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1. Introduction. Given the Hamiltonian H(p, x), which is smooth, convex in p,
and periodic in the second variable x, we are interested in finding for a given P ∈ R

n

a periodic solution of the Hamilton–Jacobi equation

H(P + Dxu, x) = H̄(P ).(HB)

For each fixed P the problem (HB) can be regarded as a nonlinear eigenvalue problem
for the function u(x) and the number H̄(P ). We regard H̄(P ), the effective Hamilto-
nian, as a function of the parameter P . It encodes information about H(x, p), as we
shall describe below.

Problem (HB) requires that we determine for a given P ∈ R
n the pair (u, H̄(P )).

Classical solutions do not exist for all P , so viscosity solutions [CIL92, BCD97, FS93]
are used.

Solving (HB) directly involves finding the viscosity solution to a degenerate elliptic
partial differential equation coupled to an unknown constant, H̄(P ). While this may
be done, it is not an easy task. We choose instead to reduce the problem of finding
the (approximate) effective Hamiltonian to a finite dimensional convex optimization
problem, which may be solved numerically using optimization routines.

Numerical computations of effective Hamiltonians have been done by [EMS95,
KBM01], with applications to front propagation and combustion. At the time of
preparation of this manuscript, the authors also discovered work by [Qia01]. The
numerical approach taken by these authors was to find the effective Hamiltonian by
partial differential equations methods.

In this work we circumvent the difficulties of solving (HB) by computing H̄(P )
without finding the solution u. Our methods are based on the representation formula

H̄(P ) = inf
φ∈C1

per

sup
x

H(P + Dxφ, x)(1)
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due, for strictly convex Hamiltonians, to [CIPP98], in which the infimum is taken
over all periodic C1 functions, C1(Tn). This formula is a problem in the calculus
of variations problem in L∞. Such problems were studied by Aronsson in the 1960s
[Aro66, Aro65]. Recently there has been a renewed interest in calculus of variations
in L∞ [BJW01a, BJW01b, Bar94]. Related methods in the calculus of variations in
L∞ were applied to the effective Hamiltonian problem in [Eva03].

In this paper we always assume that H is convex but not necessarily strictly con-
vex. This assumption has implications for the existence and smoothness of solutions
of (HB). For instance, if H is strictly convex, then there are viscosity solutions of
(HB) which are Lipschitz continuous. However, if strict convexity fails, solutions may
(see section 5.2) or may not (see section 5.3) exist, and the degree of smoothness will
depend on the Hamiltonian in question.

1.1. Applications. Computing the effective Hamiltonian is relevant to several
classes of applications: homogenization problems, the long time behavior of Hamilton–
Jacobi equations, classical mechanics, Aubry–Mather theory, ergodic control, and
front propagation.

In homogenization problems [LPV88, Con95], if wε solves

−wε
t + H

(
Dxw

ε,
x

ε

)
= 0,

then, as ε goes to 0, the solution wε converges to w0, which is a solution of the limiting
problem

−w0
t + H̄(Dxw

0) = 0.

The effective Hamiltonian also appears in the study of long time limits of viscosity
solutions of Hamilton–Jacobi equations:

−wt + H(P + Dxw, x) = 0.

It turns out that w(x, t) − H̄(P ) t converges as t → −∞ to a stationary solution of
(HB) [Fat98b, BS00]; see also [AI01, CDI01].

In classical mechanics [AKN97], smooth solutions u of (HB) yield a canonical
change of coordinates X(p, x) and P (p, x) defined by the equations

p = P + Dxu, X = x + DPu.(2)

This would simplify the Hamiltonian dynamics

ẋ = −DpH(p, x), ṗ = DxH(p, x)(3)

into the trivial dynamics

Ṗ = 0, Ẋ = −DP H̄(P ).

In other words, for each P there is an invariant torus in which the dynamics is simply
a rotation. However, (HB) does not admit smooth solutions in general (see section
4), and one must deal with viscosity solutions [CIL92, BCD97, FS93, Eva98].

In Aubry–Mather theory [Mat89a, Mat89b, Mat91, Mn92, Mn96], instead of look-
ing for invariant tori, one looks for probability measures µ on T

n ×R
n that minimize

the average action ∫
L(x, v) + P · vdµ(4)
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and satisfy a holonomy condition

∫
vDxφdµ = 0

for all φ(x) ∈ C1(Tn).
Here L(x, v) is the Legendre transform of H(p, x), defined by

L(x, v) = sup
p

−v · p−H(p, x).

