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Minimum-Energy State Estimation for
Systems with Perspective Outputs
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Abstract— This paper addresses the state estimation of systems
with perspective outputs. We derive a minimum-energy estimator
which produces an estimate of the state that is “most compatible”
with the dynamics, in the sense that it requires the least amount
of noise energy to explain the measured outputs. Under suit-
able observability assumptions, the estimate converges globally
asymptotically to the true value of the state in the absence of
noise and disturbance. In the presence of noise, the estimate
converges to a neighborhood of the true value of the state. These
results are also extended to solve the estimation problem when
the measured outputs are transmitted through a network. In that
case, we assume that the measurements arrive at discrete-time
instants, are time-delayed, noisy, and may not be complete. We
show that the re-designed minimum-energy estimator preserves
the same convergence properties. We apply these results to the
estimation of position and orientation for a mobile robot that uses
a monocular charged-coupled-device (CCD) camera mounted on-
board to observe the apparent motion of stationary points. In the
context of our application, the estimator can deal directly with
the usual problems associated with vision systems such as noise,
latency and intermittency of observations. Experimental results
are presented and discussed.

Index Terms— Visual servo control, observers for nonlinear
systems, estimation, robotics, networked control systems.

I. INTRODUCTION

THE state estimation of nonlinear systems has received
considerable attention in the literature during the last few

decades. A particular branch of engineering where observers
for nonlinear systems have been applied rather extensively
is Computer Vision. In particular to solve the problems of
pose estimation, shape tracking, 3D surface estimation, among
others. In this paper, the practical motivation is the pose
estimation problem for mobile robots using measurements
from a charged-coupled-device (CCD) camera mounted on-
board to observe the apparent motion of stationary points.
The dynamics of these systems belong to the class of systems
with perspective outputs, which will be introduced in the next
subsection. The reader is referred to [1]–[3] for several other
examples of perspective systems in the context of motion and
shape estimation.

We are interested in designing state-estimators for systems
with perspective outputs in the presence of noise and dis-
turbance. We also consider the case when the measurements
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are transmitted through a network, arriving at discrete-time
instants, possibly time-delayed, and incomplete.

The remainder of this section introduces the problem of
state estimation for systems with perspective outputs using
a minimum-energy approach, presents previous related work,
describes the main contributions, and provides a brief overview
of pose estimation of autonomous vehicles using visual infor-
mation.

A. State estimation for systems with perspective outputs

Consider a continuous-time system described by

ẋ = A(u)x + b(u) + G(u)d (1)

αjyj = Cj(u)x + dj(u) + nj j ∈ I := {1, 2, . . . , N} (2)

where1 A : R
m → R

n×n, b : R
m → R

n, G : R
m → R

n×nd ,
Cj : R

m → R
qj×n, dj : R

m → R
qj , x ∈ R

n denotes the
state of the system, u ∈ R

m its control input, yj ∈ R
qj its jth

perspective output, d ∈ R
nd an input disturbance that cannot

be measured, and nj ∈ R
qj measurement noise affecting the

jth output. We assume that the right-hand-side of (2) is always
nonzero. The initial condition x(0) of (1) and the signals d and
nj are all assumed deterministic but unknown. Each αj ∈ R,
j ∈ I denotes a scalar that is determined by a normalization
constraint such as

‖yj‖ = 1 or v′
jyj = 1 (3)

where the vj ∈ R
qj denote constant vectors. We call (1)–(2)

a state-affine system with multiple perspective outputs, or for
short simply a system with perspective outputs. These type of
systems are inspired by the (single output) perspective systems
introduced by Ghosh et al. [1]. Notice that when the matrices
A, b, and all the Cj , dj are constant, and d and all the nj are
zero, we essentially have a perspective linear system in the
sense of [1].

In the last few years, the observability of perspective linear
systems was been systematically studied in the literature. In
[4], Dayawansa et al. provide an elegant algebraic observabil-
ity test. For perspective linear systems without inputs it is
never possible to recover the norm of the state because the
system is homogeneous on the initial conditions. Therefore
Dayawansa et al. [4] only consider state indistinguishability
up a homogeneous scaling of the state. However, as shown
in [5], in the presence of inputs it is in principle possible to
recover the whole state from perspective outputs.

1To simplify the notation we use the short hand notation A(u) to denote
A(u(t)). The same applies for b(·), G(·), Cj(·), and dj(·).
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Motivated by the above considerations, one of the main
contributions of this paper is the design of a state-estimator for
(1)–(2). In Section II we propose a minimum-energy estimator
that produces an estimate for the state of the perspective sys-
tem that is “most compatible” with the system’s dynamics and
measured outputs. In particular, the optimal state estimate x̂ at
time t is defined to be the value for the state that is compatible
with the observations collected up to time t, and the dynamics
of the system for the “lowest” possible measurement noise and
disturbance, with “lowest” understood in an integral-square
sense. This formulation is purely deterministic but leads to a
state-estimator that resembles a Kalman-Bucy filter. In fact, if
the same approach towards state-estimation was applied to a
linear system with linear outputs, one would arrive precisely at
the Kalman-Bucy filter that would be obtained in a stochastic
setting [6].

Minimum-energy estimators were first proposed by
Mortensen [7] and further refined by Hijab [8]. Game theoreti-
cal versions of these estimators were proposed by McEneaney
[9]. It was recently shown by Krener [10] that minimum-
energy estimators are globally convergent when the system is
observable for every input. Under less restrictive observability
assumptions, in Section II-B we show that for perspective
systems with multiple inputs, the state-estimator proposed
has the desirable property that the state estimate converges
asymptotically to the true value of the state in the absence of
noise and disturbance. In the presence of noise, the estimate
converges to a neighborhood of the true value of the state. We
can therefore use this state-estimator to design output-feedback
controllers by using the estimated state to drive state-feedback
controllers.

Another problem that is tackled in this paper is state
estimation for systems with perspective outputs when the
measurements are transmitted through a network. Over the
past few years there has been a considerable research effort in
the area of networked control systems. The reader is refereed
to [11] for a survey on this topic. In Section III we assume
that the measurements are acquired only at discrete times t′i,
i = 1, 2, . . . , k, with t′1 < t′2 < . . . < t′k, and that we only
have access to them after a time-delay τi. The sequence of
measurements is therefore given by

yj(ti) := yj(t′i) = yj(ti − τi)

where y denotes the time-delay observed variable, and ti :=
t′i + τi. We also suppose that the measurements may not be
complete, that is, at time t′i only the outputs yj with j ∈ Ii

are available, where Ii ⊆ I, and the inclusion may be strict
when some measurements are missing.

The problem under consideration is then to design an
observer which estimates the continuous-time state vector
x(t) governed by equation (1), given the discrete time-delay
measurements y(ti) expressed by the output equation

αjiyj(ti) = Cj(u(ti − τi))x(ti − τi)
+ dj(u(ti − τi)) + nj(ti − τi) j ∈ Ii (4)

where αji is a normalization constraint such that (3) holds for
yj(ti).

Convergence properties and observability conditions under
which the estimate state x̂ converges to the state x are
investigated in Section III-B.

B. Pose estimation of autonomous vehicles using visual infor-
mation

A fundamental problem in mobile robotics is the determi-
nation of position and orientation with respect to an inertial
coordinate system. A promising solution is to use a camera
mounted on a robot to observe the apparent motion on the
image of stationary points. The linear and angular velocities
of the camera can be assumed known in its own coordinate
system (possibly with errors due to noise) but not in the
inertial coordinate system. This is quite reasonable in mobile
robotics where the motion of the camera is determined by
the applied control signals. The problem of estimating the
position and orientation of a camera mounted on a rigid
body from the apparent motion of point features has a long
tradition in the computer vision literature (cf., e.g., [12]–[17]
and references therein). Filtering-like or iterative algorithms
that continuously improve the estimates as more data (i.e.,
images) are acquired, and that are robust with respect to
measurement noise are especially desirable. Soatto et al. [14]
formulated the visual motion estimation problem in terms of
identification of nonlinear implicit systems with parameters
on a topological manifold, and proposed a dynamic solution
either in the local coordinates, or in the embedding space of
the parameter manifold. In [17], rigid-body pose estimation
using inertial sensors and a monocular camera is considered.
A local convergent observer where the states evolve on SO(3)
is proposed (the rotation estimation is decoupled from the
position estimation). In the area of wheeled mobile robots,
Ma et al. [18] addressed the problem of tracking an arbitrarily
shaped continuous ground curve by formulating it as control-
ling the shape of the curve in the image plane. Observability
of the curve dynamics is studied and an extended Kalman
filter is proposed to dynamically estimate the image quantities
needed for feedback control from the actual noisy images. An
application for landing an unmanned air vehicle using vision in
the control loop is described in [19]. In [15], the autonomous
aircraft landing problem based on measurements provided by
airborne vision and inertial sensors is addressed. The authors
cast the problem in a linear parametrically varying framework
and solve it using tools that borrows from the theory of linear
matrix inequalities. These results are extended in [20] to deal
with the so-called out-of-frame events.

