U1 = y2
U2 = —way1 — 2wny2 + wWayYd
r=y

Note that in this case © = 91 = y2 and ¥ = ¥s.

Consider a system with relative degree p. Let
T & —r
r= . , and e = . =&—r

rp—1) £p— r(p—1)



7. Feedback Linearization

Then, the error system is given by

n= fO(nv e+ I’)
6= Ave+ Bo(y(@)lu — ala)] - r®)

Setting u = a(z) + B(z)[v — r(P)] with 8 = —L< it follows that

v(x)
n=fo(n,e+r)
é= A.e+ Bev
Thus, selecting v = —Ke with (Ac — BcK) Hurwitz we can conclude that the states
of the closed-loop system
n=fo(n,e+r)

é= (Ao — BoK)e
are bounded if n = fo(n,e + R) is ISS and that e — 0 as t — oo.
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