The supports of these measures are called the Aubry–Mather sets and are the
natural generalizations of invariant tori. Recent results [E99, Fat97a, Fat97b, Fat98a,
Fat98b, CIPP98], some by one of the authors [EG01, EG02, Gom01b], show that
viscosity solutions encode the Aubry–Mather sets. In particular, we have

∫
L(x, v) + P · vdµ = −H̄(P ),

and the support of the Mather measure is a subset of the graph

(x,−DpH(P + Dxu, x))

for any viscosity solution of (HB).
In the Mather set the asymptotics of the Hamiltonian dynamics are controlled by

viscosity solutions. Indeed let (x, p) be any point in T
n × R

n. Consider its flow by
the Hamilton equations (3). If (x, p) belongs to any Mather set, then

x(T )

T
→ Q

as T → ∞ for some vector Q ∈ R
n, with Q = DP H̄(P ) for some P if H̄ is differen-

tiable.
Equation (HB) and related stationary first and second order Hamilton–Jacobi

equations are also important to the ergodic control problem [Ari98, Ari97]. While
this article was being reviewed, the authors became aware of [FSar]. Aubry–Mather
theory can also be generalized to second order equations [Gom02], and many of the
techniques that we develop can be generalized appropriately.

The computation of effective Hamiltonians has applications to the propagation
of flame fronts in combustion: Hamilton–Jacobi equations which are homogeneous
of order one, for example ut = c|Du|, can represent the evolution of a propagating
front moving in the normal direction with speed c. If the front is propagating in a
periodic media, an equation of the form ut = c(x)|Du| holds, where c(x) is positive
and periodic in x. In this case, solving a homogenization problem gives the effective or
averaged front speed. As mentioned earlier, numerical computations for this problem
have been performed by [EMS95, KBM01].

2. Solvability and approximation of the homogenization problem.

2.1. Solvability of the homogenization problem. We start this section by
reviewing some results concerning the function H̄(P ). In particular, we recall the
uniqueness result of H̄ from [LPV88], and we generalize a representation formula for
H̄ due to [CIPP98].
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Proposition 2.1 (from Lions, Papanicolao, Varadhan [LPV88]). There is at
most one value H̄ for which (HB) has a periodic viscosity solution.

Proof. Suppose, for contradiction, that (HB) admits viscosity solutions u1 and u2

for H̄ = H̄1, H̄2, respectively, with H̄1 > H̄2. We may assume v1 ≡ u1 + C > u2 for
a sufficiently large positive constant C. For ε sufficiently small

εv1 + H(Dxv1, x) ≥ εu2 + H(Dxu2, x)

in the viscosity sense. The comparison principle [BCD97] then implies v1 ≤ u2, which
is a contradiction.

Next we prove a representation formula for H̄. Our result extends [CIPP98] to
nonstrictly convex Hamiltonians H, for which the solution may fail to be Lipschitz.

Proposition 2.2 (from Contreras, Iturriaga, Paternain, Paternain [CIPP98]).
Suppose that H is periodic in x and convex in p (strict convexity is not required).
Suppose further that there exists a viscosity solution u of (HB). Then

H̄ = inf
ψ∈C1(Tn)

sup
x∈Tn

H(Dxψ, x),(5)

in which the infimum is taken over the space C1(Tn) of periodic functions.
First we recall some facts concerning the sup convolution. The proof may be

found in [FS93].
Lemma 2.3. Suppose u is a viscosity of (HB). Define

uε(x) = sup
y

[
u(y) − |x− y|2

ε

]
.(6)

Then
1. uε → u uniformly as ε → 0,
2. uε is semiconvex,
3. uε satisfies

H(Dxuε, x) ≤ H̄ + o(1),

in the viscosity sense and almost everywhere.
Proof of Proposition 2.2. Let

H̄∗ = inf
ψ∈C1(Tn)

sup
x∈Tn

H(Dxφ, x).

At some point x0, u− ψ has a local minimum. By the viscosity property

H(Dxψ(x0), x0) ≥ H̄,

which implies H̄∗ ≥ H̄.
Let ηε be a smoothing kernel. Set vε = uε ∗ ηε. Then, using convexity,

H(Dxvε(x), x) ≤
∫

H(Dxuε(y), y)ηε(x− y)dy + o(1) ≤ H̄ + o(1),

and thus H̄∗ ≤ H̄.
Before proceeding with the discretization of this problem we will prove an ele-

mentary bound.
Proposition 2.4. We have

inf
ψ∈C1(Tn)

sup
x∈Tn

H(Dxψ, x) ≥ inf
x∈Tn

H(0, x).

Proof. For any function ψ ∈ C1(Tn) there is a point x0 for which Dxφ(x0) = 0.
Therefore supx∈Tn H(Dxψ, x) ≥ H(0, x0) ≥ infx∈Tn H(0, x).
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2.2. Approximation. The next issue we study is the approximation of the
problem (1).

To this effect, consider a triangulation of T
n with cells of diameter smaller than h.

Let C(Th) be the collection of continuous piecewise linear grid functions which inter-
polate given nodal values. We avoid the use of the term finite elements to emphasize
the pointwise nature of the approximation.

The following proposition is an approximation result: we do not assume the
existence of a viscosity solution of (HB).

Proposition 2.5. Suppose H(p, x) is convex in p. Then

inf
ψ∈C1(Tn)

sup
x

H(Dxψ, x) = lim
h→0

inf
φ∈C(Th)

esssup
x

H(Dxφ, x).

Proof. Fix ε > 0. Let ψ be a C1 function for which

sup
x∈Tn

H(Dxψ, x) ≤ inf
ψ∈C1(Tn)

sup
x∈Tn

H(Dxψ, x) + ε.