In Section IV we formulate the problem of estimating
the position and orientation of a controlled rigid body using
measurements from an on-board CCD camera as a state
estimation problem of a perspective system. The problem is
then solved by using the minimum-energy estimators derived
in the previous sections. One of the main contributions is
that, contrary to what happens with most previous algorithms,
the ones proposed here are globally convergent provided
that suitable observability assumptions are satisfied. These
assumptions are independent of the initialization of the es-
timator and depend solely on the motion of the camera.
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Global convergence to the correct position and orientation is
achieved in the absence of noise. When there is noise, the
magnitude of the estimation error is essentially proportional to
the amount of noise. Another difference with respect to several
other algorithms is that we also estimate scale. This can be
achieved either through known (scaling) information about the
points observed, and/or through the knowledge of the camera’s
linear velocity. We also consider singular configurations for the
points under observation, e.g., all points coplanar.

Another novelty of this paper is that we explicitly address
the fact that the noisy measurements arrive at discrete-time
instants, are time-delayed, and may not be complete. In this
way, we can deal directly with the usual problems associated
to vision systems such as noise, latency, and occlusions.

The theoretical results were experimentally validated by
applying them to estimate the position and orientation of a
mobile robot using measurements from an on-board CCD
camera. We then use these estimates to close the feedback
loop and control the robot to a desired position, defined with
respect to visual landmarks. The results obtained are discussed
in Section IV-C.

This paper builds upon and extends previous results by the
authors [21]–[23].

II. STATE ESTIMATION FOR SYSTEMS WITH PERSPECTIVE

OUTPUTS

Consider the perspective output system (1)–(2). For appro-
priate noise and disturbance signals, essentially every value
for the state x at a time t ∈ R is compatible with any
outputs yj observed on the interval [0, t). However, we will
favor estimates for the state that can be made compatible
with the measured outputs utilizing noise and disturbance
with the lowest possible energy. In fact, we formulate state
estimation as a deterministic optimization problem in which
the estimate x̂(t) of the state at time t ≥ 0 is the value for
which the measured outputs can be made compatible with the
system dynamics (1)–(2) for noise nj and disturbance d, with
lowest integral-square-norm. More specifically, we address the
following problem:

Problem 1: Given an input u and measured outputs yj , j ∈
I, defined on an interval [0, t), compute the estimate x̂(t) of
the state at time t defined by

x̂(t) := arg min
z∈Rn

J(z, t) (5)

where

J(z; t) := min
d,nj ,αj

{
(x(0) − x̂0)′P0(x(0) − x̂0)

+
∫ t

0

(
‖d‖2 +

N∑
j=1

‖nj‖2
)
dτ :

x(t) = z, ẋ = A(u)x + b(u) + G(u)d,

αjyj = Cj(u)x + dj(u) + nj

}
(6)

and P0 > 0, x̂0 encode a-priori information about the state.
�

Remark 1: The approach just described towards state esti-
mation can be viewed as the computation of a “generalized

pseudo-inverse” that attempts to recover the current value of
the state x(t) from the measured output y(τ), τ ∈ [0, t]. To
understand what is meant by this, let Ut denote the triple
consisting of the quantities that cannot be measured but affect
the value of the state at time t. Namely, the initial state, past
noise and past disturbances:

Ut := {x(0);n(τ), τ ∈ [0, t];d(τ), τ ∈ [0, t]}.
We denote by Ut the space of such triples. The system
dynamics (1)–(2) define the following two operators

Xt : Ut → R
n Ot : Ut → Yt

Ut �→ x(t) Ut �→ Yt

where Yt denotes the appropriate output space and Yt :=
{yj(τ), τ ∈ [0, t], j = 1, 2, . . . , N}. One can then view state
estimation as solving the following system of equations

x̂ = Xt(Ût) Yt = Ot(Ût) (7)

for the unknowns x̂ and Ût. If the observation operator Ot

had a left inverse O−1
t (e.g., in the absence of noise and if the

system was observable) the solution to (7) would be unique
and given by x̂ = Xt

(
O−1

t (Yt)). However, in general this is
not the case and the approach that we propose is to replace
the left inverse of Ot by its “pseudo-inverse.” In particular,
we define the estimate to be x̂ = Xt

(
O⊥

t (Yt)
)
, where O⊥

t (Yt)
denotes the min-norm solution to Yt = Ot(Ut), i.e., O⊥

t (Yt) =
arg min Ut∈Ut:

Yt=Ot(Ut)
‖Ut‖Ut

. The norm ‖ ·‖Ut
(or more precisely

its square) is specified by the cost (6). �
Remark 2: In general, for nonlinear systems, the approach

proposed here to construct an estimator leads to an infinite
dimensional observer with state J(·, t) evolving according to
a first-order nonlinear partial differential equation of Hamilton-
Jacobi type, driven by the observations. The negative of J(z, t)
defined by (6) is the information state introduced in [24], [25]
and can be interpreted as a measure of the likelihood of state
x = z at time t. �

A. The observer equations

We now present the observer equations that can be derived
using dynamic programming. The following result solves
Problem 1.

Theorem 1: The solution to the state estimation problem
defined by (5) and (6) is given by

Q̇ = A(u)Q + QA(u)′ + G(u)G(u)′ − QWQ (8)
˙̂x = (A(u) − QW )x̂ + b(u) − Qw (9)

with Q(0) = P−1
0 , x̂(0) = x̂0, and

W (t) :=
N∑

j=1

C ′
j(u)

(
I − yjy

′
j

‖yj‖2

)
Cj(u)

w(t) :=
N∑

j=1

C ′
j(u)

(
I − yjy

′
j

‖yj‖2

)
dj(u) t ≥ 0.
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Furthermore, the cost function J(z; t) defined in (6) is
quadratic and can be written as

J(z; t) =
(
z − x̂(t)

)′
P (t)

(
z − x̂(t)

)
+ c(t) (10)

where c(t) satisfies

ċ = x̂′Wx̂ +
N∑

j=1

d′j
(
I − yjy

′
j

‖yj‖2

)
dj c(0) = 0. (11)

�
Before proving Theorem 1 note that we can rewrite the state
estimation equation (9) as

˙̂x = A(u)x̂ + b(u) + Q

N∑
j=1

Cj(u)′
(
α̂jyj − Cj(u)x̂ − dj(u)

)

α̂j := y′
j(Cj(u)x̂ + dj(u))/‖yj‖2, which emphasizes the

parallel between (9) and a Kalman-Bucy filter for linear
systems. In fact, if we apply the same approach for linear
systems, the resulting minimum-energy estimate is identical
to that generated by the Kalman-Bucy filter for the analogous
linear stochastic model with initial covariance P−1

0 . In that
case, P−1(t) is the covariance matrix of the estimation error
at time t.

Proof: The function J(z; t), z ∈ R
n, t ≥ 0 defined in (6)

can be viewed as a cost-to-go. Computing it using dynamic
programming, and completing the squares, we get

Jt(z; t) = min
d,αj

‖d‖2 +
N∑

j=1

‖αjyj − Cjz − dj‖2

− Jz(z; t)(Az + b + Gd)

= −1
4
‖G′Jz(z; t)′‖2 − Jz(z; t)(Az + b)

+
N∑

j=1

(Cjz + dj)′
(
I − yjy

′
j

‖yj‖2

)
(Cjz + dj) (12)

where Jt and Jz denote the partial derivatives of J with respect
to t and z, respectively. To simplify the notation, we have
suppressed the dependence on u of the matrices A, b, G, Cj

and dj . The value of J(z; t) can be determined from the linear
partial differential equation (12) with initial condition

J(z; 0) = (z − x̂0)′P0(z − x̂0) ∀z ∈ R
n. (13)

It turns out that the solution to (12)–(13) can be written as (10)
for appropriately defined signals x̂(t) and c(t). The signal x̂
is then precisely the estimate for the state x of the perspective
linear system. Moreover, matching (13) with (10) we conclude
that P (0) = P0, x̂(0) = x̂0, and c(0) = 0. To verify that
the solution to (12)–(13) can indeed be written as (10), we
substitute it into (12) and obtain

z′
(
Ṗ + PA + A′P + PGG′P − W

)
z

+ 2z′
(− P ˙̂x − Ṗ x̂ − PGG′P x̂ − A′P x̂ + Pb − w

)
+ ċ + 2x̂′P ˙̂x + x̂′Ṗ x̂ + x̂′PGG′P x̂ − 2x̂′Pb

−
N∑

j=1

d′j
(
I − yjy

′
j

‖yj‖2

)
dj = 0 ∀z ∈ R

n.

