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3. Fundamental properties

Example

Consider the system
t=f(z), z(o)==z0

e Does it have a solution over an interval [to,t1]?

That is, does exist a continuous function z : [to, t1] — R™ such that z(t) is
defined and satisfies ©(t) = f(t, z(t)), V¢ € [to,¢1]?

e Is it unique? or is possible to have more than one solution?

e ... and if we restrict f(¢,x) to be continuous in x and piecewise continuous in t.
Is this sufficient to guarantee existence and uniqueness?

No!, e.g.
i=x7B, 2(0)=0

3
It has solution z(t) = (%) 72
But is not unique, since z(t) = 0 is another solution!
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Lipschitz condition

A function f(xz) is said to be locally Lipschitz on a domain (open and connected set)
D C R™ if each point of D has a neighborhood Dy such that f(.) satisfies

If () = fWI<Llz—yll, Vz,y€Do

(with the same Lipschitz constant L). The same terminology is extended to a function
f(t,z), provided that the Lipschitz constant holds uniformly in ¢ for all ¢ in a given
interval.

Remark: For f : R — R, we have
HOENIO
|z — yl
which means that a straight line joining any two points of f(.) cannot have a slope
whose absolute value is greater than L.

Example

—2/3

f(zx) = /3 is not locally Lipschitz at = = 0 since f’(z) = %z — oo asz — 0.
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Existence and Uniqueness

Theorem 3.1 - Local Existence and Uniqueness

Let f(t,z) be piecewise continuous in ¢ and satisfy the Lipschitz condition

If &) = f(tyll < Lz —yll

Vz,y € B={z € R" : |lx — xo|| < r},Vt € [to,t1]. Then, there exists some § > 0
such that the state equation & = f(¢,x) with z(t9) = zo has a unique solution over
[to,to + (5}.

Theorem 3.2 - Global Existence and Uniqueness
Suppose that f(t,z) is piecewise continuous in ¢ and satisfies

Then, the state equation © = f(¢, ), with z(to) = o, has a unique solution over
[to, t1].
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Existence and Uniqueness

Lemma 3.2
If f(t,z) and [g—’;] () are continuous on [a, b] X D for some domain D C R", then f

is locally Lipschitz in z on [a,b] X D.

Lemma 3.3
If f(t,z) and [%L ) are continuous on [a, b] X R™, then f is globally Lipschitz in x
t,x

on [a,b] x R™ if and only if [%] is uniformly bounded on [a, b] X R™.
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Examples

& =A(t)z+g(t) = f(t,2) 1)
with A(t), g(t) piecewise continuous functions of ¢.

If )= fEyl=[A®)z+g@) - (A y+g @)
=A@ (=l <A -yl

Note that for any finite interval of time [to, t1], the elements of A(¢) are
bounded. Thus ||A(t)|| < a for any induced norm and

If (&) = f &yl < all(z =yl

Therefore, from Theorem 3.1 we conclude that (1) has a unique solution over
[to,t1]. Since t1 can be arbitrarily large it follows that the system has a unique
solution Vt > tg. There is no finite escape time.
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Examples

i=—a®=f(z), weR ()
Is it globally Lipschitz?
No! From Lemma 3.3, f(z) is continuous but the Jacobian g—ﬁ = —322 is not
globally bounded. Nevertheless, Vz(to) = zo, (2) has the unique solution

2
o

z(t) = sgn(zo) 1+ 22 (t — to)

&=—z2, z(0)=-1 (3)

From Lemma 3.2 we conclude that is locally Lipschitz in any compact subset of R
because f(z) and % are continuos. Hence, there exists a unique solution over
[0, 6] for some § > 0. In particular the solution is

and only exists over [0,1), i.e, there is finite escape time at t = 1!
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Uniqueness and Existence

Theorem 3.3

Let f(t,z) be piecewise continuous in ¢ and locally Lipschitz in z for all ¢ > to and all
xz € D C R™. Let W be a compact subset of D, g € W and suppose it is known that
every solution of

= f(t,z), =(to)=zo
lies entirely in W. Then, there is a unique solution that is defined for all ¢ > ¢¢.

Proof.

By Theorem 3.1, there is a unique solution over [tg, to + d]. Let [to,T") be its
maximum interval of existence. We would like to show that T" = co. Suppose that is
not, i.e., T is finite. Then the solution must leave any compact subset of D. But this
is a contradiction, becuase x never leaves the compact set W. Thus we can conclude
that T' = oo. O
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Example

Returning to the example )
&= —z3
It is locally Lipschitz in R. For any initial condition z(0) = zg € R, the solution cannot
leave the compact set W = {x € R : |z| < zo} because for any instant of time
e ifz>0thenz <0
o ifx <Othenz >0

Thus, without computing explicitly the solution we can conclude from Theorem 3.3
that the system has a unique solution for all ¢ > 0.
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Continuous dependence on initial conditions and parameters

Consider the following nominal model
z = f(t,x, o) (4)
where \g € RP denotes the nominal vector of constant parameters of the model and

r € R™ is the state.

o Let y(¢) be a solution of (4) that starts at y(to) = yo and is defined on the
interval [to, t1].

o Let z(t) be a solution of & = f(t,z, A) defined on [to, t1] with z(t9) = z0.