Because ψ is C1, Dxψ is uniformly continuous. Thus, for h sufficiently small, there is
φ ∈ C(Th) such that

esssup
x∈Tn

|Dxφ−Dxψ| ≤ ε.(7)

In fact, in each triangle along an edge ei with length |ei| pointing in the direction νi
we have

Dxψ · νi =
1

|ei|

∫
ei

Dxφ · dz = Dxφ(x̄) · νi + o(1),

in which x̄ is, for instance, the center of the triangle. Since the shape factor is bounded,
there are at least n edges νi linearly independent such that

|det[ν]| ≥ θ(8)

for some θ for all triangles. Therefore

Dxψ = Dxφ(x̄) + o(1),

as required.
This therefore implies

esssup
x∈Tn

H(Dxφ, x) ≤ sup
x∈Tn

H(Dxψ, x) + O(ε),

by the Lipschitz continuity of H in p. Thus, taking first limh→0 infφ∈C(Th) and then
infψ∈C1(Tn), we obtain

lim
h→0

inf
φ∈C(Th)

esssup
x∈Tn

H(Dxφ, x) ≤ inf
ψ∈C1(Tn)

sup
x∈Tn

H(Dxψ, x) + O(ε).

Send ε → 0.
To prove the converse inequality observe that if φ ∈ C(Th), ηε is a smooth molli-

fier, and ψ = ηε ∗ φ, then convexity yields

H(Dxψ(x), x) ≤
∫

H(Dxφ(y), y)ηε(x− y)dy + O(ε),
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for every x, and so

H(Dxψ(x), x) ≤ esssup
x∈Tn

H(Dxφ(x), x) + O(ε).

Thus, taking first infψ∈C1 and then limh→0 infφ∈C(Th),

inf
ψ∈C1

sup
x

H(Dxψ, x) ≤ lim
h→0

inf
φ∈C(Th)

esssup
x∈Tn

H(Dxφ, x) + O(ε).

Since ε is arbitrary, we have the claim.
Before stating and proving an improved version of the previous proposition for

the case in which (HB) has a viscosity solution, we record some important properties
of the L∞ calculus of variations problem. First observe that

H(φ) = sup
x∈Tn

H(Dxφ, x)

is a convex, but not strictly convex, functional. Therefore for any φ1 and φ2 we have

H(λφ1 + (1 − λ)φ2) ≤ λH(φ1) + (1 − λ)H(φ2).

This in particular implies that any local minimum is a global minimum.
However, in general the minimizers are not unique, and it is not true that a

minimizing sequence will converge to a viscosity solution of

H(Dxu, x) = H̄.

For example, H = p2/2 + cosx has H̄ = 1, and u ≡ 0 is a minimizer. However,
H(Dxu, x) �= H̄.

A similar argument applied to the discretized problem yields that

Hh(φ) = esssup
x∈Tn

H(Dxφ, x)

is convex for φ ∈ C(Th), and so a local minimum is a global minimum.
Proposition 2.6. The approximate Hamiltonian

H̄h(P ) = inf
φ∈C(Th)

esssup
x∈Tn

H(P + Dxφ, x)

is convex in P .
Proof. Let P1, P2 ∈ R

n, and let φ1, φ2 ∈ C(Th) be the corresponding minimizers.
Let 0 ≤ λ ≤ 1, and set P = λP1 + (1− λ)P2 and φ = λφ1 + (1− λ)φ2. Then, for any
x we have

H(P + Dxφ, x) ≤ λH(P1 + Dxφ1, x) + (1 − λ)H(P2 + Dxφ2, x).

Thus

esssup
x∈Tn

H(P + Dxφ, x) ≤ λH̄h(P1) + (1 − λ)H̄h(P2),

and so

H̄h(P ) = inf
φ∈C(Th)

esssup
x∈Tn

H(P + Dxφ, x) ≤ λH̄h(P1) + (1 − λ)H̄h(P2)
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if P = λP1 + (1 − λ)P2.
Theorem 2.7. For any convex Hamiltonian H(p, x) for which (HB) has a vis-

cosity solution

H̄ ≤ inf
φ∈C(Th)

esssup
x

H(Dxφ, x).

If there exists a globally C2 solution of (HB), then

inf
φ∈C(Th)

esssup
x

H(Dxφ, x) = H̄ + O(h).

If (HB) has a Lipschitz solution (for instance, if H(p, x) is strictly convex in p), then

inf
φ∈C(Th)

esssup
x

H(Dxφ, x) = H̄ + O(h1/2).

If H is convex but not strictly convex and (HB) has a viscosity solution, then

inf
φ∈C(Th)

esssup
x

H(Dxφ, x) = H̄ + o(1).

Proof. Observe that

H̄ = inf
ψ∈C1(Tn)

sup
x

H(Dxψ, x) ≤ inf
φ∈C(Th)

esssup
x

H(Dxφ, x),

because by convexity we can associate to each φ ∈ C(Th) a function

ψ = φ ∗ ηε ∈ C1(Tn)

such that

sup
x

H(Dxψ, x) ≤ esssup
x

H(Dxφ, x) + O(ε),

for arbitrary ε > 0, as seen in the previous proposition.
To prove the second assertion suppose that u is a C2 viscosity solution of (HB).