For this quadratic law in z to be identically equal to zero the
following should hold:

Ṗ + PA + A′P + PGG′P − W = 0 (14)

−P ˙̂x − Ṗ x̂ − PGG′P x̂ − A′P x̂ + Pb − w = 0 (15)

ċ + 2x̂′P ˙̂x + x̂′Ṗ x̂ + x̂′PGG′P x̂ − 2x̂′Pb

−
N∑

j=1

d′j
(
I − yjy

′
j

‖yj‖2

)
dj = 0. (16)

Substituting (14) in (15) and these two equations in (16), we
obtain (11) and

−Ṗ = PA + A′P + PGG′P − W (17)

P ˙̂x = PAx̂ + Pb − Wx̂ − w (18)

It turns out that P (t) remains positive definite for all time (see
Claim 1 in Appendix). Therefore, (18) is actually equivalent
to (9) with Q = P−1. Using the fact that Q̇ = −QṖQ, it is
straightforward to conclude that the matrix Q can be generated
directly from (8).

B. Estimator convergence

We are now interested in determining under which con-
ditions the state estimate x̂ converges to the true state x of
the perspective system. The following technical assumption is
needed:

Assumption 1: There exist positive constants δ,∆ such that
δI ≤ G(u)G′(u) ≤ ∆I , ∀u ∈ R

m. �
This assumption essentially guarantees that G(u) is bounded
and full-row rank, “uniformly” over all possible inputs. This
type of assumption is typically used in minimum-energy
estimators [9]. It can generally be replaced by a controllability
assumption of (1) through the input d. This controllability
condition also arises in Kalman filtering to guarantee a positive
definite solution to the algebraic Riccati equation. However,
we do not pursue this case because, in practice, G is a tuning
parameter of the estimator that can be chosen by the designer.
The following result establishes the convergence of the state
estimate.

Theorem 2: Assuming that the solution to the perspective
system (1)–(2) exists globally, the solution to state estimator
(8)–(9) also exists globally. Moreover, when Assumption 1
holds and Q remains uniformly bounded, there exist a constant
c > 0 possibly dependent on P0, and positive constants
λ, γd, γ1, . . . , γN such that

‖x̃(t)‖ ≤ ce−λt‖x̃(0)‖ + γd sup
τ∈(0,t)

‖d(τ)‖

+
N∑

j=1

γj sup
τ∈(0,t)

‖nj(τ)‖ t ≥ 0 (19)

where x̃(t) := x̂(t) − x(t) denotes the state estimation error.
Proof: See the Appendix.

Remark 3: If the noise and input disturbances are L2 sig-
nals, then one can even prove convergence of the estimation
error to zero. This was done in [10] for certain classes of
systems that are uniformly observable for every input. �
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Some assumption on the observability2 of (1)–(2) would be
expected to achieve convergence of the state estimate x̂ to the
state x. In Theorem 2 this assumption appears in the form
of the requirement that Q remains uniformly bounded. This
assumption is less restrictive than the usual one of requiring
the system to be uniformly observable for every input [10],
which generally does not happen for perspective systems. In
the rest of this section we investigate conditions under which
Q remains uniformly bounded.

From (8) it is clear that Q remains bounded if W (t) ≥ εI >
0, ∀t ≥ 0 because in this case the term −QWQ eventually
dominates for very large Q. However, this case is not very
interesting because, e.g., for the single output case (N = 1)
the matrix W typically has rank equal to (rankC1) − 1 ≤
n − 1. The following Lemma provides a significantly weaker
condition for the boundedness of Q.

Lemma 1: For a given input u,d,nj , j ∈ {1, . . . , N} the
matrix Q remains bounded along trajectories of the system
(1)–(2) and state-estimator (8)–(9), provided that there exist
positive constants T , ε such that the following condition

1
T

∫ T

0

Φ(t + τ, t)′W (t + τ)Φ(t + τ, t)dτ ≥ εI > 0 (20)

∀t ≥ 0 holds, where Φ(t, τ) denotes the state transition matrix
of ż = A(u)z.

Proof: See the Appendix.
To get some intuition for the meaning of (20) note that for∫ T

0
Φ(t + τ, t)′W (t + τ)Φ(t + τ, t)dτ to be singular, there

would have to be a vector x0 such that

x′
0Φ(t + τ, t)′W (t + τ)Φ(t + τ, t)x0 = 0, ∀τ ∈ (0, T ), t ≥ 0.

In that case, using the definition of W and the fact that
W (t + τ) ≥ 0 we conclude that

(
I − yj(t + τ)yj(t + τ)′

‖yj(t + τ)‖2

)
Cj

(
u(t + τ)

)
Φ(t + τ, t)x0 = 0

or equivalently,

βj(t + τ)yj(t + τ) = Cj

(
u(t + τ)

)
Φ(t + τ, t)x0 (21)

∀τ ∈ (0, T ), t ≥ 0, j ∈ {1, . . . , N}, for appropriate scalars
βj(t). In essence this means that (20) fails when all the yj

evolve as if b(u), d, and all the dj(u) and nj were zero.
In fact, we can view (20) as a persistence of excitation-like
condition that requires x to evolve is some interesting way,
other than just following the homogeneous dynamics of (1)–
(2), along which scaling information could not be recovered.

It is interesting to note the parallel between the integral in
(20) and the constructibility Gramian for linear system [26,
Section 3.3]. In fact, if W were replaced by

∑N
j=1 C ′

jCj ,
the integral in (20) is precisely the constructibility Gramian
for the system (1) with linear outputs Cjx + dj + nj , j ∈
{1, 2, . . . , N}.

Combining Theorem 2 and Lemma 1 we obtain the follow-
ing:

2In the present setup, the correct notion is actually constructability because
we are attempting to reconstruct the state from past outputs [26, Section 3.3].

Corollary 1: When Assumption 1 holds and there exist con-
stants T , ε such that (20) holds, the state estimate x̂ converges
exponentially fast to the state x in the absence of disturbance
input and measurement noise. When the disturbance and noise
are bounded but nonzero, x̂ converges to a neighborhood of
the true state x. �

Remark 4: Given the input-to-state stability (ISS) like result
in Theorem 2, we can use the state-estimator to design output-
feedback controllers by using the state estimate x̂ to drive
state-feedback controllers. This is possible when the state-
feedback controllers are robust (in ISS sense) with respect
to state perturbations (cf., e.g., [27], [28], [29, Section 5.3])
and (20) holds. However, in general condition (20) may be
difficult to check since it depends on the control input u. The
investigation of a relaxed condition of persistence of excitation
such as the one introduced in [30] is a topic of current research.

�

III. STATE ESTIMATION FROM DISCRETE NOISY

TIME-DELAYED MEASUREMENTS

This section addresses the state estimation of continuous-
time systems with perspective outputs, whose measurements
arrive at discrete-time instants, are time-delayed, noisy, and
may not be complete.

Consider the perspective system described by the state
equation (1) and the output equation (4). From (1) we conclude
that x(ti) satisfies

x(ti) = Φ(ti, ti − τi)x(ti − τi)

+
∫ ti

ti−τi

Φ(ti, σ)
[
b(u(σ)) + G(u(σ))d(σ)

]
dσ

where Φ(t, t0) is the transition matrix satisfying the differen-
tial equation Φ̇ = A(u)Φ. Therefore,

x(ti − τi) = Φ−1(ti, ti − τi)x(ti) − Φ−1(ti, ti − τi)×∫ ti

ti−τi

Φ(ti, σ)
[
b(u(σ)) + G(u(σ))d(σ)

]
dσ.

Substituting this equation in (4) we get

αjiyj(ti) = C̄j(u)x(ti) + d̄j(u) + n̄j(ti) j ∈ Ii (22)

where

C̄j(u) := Cj(u(ti − τi))Φ(ti − τi, ti)

d̄j(u) := −C̄j(u)

� ti

ti−τi

Φ(ti, σ)b(u(σ)) dσ + dj(u(ti − τi))

n̄j(ti) := −C̄j(u)

� ti

ti−τi

Φ(ti, σ)G(u(σ))d(σ) dσ + nj(ti − τi).

The minimum-energy estimation problem can now be stated
as follows:

Problem 2: Given an input u defined on an interval [0, t),
and measured outputs yj(ti), j ∈ Ii with i = 0, 1, . . . k, t0 :=
0 ≤ t1 ≤ · · · ≤ tk ≤ t, compute the estimate x̂(t) of the state
at time t defined by

x̂(t) := arg min
z∈Rn

J(z, t) (23)
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where

J(z; t) := min
d:[0,t),n̄j(ti),αji

i=0,1,...k

{
(x(0) − x̂0)′P0(x(0) − x̂0)

+
∫ t

0

‖d(σ)‖2 dσ +
k∑

i=0

∑
j∈Ii

‖n̄j(ti)‖2 :

x(t) = z, ẋ = A(u)x + b(u) + G(u)d,

αjiyj(ti) = C̄j(u)x(ti) + d̄j(u) + n̄j(ti)
}

(24)

and P0 > 0, x̂0 encode a-priori information about the state.
�

The state estimate x̂(t) can be interpreted as the value for
which the measured outputs can be made compatible with
the system dynamics (1) and (22) utilizing noise n̄j and
input disturbance d with the lowest possible energy. This
formulation considers the case when all the measurements may
not be available at each time ti because Ii can be a strict subset
of I.