When does z(t) remains close to y(t)?
Or in other words, is the solution continuous dependent on the initial condition and
parameter A\? That is,

Ve>035>0 1 120 —woll <3, |A = Xoll <3 =12 () —y (O <&, Vielto, 1]

10
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Continuous dependence on initial conditions and parameters

Theorem 3.4

Let f(¢, ) be piecewise continuous in ¢ and Lipschitz in = (with a Lipschits constant
L) on [to, t1] X W, where W C R"™ is an open connected set. Let y(t) and z(t) be
solutions of

y:f(tvy)v y(tO):yO
z2=f(t,2)+g(tz2), z(to) = 20

such that y(t), 2(t) € W, Vt € [to,t1]. Suppose that
Hg (tv Z)II <, V(tvm) € [t()vtl] x W
for some p > 0. Then

ly (8) = 2 ()]l < llyo — 2ol e“C10) + % (ffL(t_tO) - 1) Vit € [to, t1]

11
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Proof

y(t)=yo+ [ f(ry(7))dr
/

t
N0, :zo+/[f (r.2(1)) + g (1.2 ()] dr
to

Subtracting and taking norms yields

t t
Iy ® == @1 < lwo — z0ll + [ 1/ (o () = £ (rz Dl ar + [ Ng oz (@)l ar

< Hyo—ZOH-F/LHZJ(T)—Z(T)HdT—i-,LL(t—to)
—_——

v to

12
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Applying the Gronwall-Bellman inequality, yields

lly @) =z @) < 7+#(t—to)+/Lh+M(T—to)] e t="dr

to

Integrating the right-hand side by parts ([ uv’ = uv — [ vu’) we obtain

t
ly (8) — 2 @) < v+ p(t — to) — v — u(t — to) +yelt=t0) 4 / pel(t=e) ds
to

— ~elt—to) o P ( Lt—to) _
= e + I (e 1>

13
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Theorem 3.5 - Continuity of solutions

Let f(¢t,2z,\) be continuous in (¢,2,A) and locally Lipschitz in z on
[to,t1] X D X {|]A — Ao|| < c}, where D C R"™ is an open connected set. Let y(t, Ag)
be a solution of

&= f(t,7,20),

with y(to, Ao) = yo € D. Suppose y(t, Ag) is defined and belongs to D for all
t € [to,t1]. Then, given € > 0, there is § > 0 such that if

20 = yoll <&, IA=Xol <4

then there is a unique solution z(t, \) of & = f(¢,x, \) defined on [tg,t1], with
z(to, A) = zo such that [|z(¢t,\) — y(¢, Xo)|| <€, V¢ € [to, t1]

Proof.

2=f(t,z,)\o)+f(t,z,)\)7f(t,z,/\0)

g(t,z)

By continuity Vi > 0, 36 > 0:
IA=2oll <6 = llg(t,2)|| < p

Therefore, using Theorem 3.4 we conclude Theorem 3.5 by noticing that ||yo — 2o]|
and p can be chosen arbitrarily small.
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Comparison Principle

Quite often when we study the state equation # = f(¢,x) we need to compute bounds
on the solution z(t). For that we have

e Gronwall-Bellman inequality

e The comparison Lemma — Compares the solution of the differential inequality
0(t) < f(t,v(t)) with the solution of 4(t) = f(¢,u). Moreover, v(t) is not needed
to be differentiable.

Definition
Upper right-hand derivative

Dtoy(t) =lim sup vt +h) —v(t)
h—0t h

The following properties hold:
e if v(t) is differentiable at ¢t then D v (t) = v(t)
o if 3+ [v(t+h) —v(t)| < g(t,h) and lim;, o+ g(t, h) = go(t), then
Dtu(t) < go(t)

15
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Comparison Principle

Lemma 3.4 - Comparison Lemma

Let
ﬂ:f(t7u)) ’U,(to):’u,o, peER

where f(t,u) is continuous in ¢ and locally Lipschitz in u, forall t > 0 and u € J C R.

Let [to,T) (T can be co) be the maximal interval of existence of the solution
u(t) € J. Let v(¢) be a continuous function that satisfies

DTu(t) < f(t,v), v(to) < uo

with v(t) € J for all t € [to,T). Then, v(t) < u(t), Vt € [to,T)

16
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Example

Show that the solution of
&= f(z) =—(1+2%)z, z(0)=a
is unique and defined for all ¢ > 0.

Because f(z) is locally Lipschitz it has a unique solution on [0, t1] for some ¢; > 0.
Let v(t) = 22(t). Then

o(t) < —2v(t), ©v(0) = a?
Let u(t) be the solution of
o= —2u, u(0) =a® — u(t) = aZe”
Then, by comparison lemma the solution z(t) is defined V¢t > 0 and satisfies
|z(t)] = V/o(t) < |ale™, V£ >0

By Theorem 3.3 it follows that the solution is unique and defined for all ¢ > 0.
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