Fix h and construct a function φu ∈ C(Th) by interpolating linearly the values of u
at the nodal points. In each triangle T i, the oscillation of the derivative of u is O(h),
since u is C2. Thus, proceeding as in the proof of (7), we obtain

Dxφu(x) = Dxu(x) + O(h)

for any x. Since H(Dxu, x) = H̄, at every point x ∈ T i we have

H(Dxφu, x) ≤ H̄ + O(h).

This implies

inf
φ∈C(Th)

esssup
x∈Tn

H(Dxφ, x) ≤ H̄ + O(h).

If u is a Lipschitz viscosity solution, let ũ = ηh1/2 ∗ u. Observe that

|D2
xxũ| ≤

C

h1/2
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and

H(Dxũ, x) ≤ H̄ + O(h1/2).

Construct a function φu ∈ C(Th) by interpolating linearly the values of ũ at the nodal
points. In each triangle T i, the oscillation of the derivative of ũ is O(h1/2). Thus

Dxφu(x) = Dxũ(x) + O(h1/2)

for any x. Since H(Dxũ, x) ≤ H̄ + O(h1/2), for every point x ∈ T i,

H(Dxφu, x) ≤ H̄ + O(h1/2).

This implies

inf
φ∈C(Th)

esssup
x∈Tn

H(Dxφ, x) ≤ H̄ + O(h1/2).

In the final case of nonstrictly convex Hamiltonians, the sup convolution (6) with
ε = h1/3 yields a function uh1/3 that satisfies

H(Dxuh1/3 , x) ≤ H̄ + o(1)

almost everywhere and has Lipschitz constant bounded by Ch−1/3. Define ũ = ηh1/3 ∗
uh1/3 , which satisfies

H(Dxũ, x) ≤ H̄ + o(1)

and

|D2
xxũ| ≤

C

h2/3
.

Since in each triangle the oscillation of the derivative is O(h1/3), we obtain

H(Dxφu, x) ≤ H̄ + o(1),

thereby proving the last statement of the theorem.
A corollary to the previous theorem is the following.
Corollary 2.8. Suppose ξh ∈ R

n is a supporting plane for H̄h(P ) that converges
as h → 0 to ξ. Then ξ is a supporting hyperplane for H̄(P ). As a consequence, if
H̄(P ) is differentiable at P , then ξh converges to the unique supporting hyperplane of
H̄(P ) at P .

Proof. The previous theorem asserts that H̄(P ) converges uniformly to H̄(P ). In
Proposition 2.6 we proved that H̄h(P ) is convex. Therefore the corollary follows from
a standard convex analysis argument.

3. Numerical implementation. In this section we discuss the numerical im-
plementation of the fully discretized minimax problem (4). There are two parts to
the discussion: (i) implementing the discrete version of the problem and (ii) solving
the resulting optimization problem. If the discretization is performed properly, the
resulting minimax problem is convex, and standard routines can be used to find the
solution.
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3.1. Discretization. In the last section we discussed the approximation of the
infinite dimensional problem

H̄(P ) = inf
φ∈C1

per

sup
x

H(P + Dxφ, x)

by the finite dimensional problem

inf
φ∈C(Th)

esssup
x

H(Dxφ, x),

for φ in the space of continuous piecewise linear grid functions.
To fully discretize the problem, we make a further approximation: we discretize

the spatial variable by computing the supremum only at the nodes xi, which gives
the minimax problem

min
φ∈C(Th)

max
xi

H(Dxφ, xi)(9)

for xi at the nodal points of the grid function space. The spatial approximation
introduces a small additional error of O(h), which is proportional to the Lipschitz
constant (in the x variable) of H.

The minimax problem (9) is a finite dimensional nonlinear optimization problem
which can by solved using standard optimization routines.

Discretization in one dimension. We first present the discretization scheme
in one dimension. Choosing n to be the number of nodes, we get a partition of T, the
unit interval with periodic boundary conditions, into n intervals of length h = 1/n.
For any φ in the grid function space C(Th), we identify φ with the vector of values
on the nodes

φ is identified with u = (u1, . . . , un) = (φ(0), . . . φ(ih), . . . φ((n− 1)h)).

Then, choosing xi = (i+1/2)h to be the midpoint of the interval gives the discretiza-
tion

H(φx, x) = H

(
ui+1 − ui

h
, xi

)
on Ti = [ih, (i + 1)h].(10)

As long as H(p, x) is convex in p, for each x, the right-hand side of (10) is convex
in ui+1 and ui. Taking the maximum over the nodes gives a convex function of n
variables to be minimized.

Discretization in two dimensions. Next, in two dimensions, take an n × n
grid for T

2, the unit square with periodic boundary conditions. Create a regular tiling
by triangles as follows. To each node i, j, let

T±
i,j = the triangle with vertices (i, j), (i± 1, j), (i, j ± 1).