A. The observer equations

In what follows, given a signal x with a discontinuity at
time t, we denote by x(t−) the limit from below of x(τ) as
τ ↑ t, i.e., x(t−) := limτ↑t x(τ). Without loss of generality
we take all signals to be continuous from above at every point,
i.e., x(t) = limτ↓t x(τ). The following result solves Problem
2.

Theorem 3: The state estimate x̂(t) at time t ≥ t0 := 0
defined by (23) and (24) can be computed as a solution to the
impulse system:
- for ti ≤ t < ti+1, i = 0, 1, . . . , k

Ṗ (t) = −P (t)A(u) − A(u)′P (t)
− P (t)G(u)G(u)′P (t) P (ti)=Pi (25)

˙̂x(t) = A(u)x̂(t) + b(u) x̂(ti)=x̂i (26)

- at t = ti+1, i = 0, 1, . . . , k − 1

P (ti+1) = P (t−i+1) + W (ti+1) (27)

x̂(ti+1) = x̂(t−i+1)

− P (ti+1)−1
[
W (ti+1)x̂(t−i+1) + w(ti+1)

]
(28)

where

W (ti+1) :=
∑

j∈Ii+1

C̄ ′
j(u)

(
I − yj(ti+1)yj(ti+1)′

‖yj(ti+1)‖2

)
C̄j(u)

w(ti+1) :=
∑

j∈Ii+1

C̄ ′
j(u)

(
I − yj(ti+1)yj(ti+1)′

‖yj(ti+1)‖2

)
d̄j(u) (29)

Furthermore, the cost function J(z; t) defined in (24) is
quadratic and can be written as

J(z; t) =
(
z − x̂(t)

)′
P (t)

(
z − x̂(t)

)
+ c(t) (30)

where c(0) = 0 and, for all i = 0, 1, . . . k − 1,

c(t) = c(ti), ti ≤ t < ti+1 (31)

c(t) = −(P (t−)x̂(t−) + x̂(t−)′P (t−)x(t−) + c(t−)

− w(t))′
[
P (t−) + W (t)

]−T (P (t−)x̂(t−) − w(t))

+
∑

j∈Ii+1

d̄j

(
I − yjy′

j

‖yj‖2

)
d̄j , t = ti+1 (32)

Proof: We start by proving (30). Take some t ∈ (ti, ti+1).
Since J(z; t) is a cost-to-go it must satisfy the dynamic
programming equation

Jt(z; t) = −1
4
‖G′Jz(z; t)′‖2 − Jz(z; t)(Az + b) (33)

where Jt and Jz denote the partial derivatives of J with respect
to t and z, respectively. For k = 0, the value of J(z; t) is
determined from the linear partial differential equation (33)
with initial condition

J(z; 0) = (z − x̂0)′P0(z − x̂0) ∀z ∈ R
n (34)

and can be written as (30) for appropriately defined signals
x̂(t) and c(t). The signal x̂ is then precisely the estimate for the
state x of the perspective system (1), (22). Moreover, matching
(34) with (30) we conclude that P (0) = P0, x̂(0) = x̂0, c(0) =
0. To verify that the solution to (33)–(34) can be written as
(30), we substitute this equation in (33), and obtain

z′(Ṗ + PA + A′P + PGG′P )z

+ 2z′(−P ˙̂x − Ṗ x̂ − PGG′P x̂ − A′P x̂ + Pb)

+ ċ+2x̂′P ˙̂x+x̂′Ṗ x̂+x̂′PGG′x̂−2x̂′Pb = 0 ∀z ∈ R
n.

This equation holds provided that

Ṗ + PA + A′P + PGG′P = 0, (35)

−P ˙̂x − Ṗ x̂ − PGG′P x̂ − A′P x̂ + Pb = 0, (36)

ċ + 2x̂′P ˙̂x + x̂′Ṗ x̂ + x̂′PGG′x̂ − 2x̂′Pb = 0. (37)

Substituting (35) in (36) and these two equations in (37), we
conclude that (25)–(26) and (30) hold for 0 ≤ t < t1. Notice
also that P (t) remains positive definite for all 0 ≤ t < t1 (see
Claim 1 in Appendix, but using (25) instead of (17)).

Consider now the case t = tk, k > 0. From (24), we notice
that J(z; tk) can be written as

J(z; tk) = min
αjk

{
min

d:[0,tk),αji
i=0,1,...k−1

{
(x(0) − x̂0)′P0(x(0) − x̂0)

+
∫ tk

0

‖d(σ)‖2 dσ +
∑
j∈Ik

‖αjkyj(tk) − C̄jx(tk) − d̄j‖2

+
k−1∑
i=0

∑
j∈Ii

‖αjiyj(ti) − C̄jx(ti) − d̄j‖2 :

x(t−k ) = x(tk) = z, ẋ = Ax + b + Gd
}}

= min
αjk

{
J(z; t−k ) +

∑
j∈Ik

‖αjkyj(tk) − C̄jx(tk) − d̄j‖2
}

(38)

For k = 1 we already have shown that J(z, t−1 ) is given
by (30). Assuming that it has the same form at time t1,
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substituting it in the left and right-hand-side of (38), after some
algebraic manipulation, we obtain

z′
[
P (tk) − P (t−k ) − W (tk)

]
z

+ 2z′
[− P (tk)x̂(tk) + P (t−k )x̂(t−k ) − w(tk)

]
+ c(tk) + x̂(tk)′P (tk)x(tk) − x̂(t−k )′P (t−k )x(t−k )

− c(t−k ) −
∑
j∈Ik

d̄j

(
I − yjy′

j

‖yj‖2

)
d̄j = 0

where the definitions in (29) were used. This equation holds
for k = 1 provided that

P (tk) − P (t−k ) − W (tk) = 0 (39)

−P (tk)x̂(tk) + P (t−k )x̂(t−k ) − w(tk) = 0 (40)

c(tk) + x̂(tk)′P (tk)x(tk) − x̂(t−k )′P (t−k )x(t−k )

−c(t−k ) −
∑
j∈Ik

d̄j

(
I − yjy′

j

‖yj‖2

)
d̄j = 0. (41)

Thus, substituting (39) in (40) and these two equations in (41),
we conclude that (27)–(28), and (32) hold.

Notice that P1 := P (t1) = P (t−1 ) + W (t1) is positive
definite because P (t−1 ) > 0 as it was proved above, and
W (ti) ≥ 0, i = 1, . . . , k. Therefore, substituting the initial
condition (34) by

J(z; t1) = (z − x̂1)′P1(z − x̂1) z ∈ R
n

with x̂1 = x̂(t1), and solving the linear partial differential
equation (33), it follows that (25)-(27) hold for 0 ≤ t < t2.
Applying this line of reasoning successively until i = k we
conclude (30) and that x̂(t) given by (25)–(28) is indeed the
solution to Problem 2.

B. Estimator convergence

In this section we investigate under what conditions the
estimate x̂ provided by Theorem 3 converges to the true state
x of the perspective system. In addition to Assumption 1, the
following technical assumption is needed:

Assumption 2: Let Num(t, σ), 0 ≤ σ < t denotes the
number of time instants at which measurement arrive in the
open interval (σ, t). There exist positive constants τD and N0,
for which the following condition holds:

Num(t, σ) ≤ N0 +
t − σ

τD
.

The constant τD is called the average dwell-time and N0 the
chatter bound. �

In a broad sense, this assumption is used to restrict the
average interval between consecutive arrival of measurements
to be no less than τD. This type of condition typically arises
in the context of logic-based switching control (cf., e.g., [31]
and references therein). In our context it guarantees that the
summation in (24) will not grow unbounded due to “too
frequent” measurements. This assumption is purely technical
and is only used to simplify the analysis. Moreover, in practice
it always holds.

The following result establishes the convergence of the state
estimate.

Theorem 4: Assuming that the solution to the process (1),
(22) exists globally, the solution to the impulse state estimator
(25)–(28) also exists globally. Moreover, when Assumptions
1-2 hold and P−1 remains uniformly bounded, there exist
a constant c > 0 possibly dependent on P0, and positive
constants r < 1, γd, γ1, . . . , γN such that

‖x̃(tk)‖ ≤ c rk‖x̃(0)‖ + γd sup
τ∈(0,tk)

‖d(τ)‖

+
N∑

j=1

γj sup
τ∈(0,tk)

‖n̄j(τ)‖ tk ≥ 0 (42)

where x̃(t) := x̂(t) − x(t) denotes the state estimation error.
Proof: See the Appendix.

As before, some condition on the observability of (1),
(22) should be needed to achieve convergence of the state
estimate x̂ to the state x. In Theorem 4 this condition appears
in the form of the requirement that P−1 remains bounded.
The following result provides a condition under which this
happens.

Lemma 2: The matrix P−1 remains uniformly bounded
along trajectories of the system (1), (22), and the state-
estimator (25)–(28), provided that there exist positive constants
N, ε such that the following persistence of excitation condition

1
N

N∑
j=0

Φ(ti+j , ti)′W (ti+j)Φ(ti+j , ti)) ≥ εI > 0 (43)

i = 0, 1, . . . , k, holds, where Φ(t, τ) denotes the state transi-
tion matrix of ż = A(u)z.

Proof: See the Appendix.
Combining Theorem 4 and Lemma 2 we obtain the follow-

ing:
Corollary 2: When Assumptions 1–2 hold, and there exist

constants N, ε such that the persistence of excitation condition
(43) holds, the state estimate x̂ converges to the state x
in the absence of disturbance input and measurement noise.
When the disturbance and noise are bounded but nonzero, x̂
converges to a neighborhood of the true state x. �

IV. RIGID BODY MOTION ESTIMATION USING CCD
CAMERAS

In this section we show how one can estimate the position
and orientation of a mobile robot using a CCD camera
mounted on-board to observe the apparent motion of stationary
points. We do this by reducing the problem to the estimation
of the state of a system with perspective outputs.

Consider a coordinate frame {b} attached to a rigid body
that moves with respect to an inertial frame {i}. We denote
by SE(3) the Cartesian product of R

3 with the group SO(3)
of 3× 3 rotation matrices; and by se(3) the Cartesian product
of R

3 with the space so(3) of 3×3 skew-symmetric matrices.
Let (pib, Rib) ∈ SE(3) be the configuration of the frame {b}
with respect to {i}, and qi

1 and qb
1 the coordinates of a point

Q1 in the frames {i} and {b}, respectively. Then, we have
that

qi
1 = pib + Ribq

b
1. (44)
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Moreover, if qi
j and qb

j denote the coordinates of another point
Qj in the frames {i} and {b}, respectively, we conclude that

qb
j = R′

ibq
i
j − R′

ibpib = R′
ib(q

i
j − qi

1) + qb
1.

We denote by (vb
ib,Ω

b
ib) ∈ se(3) the twist that defines the

velocity of frame {b} with respect to {i}, expressed in the
frame {b}, i.e.,

Ωb
ib = R′

ibṘib vb
ib = R′

ibṗib.

From these two equations and (44), we obtain

q̇b
1 = −Ωb

ibq
b
1 − vb

ib + R′
ibq̇

i
1 Ṙib = RibΩb

ib.

Suppose that a camera attached to the body frame {b} sees
N points Q1, Q2, . . . , QN . Denoting by yj ∈ R

3 the homo-
geneous image coordinates provided by the camera of the
point Qj , the dynamics of the system can be described by
the following system with N perspective outputs:

q̇b
1 = −Ωb

ibq
b
1 + R′

ibq̇
i
1 − vb

ib (45)

Ṙ′
ib = −Ωb

ibR
′
ib (46)

αjyj = F
(
pcb + Rcbq

b
1 + RcbR

′
ib(q

i
j − qi

1)
)

(47)

∀j ∈ {1, 2, . . . , N}, where (pcb, Rcb) ∈ SE(3) denotes the
configuration of the frame {b} with respect to the camera’s
frame {c}, and F an upper triangular matrix with the camera’s

intrinsic parameters, of the form
[ f11 f12 f13

0 f22 f23
0 0 1

]
, where each fij

denotes a scalar [32, Chapter 3]. Note that F and (pcb, Rcb)
can be time-varying in case the camera is allowed to zoom
or pan and tilt, which is often needed to get good visual
information. The normalization constraints (3) are given by
[ 0 0 1 ] yj = 1, ∀j ∈ {1, 2, . . . , N}.

To proceed we use the following notation: Given an m×n-
matrix M , we denote by St(M) the mn-vector obtained from
stacking the columns of M on top of each other, with the first
column on top. Given two matrices Mi ∈ R

mi×ni , i ∈ {1, 2}
we denote by M1⊗M2 ∈ R

m1m2×n1n2 the Kronecker product
of M1 by M2. Using the fact that given three matrices A, B,
X with appropriate dimensions, St(AX B) = (B′⊗A) St(X)
[33], we can rewrite (45)–(47) as follows:

q̇b
1 = −Ωb

ibq
b
1 + (q̇i ′

1 ⊗ I3×3) St(R′
ib) − vb

ib

St(Ṙ′
ib) = (I3×3 ⊗−Ωb

ib) St(R′
ib)

αjyj = Fpcb + FRcbq
b
1 + ((qi

j − qi
1)

′ ⊗ FRcb) St(R′
ib).

Thus, defining x to be a 12-dimensional vector whose first 3
entries are the entries of qb

1 and the remaining 9 entries are
the columns of R′

ib stacked on top of each other, that is,

x :=
[

qb
1

St(R′
ib)

]
∈ R

12

it follows that system (45)–(47) can be expressed in the form
(1)–(2) with

A :=
[−Ωb

ib q̇i ′
1 ⊗I3×3

09×3 I3×3⊗−Ωb
ib

]
b :=

[
−vb

ib
09×3

]
Cj := [ FRcb (qi

j−qi
1)

′⊗FRcb ] dj := Fpcb ∀j ∈ {1, . . . , N}.
and u := (vb ′

ib , ωb ′
ib )′, where ωb

ib is the angular velocity that
parameterizes Ωb

ib. We can now use the results given in the

previous sections to compute estimates R̂′
ib and q̂b

1 for R′
ib and

qb
1, respectively. From R̂′

ib and q̂b
1, pib can also be estimated

using

p̂ib = qi
1 − R̂ibq̂

b
1.

A. Singular configurations

Depending on the configurations of the points
Q1, Q2, . . . , QN , the state of (45)–(47) may not be observable.
In fact, when all points are coplanar or collinear we can,
respectively, find 9- or 6-dimensional realization for the
system. However, even in this case it may still be possible to
recover the position and orientation of the rigid body from
the camera measurements by using the fact that Rib is a
rotation matrix. To this effect, let M ∈ R

3×m be a matrix
whose columns are a basis for the vector space generated
by the N − 1 vectors {qi

j − qi
1 : j = 2, . . . , N}, and let q̃j ,

j ∈ {2, . . . , N} be such that

qi
j − qi

1 = Mq̃j .

In this case, system (45)–(47) can be rewritten as

q̇b
1 = −Ωb

ibq
b
1 + R′

ibq̇
i
1 − vb

ib (48)
˙̄R = −Ωb

ibR̄ (49)

αjyj = F
(
pcb + Rcbq

b
1 + RcbR̄q̃j

) ∀j ∈ {1, 2, . . . , N} (50)

where R̄ := R′
ibM ∈ R

3×m. Note that when m = rankM <
3, the system (45)–(47) is not observable because its input-
output map is consistent with that of the lower-dimensional
model (48)–(50).

To compute an estimate R̂ib of Rib from the estimate ˆ̄R of
R̄, the following two cases should be considered separately.
For simplicity we assume that M was chosen orthonormal,
i.e., that M ′M = I .

1) rankM = 3, which corresponds to the existence of 4
non-coplanar points. In this case R̂ib can be recovered directly
from ˆ̄R using R̂′

ib = ˆ̄RM−1.
2) rankM = 2, which corresponds to all points being

coplanar but not collinear. Denoting by M⊥ ∈ R
3×(3−m)

a matrix whose columns form an orthonormal basis for the
orthogonal complement of the image of M (i.e., a full rank
matrix such that M⊥′

M⊥ = I and M ′M⊥ = 0), the general
solution to M ′R̂ib = ˆ̄R′, is of the form

R̂ib = M ˆ̄R′ + M⊥µ′

for some vector µ ∈ R
3×(3−m). This vector needs to be

determined from the fact that R̂′
ib is orthonormal. Since

R̂′
ibR̂ib = ( ˆ̄RM ′ + µM⊥′

)(M ˆ̄R′ + M⊥µ′) = ˆ̄R ˆ̄R′ + µµ′

we conclude that µ needs to be chosen to make ˆ̄R ˆ̄R′ +µµ′ as
close to the identity as possible.

A straightforward way to compute the vector µ is to
minimize the Frobenius norm ‖ · ‖F of

‖ ˆ̄R ˆ̄R′ + µµ′ − I‖2
F := Tr( ˆ̄R ˆ̄R′ + µµ′ − I)′( ˆ̄R ˆ̄R′ + µµ′ − I)

= ‖µ‖4 + 2µ′( ˆ̄R ˆ̄R′ − I)µ + Tr( ˆ̄R ˆ̄R′ − I)2.
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Denoting by λ the most negative eigenvalue of ˆ̄R ˆ̄R′−I (which
must be negative since any vector in the kernel of ˆ̄R′ is
an eigenvector corresponding to the eigenvalue −1) and by
v ∈ R

3 the corresponding unit-norm eigenvector, the previous
expression has a minimum at µ′ = αv, which is equal to

α4 + 2α2λ + Tr( ˆ̄R ˆ̄R′ − I)2

where α is a scalar. The minimum is then obtained for α2 =
−λ and therefore µ = ±√−λ v, R̂ib = M ˆ̄R′ ±√−λ M⊥v′.
The sign for the square root can be determined from the
constraint that the determinant of R̂ib be positive. Note that
µ is unique as long as ˆ̄R ˆ̄R′ − I does not have more than one
eigenvector associated with the most negative eigenvalue.