For φ in the grid function space C(Th), we identify φ with the matrix of values on the
nodes:

φ is identified with u = (ui,j) = (φ(ih, jh)), i, j = 1, . . . , n.

As a result we have 2n2 triangles on which φ is linear.
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On each triangle, choosing x±
i,j , y

±
i,j to be a point in the middle of T±

i,j , we get the
discretization

H(φx, φy) = H±
(
ui±1,j − ui,j

h
,
ui,j±1 − ui,j

h
, x±

i , y
±
i

)
on T±

i,j .(11)

As long as H(p, x) is convex in p, for each x, the right-hand side of (11) is convex in
the variables ui,j and ui±1,j±1.

Taking the maximum over the triangles gives a convex function of 2n2 variables to
be minimized. Alternately, we can take x±

i,j = xi,j , y
±
i,j = yi,j and take the maximum

H± with these values to reduce the number of variables by a factor of two.

3.2. Numerical solution of the minimax problem. The implementation
required only that a suitable discretization of the Hamiltonian be given. This dis-
cretization takes the form of a map from R

n to R
n, or a map from R

2n to R
2n, in

the case of one and two dimensional Hamiltonians, respectively. Each component of
the map is convex in each of the variables, and the map is sparse, in the sense that it
depends on only a small number of other variables.

Taking the maximum of the components of the map gives a convex function which
is to be minimized. In general, there are many minimizers, but the minimum is unique.

At this point, publicly available routines for convex optimization may be used
to solve the problem. We carried out the implementation in MATLAB, using the
Optimization Toolbox. The Optimization Toolbox contains an assortments of routines
for solving multidimensional nonlinear optimization problems, some of which take
advantage of sparse linear algebra. We used fminimax, which is specially designed for
minimax problems but does not use sparse linear algebra. A possible alternative would
have been to use the a more general solver with sparse linear algebra, which might
have performed better on larger problems. For the problems we implemented, which
were of modest size (128 variables in two dimensions), the minimization problem was
solved in a few seconds on a laptop computer. Solving for a range of a few hundred
values of P took between twenty minutes and a few hours to compute for each problem.

For background on convex optimization we refer to [Fle80]. Briefly, the minimax
is solved by searching for the worst of the objective functions, then improving that
function by solving a sequence of quadratic programs, which are in turn computed by
solving a sequence of linear equations. The error in the solution of the optimization
problem is insignificant compared to the discretization error.

3.3. Error estimates. There are three main issues which may lead to errors in
the numerical computation of H̄(P ): the error which arises from the discretization
(which was discussed in the previous section), the error involved in computing the
esssup approximately, and the error in solving the discrete problem numerically.

To compute the essential supremum we chose to evaluate the function at a single
point in each node. This gives an additional contribution to the error of O(h), de-
pending on the Lipschitz constant of the Hamiltonian. This discretization error was
nonnegligible, but it could be eliminated by computing the maximum at the endpoints
of the nodes, instead of the middle of each node. Since a linear function on a segment
of a triangle achieves its maximum at the nodes, this supremum would have been
computed accurately up to O(h2), decreasing the discretization error at the expense
of increasing the number of functions to be evaluated in the minimax.

Improved convergence estimates. Because of the improved convergence when
smooth solutions exist, for most values of P we expected to get, and indeed we saw,
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linear convergence. Nevertheless, there should be examples where the convergence is
sublinear.

Global convergence of H̄h(P ) to H̄(P ) may be better than expected. Since H̄h(P )
is convex, and is an upper bound for H̄(P ), if for some values of P we get H̄h(P )
accurately (for instance, because there is a smooth solution of (HB)), that immediately
implies improved bounds for other values of P . If, for instance, H̄h(P ) = H̄ + O(h)
in a set of full measure, then immediately one gets H̄h(P ) = H̄(P ) + O(h) in the
remaining points.

Secondly, in Theorem 2.7 we constructed the approximate minimizer from a vis-
cosity solution. However, there may be other minimizers which may be smoother than
the viscosity solution.

Finally, in the proof we used convolutions with a smoothing kernel, to get es-
timates of the form H(Dxũ, x) ≤ H̄ + O(hα) for some exponent α. In practice the
inequality may be strict at points in which the original viscosity solution is not smooth,
which could help to improve the estimates since we are taking suprema.

4. Validation. We begin by studying a one dimensional case for which explicit
analytical information is available. This analytical information is used to validate the
numerical method.

Theorem 2.7 gives convergence of order O(h) when there exists a smooth solution
of (HB). Despite the lack of smoothness in the solution, we obtained convergence
rates of O(h).

4.1. Analytical results. Consider the Hamiltonian corresponding to a one di-
mensional pendulum with mass and length normalized to unity,

H(p, x) =
p2

2
− cos 2πx.

For this Hamiltonian one can find explicitly the solution of (HB).
Proposition 4.1. The solution (u, H̄(P )) of (HB), when H corresponds to the

one dimensional pendulum, is given by

u(x) =

∫ x

0

−P + s(y)
√

2(H̄(P ) + cos 2πy) dy,(12)

where |s(y)| = 1, with H̄(P ) = 1 for |P | ≤ 4π−1 and

P = ±
∫ 1

0

√
2(H̄(P ) + cos 2πy) dy(13)

otherwise.
Proof. For each P ∈ R and a.e. (almost every) x ∈ R, the solution u(P, x) satisfies

(P + Dxu)2

2
= H̄(P ) + cos 2πx.