When all points are collinear there is a fundamental loss of
observability that cannot be overcome without extra informa-
tion. Indeed, when there is a direction v ∈ R

3 such that all
line segments between all points are aligned with v, i.e.,

qi
j1 − qi

j2 = βj1j2v ∀j1, j2 ∈ {1, 2, . . . , N}, βj1j2 ∈ R

and the velocity of the points (if any) is also aligned with
v, i.e., q̇i

j = γjv, ∀j ∈ {1, 2, . . . , N},γj ∈ R, the matrix
Rv ∈ SO(3) that corresponds to a fixed rotation around v has
the property that

Rv q̇i
1 = q̇i

1 Rv(qi
j − qi

1) = qi
j − qi

1 ∀j ∈ {1, 2, . . . , N}
In this case, the system (48)–(50) with R̄′

ib := R′
ibRv has

exactly the same input-output map as (45)–(47). This means
that Rib can only be recovered from the perspective outputs
up to a rotation around v.

Remark 5: In [34], we incorporated quadratic state con-
straints in the minimum-energy formulation. When this is
done, there is no need to consider lower dimensional real-
izations for (45)–(47) when the points are coplanar but not
collinear. �

B. Unknown inertial coordinates

Suppose now that the inertial coordinates of the points
Q1, Q2, . . . , QN are not known. In this case, one can still
estimate x by using three of the points to define an inertial
coordinate system. To this effect, let

S := R′
ib

[
qi
2 − qi

1 qi
3 − qi

1 · · · qi
N − qi

1

]
.

We can rewrite (45)–(47) as

q̇b
1 = −Ωb

ibq
b
1 + R′

ibq̇
i
1 − vb

ib (51)

Ṡ = −Ωb
ibS (52)

αjyj = F
(
pcb + Rcbq

b
1 + RcbSq̃j

) ∀j ∈ {1, 2, . . . , N} (53)

where ej denotes the jth column of the (N − 1) × (N − 1)
identity matrix.

To recover an estimate R̂ib of Rib from the estimate Ŝ of S,
we can use the QR decomposition to obtain a rotation matrix
R̂ib and an upper triangular matrix Û such that

Ŝ = R̂′
ibÛ

and then, defining qi
1 := 0 and qi

j , j ∈ {2, 3, . . . , N} equal to
the (j − 1)th column of Û . This corresponds to the following

Fig. 1. Experimental setup: Pionner 2-DXE mobile robot with CCD camera
mounted on top and visual landmark.

convention to construct the inertial coordinate system: the
origin of {i} is the point Q1; its first axis is defined by the
direction from Q1 to Q2; its second axis is orthogonal to the
first one and lies on the plane defines by Q1, Q2, and Q3; and
its third axis is defined by the cross product of the first two.

C. Experimental results

The theoretical results presented in the previous sections
were experimentally validated by applying them to estimate
the position and orientation of a mobile robot using measure-
ments from an on-board CCD camera. This section describes
the experimental setup and presents the results obtained for
three types of experiments: robot stopped, following a circular
path, and parking.

The experiments were carried out on a Pionner 2-DXE
mobile robot from ActivMedia [35]. The vehicle, shown in Fig.
1, has two rear wheels which are powered by two independent
high torque, reversible-DC motors, and one passive rear caster
to balance the robot. The vehicle is equipped with a Sony
EVI D30 pan-tilt-zoom (PTZ) color video camera mounted
on the top of the robot with its optical axis oriented towards
the forward direction (when pan and tilt angles are zero). To
simplify the image processing, in these experiments we used
the corners of a black square as visual landmarks (see Fig. 1).
The location of these points were obtained by detecting the
edges of the square and then computing their intersections.
A pan controller was also implemented to keep as much as
possible the visual landmark in the center of the image.

1) Robot stopped experiment: To validate the minimum-
energy state estimators described in Sections II–III, several
open-loop tests were carried out. A simple test consists of
running an estimator with the vehicle stopped and command-
ing the pan angle of the camera.

Fig. 2 shows the experimental results of this test using
the estimator proposed in Section II. The robot is at position
(x, y) = (−0.8m, 0m) with θ = 0 rad. The pan angle is set
to zero. At t = 20 s a ramp-like signal is applied in pan until
t = 30 s. As shown in the figure, the estimator converges to
the true values and is not affected by the camera’s pan motion.

2) Following a circular path experiment: To illustrate the
estimator proposed in Section III, we present here results for a
test in which the vehicle follows a circular path. Since the pan
angle is limited to [−π

2 , π
2 ], the visual landmarks periodically
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Fig. 2. Robot stopped experiment: Time evolution of pan angle and estimator
outputs p̂ib := (x̂, ŷ, ẑ)′ and θ̂.

leave the camera’s field of view. While this happens, the
estimator does not receive any visual measurements.

Fig. 3(a)–3(c) show the experimental results. We can see
that the output of the estimator converges to the values
correspondent to a circular trajectory. Another interesting
observation is the behavior of the pan controller that is always
trying to compensate the motion of the robot in order to keep
the features in the image 3(b).

Our experimental setup does not provide us with ground
truth information to contrast with the estimates obtained by
the observer. To provide some insight into a typical evolution
of the estimation error we show in Fig. 4 results obtained in
a Matlab simulation with noise levels similar to those in the
experimental setup. It can be seen that the estimated pose tends
to a small neighborhood of the true value. Observe also, as
expected, that the estimation errors only reduce significantly
when the visual landmarks are in the camera’s field of view.

3) Parking experiment: The nonholonomic kinematics
model of the Pionner 2-DXE is given by

ẋ = v cos(θ), ẏ = v sin(θ), θ̇ = ω,

where v and ω denote the linear and angular velocity, respec-
tively. In this section we present experimental results obtained
using the minimum-energy state estimator described in Section
II combined with a pan controller and the point stabilization
controller presented in [36]. The stabilization control law used
is a piecewise time-invariant continuous feedback law and it
is based on a non-smooth state transformation inspired by
the polar description of the kinematics of the robot. This
particular controller was chosen because its control strategy
is intuitive, simple to implement, offers a good performance,
and the resulting paths are fairly natural, i.e., similar to what a
human operator would attempt. However, as reported in [37],
this controller is inherently sensitive to sensor noise and small
perturbations around the origin.

Fig. 5(a)–5(c) show the experimental results for the case
where the vehicle starts stationary at (x, y) = (−0.8m, 0.4m)
and with heading θ = 0. The objective was to park the vehicle
at position (x, y) = (−0.5m, 0m) with heading θ = 0.
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ŷ

[m
]

ẑ
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Fig. 3. Following a circular path experiment: Time evolution of 3(a)
the estimated position (x̂, ŷ, ẑ), and orientation θ̂; 3(b) the minimum and
maximum singular values of P , respectively; the pan angle; and the variable
γ which indicates when the estimator is receiving (γ = 0) or not (γ = 1)
measurements; and 3(c) the position in the image of the corners of the visual
landmark (x – , y - -). When the points are out of the camera’s field of view,
the points’ coordinates are not shown.

Fig. 5(a) displays the resulting vehicle trajectory computed
based on dead-reckoning data measurements. Note that dead-
reckoning only gives the pose of the mobile robot with respect
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Fig. 4. Simulation results for the circular path. Time evolution of the
estimation errors (position and orientation), and the signal γ, which indicates
when the estimator is receiving (γ = 0) or not (γ = 1) measurements.

to the starting initial condition and is therefore not useful to
park at a point specified in a referential frame defined by visual
landmarks. Fig. 5(b) shows the time evolution of estimator
outputs p̂ib and θ̂, and Fig. 5(c) the time evolution of control
signals u1, u2, and upan. In this experiment we imposed that
the point stabilization control algorithm only starts to operate
at time t = 5 s and the pan controller at time t = 1 s. As
expected, the vehicle converges to a very small neighborhood
of the desired pose. From Fig. 5(c) it can be seen that the
pan controller is indeed able to compensate the motion of the
robot in order to keep the features in the center of the image.

V. CONCLUSIONS

We considered the problem of estimating the state of a
system with perspective outputs either available continuously,
or only at discrete time instants with some delay and perhaps
incomplete. We designed estimators that are globally con-
vergent under appropriate observability assumptions and can
therefore, be used to design output-feedback controllers. We
applied these results to estimate the position and orientation
of a mobile robot using measurements from an attached CCD
camera. The estimator proposed requires the robot’s linear and
angular velocities. Adaptive estimation techniques can prob-
ably be used to estimate these parameters when they are not
available. This, the investigation of observability assumptions
less restrictive than (20) or (43), and the design of state-
feedback controllers that satisfy the required observability
assumptions are the subject of our future research. Another
topic for future research is to incorporate algebraic constraints
on the state in the estimation algorithm. Preliminary results re-
garding this issue can be found in [34], where we incorporated
quadratic state constraints in the minimum-energy formulation.
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ẑ
[m

]
θ̂

[r
a
d
]

(b)

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

time [s]

u 1 [
m

/s
]

0 10 20 30 40 50 60
−0.2

−0.1

0

0.1

0.2

time [s]

u 2 [
ra

d/
s]

0 10 20 30 40 50 60
−40

−20

0

20

time [s]

pa
n 

[d
eg

re
e]

(c)

Fig. 5. Parking experiment: 5(a) Resulting trajectory of the mobile robot
in the xy-plane using dead-reckoning data measurements; Time evolution of
5(b) estimator outputs p̂ib and θ̂; and 5(c) control signals u1(t), u2(t), and
upan(t).

APPENDIX

Claim 1: The matrix P (t) governed by (17) is positive
definite for all t ≥ 0.
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Proof: Observe that (17) can also be written as

Ṗ = −P (A + GG′P ) − (A + GG′P )′P + PGG′P + W

and, therefore,

P (t) = Ψ(0, t)′P0Ψ(0, t)

+
∫ t

0

Ψ(τ, t)′
(
PGG′P + W

)
Ψ(τ, t)dτ t ≥ 0 (54)

where Ψ(t, τ) denotes the state transition matrix of ż = (A +
GG′P )z. This can be verified by taking derivatives of the
candidate expression (54) for P :

Ṗ = −(A + GG′P )′Ψ(0, t)′P0Ψ(0, t)
−Ψ(0, t)′P0Ψ(τ, t)(A + GG′P ) + PGG′P + W

− (A + GG′P )′
∫ t

0

Ψ(τ, t)′
(
PGG′P + W

)
Ψ(τ, t)dτ

−
∫ t

0

Ψ(τ, t)′
(
PGG′P + W

)
Ψ(τ, t)dτ(A + GG′P )

= − (A + GG′P )′P − P (A + GG′P ) + PGG′P + W.

Here, we used the fact that, for every fixed τ ,

d
dt

Ψ(τ, t) = −Ψ(t, τ)−1
( d

dt
Ψ(t, τ)

)
Ψ(t, τ)−1

= −Ψ(t, τ)−1(A + GG′P )Ψ(t, τ)Ψ(t, τ)−1

= −Ψ(τ, t)(A + GG′P ).

Now, since Ψ(t, 0)P0Ψ(t, 0)′ > 0 and PGG′P + W ≥ 0,
from (54) we conclude that P (t) remains positive definite for
all t ≥ 0.

Proof: [Theorem 2] From (1) and (9) we conclude that

˙̃x = (A − QW )x̃ − Gd + Q

N∑
j=1

C ′
jY

′
j Yjnj (55)

where each Yj is a matrix for which I − yjy′
j

‖yj‖2 = Y ′
j Yj . Such

matrices always exist because I− yjy′
j

‖yj‖2 ≥ 0. Defining V (x̃) :=
x̃′P x̃, P := Q−1, computing its time-derivative, and using
(17), we get

V̇ = −x̃′(PGG′P + W )x̃ − 2x̃′PGd + 2x̃′
N∑

j=1

C ′
jY

′
j Yjnj

By completing the squares, we further conclude that

V̇ ≤ −1
2
x̃′(PGG′P + W )x̃ + 2‖d‖2 + 2

N∑
j=1

n′
jY

′
j Yjnj

≤ −1
2
x̃′(PGG′P + W )x̃ + 2‖d‖2 + 2

N∑
j=1

‖nj‖2

where we used the fact that the largest eigenvalue of Y ′
j Yj is

always smaller than 1. Since for every finite time, P is positive
definite, V must be finite on any finite interval and, therefore,
so must be x̃ and x̂. Global existence of solution follows. In
case Q in uniformly bounded, P is uniformly positive definite
and so is PGG′P (by Assumption 1). In this case,

V̇ ≤ −1
2
δµV + 2‖d‖2 + 2

N∑
j=1

‖nj‖2

where µ > 0 is some constant that satisfies P (t) ≥ µI, ∀t ≥
0. It is now straightforward to conclude that the ISS-like bound
(19) holds.

Proof: [Lemma 1] To prove this lemma we show that

P (t) ≥ µI > 0 ∀t ≥ 0 (56)

for some positive constant µ. To this effect, we pick an
arbitrary vector x ∈ R

n and compute x′P (t)x using (54):

x′P (t)x = z(0)′P0z(0)

+
∫ t

0

z(τ)′
(
P (τ)GG′P (τ) + W (τ)

)
z(τ)dτ

where z(τ) := Ψ(τ, t)x, τ ≤ t is the solution to

ż(τ) = (A + GG′P )z(τ) z(t) = x 0 ≤ τ ≤ t. (57)

Since P0 > 0, then for t ≥ T , we conclude that

x′P (t)x ≥ α(t)2 + β(t)2 ∀t ≥ T (58)

where α(t) := ‖W (τ)
1
2 z(τ)‖(t−T,t), and β(t) :=

‖G′P (τ)z(τ)‖(t−T,t). Here, given a positive semidefinite ma-
trix M we denote by M

1
2 any matrix such that (M

1
2 )′M

1
2 =

M and given a signal x we denote by ‖x‖(a,b) the L2-
norm of x truncated to the interval (a, b), i.e., ‖x‖(a,b) :=( ∫ b

a
‖x(τ)‖2dτ

) 1
2 . We now proceed to compute a lower-bound

for x′P (t)x by computing a lower-bound for the right-hand-
side of (58). Fix some t ≥ T . Rewriting (57) as ż =
Az + GG′Pz and using the variation of constants formula,
it follows that

z(τ) = Φ(τ, t)x +
∫ τ

t

Φ(τ, s)GG′P (s)z(s)ds 0 ≤ τ ≤ t.

Therefore,

‖W (τ)
1
2 Φ(τ, t)x‖(t−T,t)

≤ α +
∥∥∥∫ τ

t

W (τ)
1
2 Φ(τ, s)GG′P (s)z(s)ds

∥∥∥
(t−T,t)

(59)

Moreover, using the Schwartz inequality [38], we conclude
that∥∥∥∫ τ

t

W (τ)
1
2 Φ(τ, s)GG′P (s)z(s)ds

∥∥∥2

(t−T,t)

=
∫ t

t−T

∥∥∥∫ τ

t

W (τ)
1
2 Φ(τ, s)GG′P (s)z(s)ds

∥∥∥2

dτ

≤
∫ t

t−T

(∫ t

τ

‖W (τ)
1
2 Φ(τ, s)G‖2ds

∫ t

τ

‖G′P (s)z(s)‖2ds
)
dτ

and because ‖W (τ)
1
2 Φ(τ, s)G‖ is uniformly bounded for s ∈

[τ, t], we further conclude that∥∥∥∫ τ

t

W (τ)
1
2 Φ(τ, s)GG′P (s)z(s)ds

∥∥∥2

(t−T,t)

≤ c

∫ t

t−T

∫ t

τ

‖G′P (s)z(s)‖2dsdτ ≤ cTβ(t)2 (60)

for an appropriately defined constant c. From (59) and (60),
it then follows that

‖W (τ)
1
2 Φ(τ, t)x‖(t−T,t) ≤ α(t) +

√
cTβ(t) ∀t ≥ T.
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From this, (58), and assuming without loss of generality that
cT ≥ 1, it is straightforward to conclude that

x′P (t)x ≥ α2 + β2 ≥ (α +
√

cTβ)2

2cT

≥ 1
2cT

∫ t

t−T

x′Φ(τ, t)′W (τ)Φ(τ, t)xdτ

=
1

2cT
x′Φ(t − T, t)′

(∫ T

0

x′Φ(t − T + s, t − T )′×

W (t − T + s)Φ(t − T + s, t − T )ds
)
Φ(t − T, t)x

for t ≥ T . From this and (20), we obtain

x′P (t)x ≥ ε

2c
‖Φ(t − T, t)x‖2 ≥ ε

2c‖Φ(t, t − T )‖2
‖x‖2

∀t ≥ T . This proves that (56) holds with µ equal to the
smallest of ε

2c‖Φ(t,t−T )‖2 and the smallest eigenvalue of P (t)
on the closed interval [0, T ]. The latter is strictly positive since
P (t) is positive definite for any finite time t.

Proof: [Theorem 4] From (1) and (26), we conclude that
for all ti ≤ t < ti+1, the state estimation error evolves
according to

˙̃x = A(u)x̃ − G(u)d.