This implies H̄(P ) ≥ 1 and so

Dxu = −P ±
√

2(H̄(P ) + cos 2πx), a.e. x ∈ R.

Thus (12) holds for |s(y)| = 1.
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Table 1

Computed values for H̄ as a function of the number of points, comparing the sine and cosine
potential, with P = 0.5 and H̄(0.5) = 1.

Number of points n = 9 17 33 65
Values (using sine) 0.98480 0.99573 0.99887 0.99971

Max of sin on the grid 0.98480 0.99573 0.99887 0.99971
Values (using cosine) 1.00000 1.00000 1.00000 1.00000

Max of cosine on the grid 1.00000 1.00000 1.00000 1.00000

Because H is convex in p and u is a viscosity solution, u is semiconcave, and
so the only possible discontinuities in the derivative of u are the ones that satisfy
Dxu(x−) −Dxu(x+) > 0 (see [Eva98]). Therefore s can change sign from 1 to −1 at

any point, but jumps from −1 to 1 can happen only when
√

2(H̄(P ) + cos 2πx) = 0.
If we require 1-periodicity, then there are two cases. (i) If H̄(P ) > 1, the solution

is C1 since
√

2(H̄(P ) + cos 2πy) is never zero. These solutions correspond to invariant
tori. In this case P and H̄(P ) satisfy (13). It is easy to check that this equation has
a solution H̄(P ) whenever

|P | ≥
∫ 1

0

√
2(1 + cos 2πy)dy,

that is, whenever |P | > 4π−1. (ii) Otherwise, when |P | ≤ 4π−1, H̄(P ) = 1 and s(x)
can have a discontinuity. Indeed, s(x) jumps from −1 to 1 when x = 1

2 + k, with
k ∈ Z, and there is a point x0, defined by the equation

−
∫ 1

0

s(y)
√

2(1 + cos 2πy)dy = P,

in which s(x) jumps from 1 to −1. In this last case the graph (x, P + Dxu) is a
backwards invariant set contained in the unstable manifold of the hyperbolic equilibria
of the pendulum. The graph of H̄(P ) has a flat spot near P = 0.

This example also shows that (HB) does not have a unique solution. Indeed,
cos 2πx is also 2-periodic. So if we look for 2-periodic solutions, we find out that for
|P | small we can have two points where the derivative is discontinuous, and we can
choose one of them freely because our only constraint is periodicity. Note, however,
that the value of H̄ is uniquely determined and is the same whether we look for 1- or
2-periodic solutions.

4.2. Validation in one dimension. To test our numerical method we varied
the number of nodes n, computing H̄ for n = 8, 16, 32, 64 and with P = 0.5. Here the
exact value is H̄ = 1.

For each of the above values of n, the exact answer was achieved with an error
bounded by 10−10. However, this is an artifact of the special nature of the example,
related to the fact that we resolved the maximum of sin(x) well. To illustrate this, we
use a poorer choice of n values and get a larger error, as seen from Table 1. With these
choices of n we see that the discrete problem is solved to within the tolerance of 10−6,
but the exact problem is solved only up to the resolution error of the Hamiltonian.

We repeated the same test for P = 2, which puts us in the strictly convex part
of H̄(P ). The value H̄(2) = 2.0637954 can be obtained by solving the equation

2 =

∫ 1

0

√
2(H̄(2) − cos(2πx))dx
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Table 2

Computed error for H̄ as a function of the number of points, comparing the sine and cosine
potential, with P = 2.

Number of points n = 8 16 32 64 96

Error (using sine) ×10−5 0.1912 0.0013 0.0009 0.0005 0.0183

Error (using cosine) ×10−5 0.1912 -0.0013 -0.0014 0.0074 0.0017
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Fig. 1. H̄(P ) for the pendulum, over the range [−2, 2] (left), and an enlargement near the
lower-right corner.

with respect to H̄(2). The error is plotted in Table 2; in this case except for the
smallest (n = 8) discretization, the computed values fall within the tolerance of the
scheme. The conclusion is that the dominant error comes from the discretization, not
the optimization routines.

The values of H̄(P ), computed with a resolution of 32 points, are shown in Fig-
ure 1. The largest error occurs near the corner. The location of the corner is close to
the analytical value P = 4π−1 	 1.27324.

4.3. Validation in two dimensions. In this section we study two uncoupled
pendulums. This problem is a direct sum of the one dimensional case, so it is used to
validate the method in two dimensions.

The Hamiltonian corresponding to two pendulums is

H(px, py, x, y) =
p2
x

2
+

p2
y

2
+ cos 2πx + cos 2πy.

The effective Hamiltonian is thus

H̄(Px, Py) = H̄0(Px) + H̄0(Py),

in which H̄0 is the effective Hamiltonian for a one dimensional pendulum. For instance,
H̄(1.5) = 1.244638, H̄(2.5) = 3.165327, and thus the analytical value is H̄(1.5, 2, 5) =
4.4099660.