Defining V := x̃P x̃, and computing its time derivative, it
follows that

V̇ = x̃′(Ṗ + PA + A′P )x̃ − 2x̃PGd

= −x̃′(PGG′P )x̃ − 2x̃′PGd ti ≤ t < ti+1

By completing the squares and using Assumption 1, we obtain

V̇ = −1
2
x̃′(PGG′P )x̃ − 1

2
‖G′P x̃ + 2d‖2 + 2‖d‖2

≤ −γV + 2‖d‖2 ti ≤ t < ti+1

where γ := 1
2δ infτ∈[ti,ti+1) λmin(P (τ)) and λmin(P ) de-

notes the smallest eigenvalue of P . Using the assumption that
P−1 is uniformly bounded we conclude that γ > 0 and

V (t) ≤ V (ti)e−γ(t−ti) +
2
γ

sup
τ∈[ti,t)

‖d(τ)‖2. (61)

Consider now t = ti+1. From (27)–(28), the estimation error
x̃ at time t = ti+1 can be written as

x̃(ti+1) =
[
I − P (ti+1)−1W (ti+1)

]
x̃(t−i+1) + P (ti+1)−1η

(62)
where η :=

∑
j∈Ii+1

C̄ ′
jY

′
j Yjn̄j , and each Yj is a matrix for

which I − yjy
′
j

‖yj‖2 = Y ′
j Yj . Such matrices always exist because

I − yjy
′
j

‖yj‖2 ≥ 0. Thus,

V (ti+1) = x̃(t−i+1)
′
[
P (ti+1) − 2W (ti+1)

+ W (ti+1)P (ti+1)−1W (ti+1)
]
x̃(t−i+1)

+ η′P (ti+1)−1η

+ 2x̃(t−i+1)
′ [I − W (ti+1)P (ti+1)−1

]
η. (63)

Simplifying the notation by dropping the time dependence,
using (27), and resorting to the matrix inversion lemma3, the
first terms in brackets on the right-hand-side of (63) can be
written as

P (ti+1) − 2W + WP (ti+1)−1W

= P − W + W [P + W ]−1W

= P − W
1
2

[
I − W

1
2

[
P + W

1
2 IW

1
2

]−1

W
1
2

]
W

1
2

= P − W
1
2 FW

1
2

where F :=
[
I + W

1
2 P−1W

1
2

]−1

and P = P (t−i+1). In this
setting, given a positive semidefinite matrix M , we denote by
M

1
2 any matrix such that (M

1
2 )′M

1
2 = M . The others terms

in (63) can be written as

P (ti+1)−1 = (P + W )−1

= P−1 − P−1W
1
2 FW

1
2 P−1

I − W (ti+1)P (ti+1)−1 = I − W
1
2 IW

1
2

[
P + W

1
2 IW

1
2

]−1

= I − W
1
2 FW

1
2 P−1.

Thus,

V (ti+1) = x̃′P x̃ − x̃′W
1
2 FW

1
2 x̃

+ η′(P−1 − P−1W
1
2 FW

1
2 P−1)η

+ 2x̃′(I − W
1
2 FW

1
2 P−1)η.

By completing the squares, we further conclude that

V (ti+1) ≤ (1 + ε)V (t−i+1) +
(
1 +

1
ε

)
η′P−1η

where ε is an arbitrary small positive constant. Therefore,
resorting to (61), V (ti+1) satisfies

V (ti+1) ≤ (1 + ε)V (ti)e−γ(ti+1−ti) +
1
ε
ai+1 + bi+1

where ai+1 := λmax(P−1)‖η‖2, and bi+1 := (1 +
ε) 2

γ supτ∈[ti,ti+1) ‖d(τ)‖2 + ai+1. Furthermore, solving this
inequality recursively, we get

V (tk) ≤ (1 + ε)ke−γ(tk−t0)V (t0)

+
k−1∑
j=0

(1 + ε)je−γ(tk−tk−j)
(1

ε
ak−j + bk−j

)
.

Applying Assumption 2, we first notice that

tk − tk−j ≥ [j − N0]τD, j = 0, 1, . . . , k − 1.

Consequently,

V (tk) ≤ [(1 + ε)e−γτD
]k

eγN0τDV (t0)

+
k−1∑
j=0

[
(1 + ε)e−γτD

]j (1
ε
ak−j + bk−j

)
eγN0τD (64)

3Let A, C, and A−1 + B′C−1B be non-singular matrices, then (A−1 +
B′C−1B)−1 = A − AB′(BAB′ + C)−1BA. Another useful matrix
identity is the following (A−1 + B′C−1B)−1B′C−1 = AB′(BAB′ +
C)−1.
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From this inequality, we further conclude that by picking ε > 0
such that

r := (1 + ε)e−γ maxj τD < 1

it follows that V is bounded and V (tk) → 1
1−r ( 1

ε maxj aj +
maxj bj)eγ maxj{N0τD} as k → ∞. Since for every finite time,
P is positive definite, V must be finite on any finite interval
and therefore so must be x̃ and x̂. Global existence of solution
follows. It is also straightforward to conclude from (64) that
the ISS-like bound (42) holds.

Proof: [Lemma 2] From (25), and (27), we conclude that
P (t) can be written as

P (t) = Ψ(0, t)′P0Ψ(0, t)

+
∫ t

0

Ψ(τ, t)′P (τ)GG′P (τ)Ψ(τ, t) dτ

+
k∑

i=1

Ψ(ti, t)′W (ti)Ψ(ti, t) (65)

where for any τ ∈ [ti, ti+1) and σ ∈ [tj , tj+1)

Ψ(τ, σ) :=
{

Ψi(τ,σ), i=j
Ψi(τ,ti+1)Ψi+1(ti+1,ti+2)···Ψj(tj ,σ), i<j

and Ψi(t, τ) denotes the state transition matrix of ż = (A +
GG′P )z for ti ≤ τ ≤ t < ti+1. We now show that

P (t) ≥ µI > 0 ∀t ≥ 0 (66)

for some positive constant µ. Let x ∈ R
n be an arbitrary

vector. Using (65) it follows that

x′P (t)x ≥
∫ t

0

z(τ)′P (τ)GG′P (τ)z(τ) dτ

+
k∑

i=1

z(ti)′W (ti)z(ti)

where z(τ) := Ψ(τ, t)x, and satisfies

d

dτ
z(τ, t) = (A + GG′P )z(τ) 0 ≤ τ ≤ t. (67)

Since P0 > 0, then for t ≥ tk−N, we conclude that

x′P (t)x ≥ α(t)2 + β(t)2 (68)

where α(t) :=
(∑k

i=k−N ‖W (ti)
1
2 z(ti)‖2

) 1
2

, β(t) :=(∫ t

t−tk−N
‖G′P (τ)z(τ)‖2 dτ

) 1
2

. We now proceed to compute

a lower-bound for x′P (t)x by computing a lower-bound for
the right-hand-side of (68). Fix some t ≥ tk−N. Applying the
variation of constants formula to (67), we get

z(τ) = Φ(τ, t)x +
∫ τ

t

Φ(τ, σ)GG′P (σ)z(σ) dσ 0 ≤ τ ≤ t.

Therefore,(
k∑

i=k−N

‖W (ti)
1
2 Φ(ti, t)x‖2

) 1
2

≤ α

+

(
k∑

i=k−N

‖W (ti)
1
2

∫ ti

t

Φ(ti, σ)GG′P (σ)z(σ) dσ‖2

) 1
2

(69)

Moreover, using the Schwartz inequality, we conclude that

k∑
i=k−N

‖W (ti)
1
2

∫ ti

t

Φ(ti, σ)GG′P (σ)z(σ) dσ‖2 ≤

k∑
i=k−N

∫ t

ti

‖W (ti)
1
2 Φ(ti, σ)G‖2 dσ

∫ t

ti

‖G′P (σ)z(σ)‖2 dσ

and because ‖W (ti)
1
2 Φ(ti, σ)G‖ is uniformly bounded for

σ ∈ [ti, t], we further conclude that the right-hand-side term
is bounded by

k∑
i=k−N

c

∫ t

ti

‖G′P (σ)z(σ)‖2 dσ ≤ cNβ(t)2 (70)

for an appropriately defined constant c. From (69) and (70),
it then follows that(

k∑
i=k−N

‖W (ti)
1
2 Φ(ti, t)x‖2

) 1
2

≤ α(t) +
√

cNβ(t)

∀t ≥ tk−N. From this, (68), and assuming without of gener-
ality that cN ≥ 1, it is straightforward to conclude that

x′P (t)x ≥ α2 + β2 ≥ (α +
√

cNβ)2

2cN

≥ 1
2cN

k∑
i=k−N

‖W (ti)
1
2 Φ(ti, t)x‖2.

Performing the change of coordinates j = i − k + N , yields

x′P (t)x

≥ 1
2cN

N∑
j=0

x′Φ(tj+k−N, t)′W (tj+k−N)Φ(tj+k−N, t)x

=
1

2cN
x′Φ(tk−N, t)×⎛

⎝ N∑
j=0

Φ(tj+k−N, tk−N)′W (tj+k−N)Φ(tj+k−N, tk−N)

⎞
⎠×

Φ(tk−N, t)x.

From this and (43), we finally obtain

x′P (t)x ≥ ε

2c
‖Φ(tk−N, t)x‖2 ≥ ε

2c‖Φ(t, tk−N)‖2
‖x‖2

∀t ≥ tk−N. This proves that (66) holds with µ equal to the
smallest of ε

2c‖Φ(t,tk−N)‖2 and the smallest eigenvalue of P (t)
on the closed interval [0, tk−N]. The latter is strictly positive
since P (t) is positive definite for any finite time t.
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