As an accuracy test in the two dimensional case, we computed for P = (1.5, 2.5)
and n = 8, 12, 16, 32 the value of H̄(P ) and the corresponding error; see Table 3.
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Table 3

Computed values for H̄(1.5, 2.5) as a function of the number of points.

n 8 12 16 24 Exact
Values FE 4.6521 4.5627 4.5216 4.4836 4.4099660
Error FE 0.24 0.14 0.11 0.07
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Fig. 2. Visualization of H̄(P ) for the potential V (x, y) = cos(2πx).

5. Computational results.

5.1. Strictly convex Hamiltonians. In this section we study several strictly
convex Hamiltonians. Unless stated otherwise, all the numerical examples use n = 8,
that is, 64 nodes and 128 triangular elements.

Example 1 (pendulum and a free particle). Potential: V (x, y) = cos(2πx). This
potential is y-independent, and therefore H̄(P1, P2) for P2 fixed should be the same as
the effective Hamiltonian for the one dimensional pendulum. With P1 fixed, H̄ should
be a parabola in P2. We solved for H̄(P ) with a resolution of .1 for P ∈ [−4, 4]×[−4, 4].
The result is presented in Figure 2.

Example 2 (potential V (x, y) = cos(2πx) cos(2πy)). We computed H̄(P ) with a
resolution in P of .1 for P ∈ [−4, 4] × [−4, 4]. The result is presented in Figure 3.

Example 3 (potential V (x, y) = cos(2πx) + cos(2πy) + cos(2π(x − y))). We
computed H̄(P ) with a resolution of .25 in P for P ∈ [−3, 3] × [−3, 3]. The result is
presented in Figure 4.

Example 4 (double pendulum). The double pendulum is a well known non-
integrable example for which the effective Hamiltonian is not known. The Hamiltonian
for the double pendulum is

H(px, py, x, y) =
p2
x − 2pxpy cos(2π(x− y)) + 2p2

y

2 − cos2(2π(x− y))
+ 2 cos 2πx + cos 2πy.

We computed the values of H̄(P ) with a resolution in P of .2 for P in [−5, 5]× [−5, 5].
The result is presented in Figure 5.
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Fig. 3. Visualization of H̄(P ) for the potential V (x, y) = cos(2πx) cos(2πy).
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Fig. 4. Visualization of H̄(P ) for the potential V (x, y) = cos(2πx) + cos(2πy) + cos(2π(x− y)).

5.2. Nonstrictly convex problems. In this section we study several examples,
in which H is convex but not strictly convex, for which there is a viscosity solution
of (HB).

Example 5 (linear nonresonant). Consider the linear (nonresonant) Hamiltonian

H(p, x) = ω · p + V (x, y).(14)

Suppose u is a smooth viscosity solution of (HB) for this Hamiltonian. The divergence
theorem yields

∫
Tn

ω ·Dxu = 0.
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Fig. 5. Visualization of H̄(P ) for the double pendulum.

Therefore

H̄(0) =

∫
Tn

V(15)

and H̄(P ) = H̄(0) + ω · P . For the example ux +
√

2uy + cos(2πx) we obtained
DP H̄ = (1,

√
2) and H̄(0, 0) = 0. Despite the fact that the vector (1, 1) is rationally

dependent, the Hamilton–Jacobi equation ux+uy+cos(2πx) is nonresonant because of
the nature of the potential. Numerically we obtained DP H̄ = (1, 1) and H̄(0, 0) = 0.
In this (linear) case the optimization routine converged very quickly.

Example 6 (time-periodic). Another example is a periodic time-dependent one-
space-dimension Hamilton–Jacobi equation

−ut + H(Dxu, x, t) = H̄.

There exists a unique value H̄ for which this problem admits space-time-periodic
solutions [EG02]. Moreover, this solution is Lipschitz, and thus we have a O(h)
convergence.

Note also that P = (Pt, Px) but H̄(P ) is linear in Pt, and so we may as well
consider the problem

inf
φ

sup
(x,t)

−φt + H(Px + Dxφ, x, t) = H̄(Px).

For the forced pendulum

H(p, x) =
p2

2
+ cos 2πx + sin 2πx sin 2πt.

We set Pt = 0 and plot H̄(Px); see Figure 6.
Observe that the maximum of the potential cos 2πx+sin 2πx sin 2πt is

√
2, which

coincides with the minimum of H̄(P ).
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Fig. 6. Values of H̄(P ) for the time-periodic Hamiltonian.

Example 7 (vakonomic). Finally, we study an example of a nonstrictly convex
Hamiltonian which satisfies commutation relations related to vakonomic mechan-
ics [AKN97],

H(p, x) =
|f1 ·Du|2

2
+

|f2 ·Du|2
2

+ V (x, y).

Here the vector fields f1, f2 do not span R
2 in every point, but when we consider

the commutator [f1, f2], we have that f1, f2, [f1, f2] span R
2 in every point. In this

situation (HB) has Hölder continuous viscosity solutions [EJ89, Gom01a].
We choose V = 0, f1 = (0, 1), and f2 = (cos 2πy, sin 2πy). If sin 2πy = 0,

f2 = (0,±1), and so f1 and f2 are linearly dependent. However,

[f1, f2] = 2π(− sin 2πy, cos 2πy),

and so the vectors f1, f2, [f1, f2] always span R
2. Therefore there is a Hölder contin-

uous viscosity solution.
In fact, this example can be reduced to a one dimensional problem. The Hamilton–

Jacobi equation is

cos2 2πy

2
(Px + ux)2 +

(1 + sin2 2πy)

2
(Py + uy)

2

+ sin 2πy cos 2πu(Px + ux)(Py + uy) = H̄(Px, Py).

Since there is no explicit dependence in x, there are solutions independent of x, given
by the equation

cos2 2πy

2
P 2
x +

(1 + sin2 2πy)

2
(Py + uy)

2

+ sin 2πy cos 2πyPx(Py + uy) = H̄(Px, Py).

Since this equation is strictly convex in uy, there is a Lipschitz solution.
To remove this degeneracy we considered the potential V (x, y) = cos 2πx +

sin 2π(x − y), for which the previous reduction procedure does not work. The re-
sult is presented in Figure 7.
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Fig. 7. Values of H̄(P ) for the time-periodic Hamiltonian.

5.3. Nonexistence of viscosity solutions. There are situations where there
do not exist viscosity solutions to (HB), but where H̄ can still be defined by solving a
more general problem; see [BS00, BS01] and [LS03]. In some of these situations, the
solution of the minimax problem (1) may exist and give a consistent result.

We work out two interesting examples and try to explain the results obtained
numerically.

The problem

αuα + H(P + Dxu
α, x) = 0,(16)

which (when α �= 0) has a unique solution, is considered in [LS03]. Sending α → 0
gives the effective Hamiltonian

H̄(P ) ≡ lim
α→0

αuα.(17)

These results are consistent with (HB) but determine a value H̄(P ) even under weaker
conditions, for example, as long as αuα converges uniformly to a constant, which
happens when

uα − min
x

uα → bounded function of x

uniformly.
For example, in the simpler case when H is strictly convex in p, we get that

uα − minx u
α is bounded uniformly in α, since in this case the solutions uα are

Lipschitz independently of α.
The result (1) may also give a correct value for H̄ in these more general situations.
Proposition 5.1. Let uα be a solution of (16), and suppose that αuα converges

uniformly to a constant number H̄(P ). Then

H̄(P ) = lim
α→0

αuα = inf
φ

sup
x∈Tn

H(P + Dxφ, x).

Proof. 1. Define H̄α ≡ −αminx u
α and

vα ≡ uα +
H̄α

α
,
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so that minx v
α = 0. We will demonstrate H̄α → H̄. We have

H̄ = lim
α→0

H(P + Dxu
α, x) = lim

α→0
−αuα = lim

α→0
α(uα − min

x
uα) + αmin

x
uα = H̄α.

2. Let vεα denote the sup convolution of vα, and let φ = ηε ∗ vεα. Then

H(Dxφ, x) ≤ H̄α + O(ε).

Therefore

inf
φ

sup
x∈Tn

H(Dxφ, x) ≤ H̄α → H̄.

3. Now let

eα = sup
x

αvα,

which converges to 0.
Let φ be any function. Then vα − φ has a local minimum at a point x0. At this

point

αvα(x0) + H(Dxφ(x0), x0) ≥ H̄α.

Thus

eα + H(Dxφ(x0), x0) ≥ H̄α,

and so

sup
x∈Tn

H(Dxφ, x) ≥ H̄α − eα → H̄.

Therefore infφ supx∈Tn H(Dxφ, x) ≥ H̄.
Example 8 (quasiperiodic Hamiltonians). We consider an example from [LS03]

for which there is no viscosity solution to (HB), yet where H̄(P ) can be determined
from (17). Let

H(px, py, x, y) = |px + αpy| + sin(x) + sin(y)

with α irrational. We computed H̄(P ) numerically from (1). The results are presented
in Figure 8.

Example 9 (linear resonant). Resonant linear Hamiltonians (14) may fail to have
a viscosity solution. An example is

(0, 1) ·Du + sin(2πx) = H̄.

The formula (15) yields H̄(0) = 0 if there is a solution of (HB). However, we have

inf
φ

sup
x

H(Dxφ, x) = 1.

Let φ be an arbitrary periodic function. Set x0 = 1/4, so that sin 2πx0 = 1. Then
φ(x0, y) is a periodic function of y, and so Dyφ(x0, y) = 0 at some y = y0. Thus

sup
x

H(Dxφ, x) ≥ H(Dxφ(x0, y0), x0, y0) = 1.

Numerically we obtained DP H̄ = (0, 1) and H̄(0, 0) = 1. This is interesting, because
H̄(0, 0) should be 0, not 1, and this shows the nonexistence of solutions.
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Fig. 8. Values of H̄(P ) for the quasi-periodic Hamiltonian.
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