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Abstract This paper considers the state estimation problem of a class of systems
described by implicit outputs and whose state lives in the special Euclidean group
SE(3). This type of systems are motivated by applications in dynamic vision such
as the estimation of the motion of a camera from a sequence of images. We propose
an observer in the group of motion SE(3) and discuss conditions under which the
linearized state estimation error converges exponentially fast. We also analyze the
problem when the system is subject to disturbances and noises. We show that the
estimate converges to a neighborhood of the real solution. The size of the neighbor-
hood increases/decreases gracefully with the bound of the disturbance and noise.

1 Introduction

During the last few decades there has been an extensive study on the design of
observers for nonlinear systems. In simple terms, an observer or estimator can be
defined as a process that provides in real time the estimate of the state (or some

Sérgio S. Rodrigues
Post-Doctorate, University of Cergy-Pontoise, Department of Mathematics, UMR CNRS 8088, F-
95000 Cergy-Pontoise, FRANCE. e-mail: sergio.rodrigues@u-cergy.fr

Naveena Crasta
Post-Doctorate, Institute for Systems and Robotics, Instituto Superior Técnico, Technical Univer-
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function of it) of the plant from partial and possibly noisy measurements of the
inputs and outputs, and inexact knowledge of the initial condition.

For linear systems evolving on n-dimensional vector spaces, state observer and
filter designs employ the traditional Kalman filter [15] and Luenberger type ob-
server [20]. In fact, it is well-known that the Kalman filter [15] is the optimal state
estimation algorithm in a well defined sense [6].

For nonlinear systems, the extended Kalman filter is a widely used method for
estimating the state. It is obtained by linearizing the nonlinear dynamics and the
observation along the trajectory of the estimate. However, if there are substantial
nonlinearities or the state lives in some special manifold, there are no guarantees
that the state estimate will evolve in the same manifold and even that the estimate
will converge to a neighborhood of the true one.

These problems are particularly relevant because they arise in many modern day
applications such as the motion control of unmanned aerial vehicles, underwater
vehicles, and autonomous robots (See e.g. [12], [5], [25], [3]). Other engineering
applications that were studied in [9] are exothermic chemical reactor, a nonholo-
nomic car, and a velocity-aided inertial navigation [7]. Typically, these applications
require the design of robust nonlinear observers for systems evolving on Lie groups.

Motivated by the above considerations in [10], [11], [18], [17], [19], [16] a ge-
ometrical framework for the design of symmetric preserving observers on finite-
dimensional Lie groups is described. In [8], it is shown that when the output map as-
sociated with a left-invariant dynamics on an arbitrary Lie group is right-left equiv-
ariant, then it is possible to build non-linear observers such that the error equation
is autonomous.

In this paper, we consider left-invariant dynamical systems with implicit outputs,
for which the results mentioned above do not apply. Systems of this kind typically
arise in mobile robotic applications using dynamic vision such as the estimation of
a motion of a camera from a sequence of images. In particular, in [2] and [4], the
problem of estimating the position and orientation of a controlled rigid body using
measurements from a monocular charged-coupled-device (CCD) camera attached
to the vehicle is addressed. The reader is referred to [13], [14], [26] for several other
examples of implicit output systems in the context of motion and shape estimation.

We propose an observer in the group of motion SE(3) and discuss conditions
under which the linearized state estimation error converges exponentially fast. We
also analyze the problem when the system is subject to disturbances and noises. We
show that the estimate converges to a neighborhood of the real solution. The size of
the neighborhood increases/decreases gracefully with the bound of the disturbance
and noise.

The outline of the paper is as follows. Section 2 introduces the mathematical
preliminaries and Section 3 formulates the state estimation problem. In Section 4
we propose a left-invariant dynamic observer for estimating the state of systems on
SE(3) with implicit outputs, and determine under what conditions the state estimate
converges exponentially to the true state. In Section 5 we analyze the robustness of
the proposed observer in the presence of disturbance and noise. Concluding remarks
are given in Section 6.
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2 Mathematical Preliminaries

In this section we introduce notations and definitions used through out this paper.
We denote the Euclidean norm in Rn by ‖ · ‖, and the identity matrix of size n by
In. Given A ∈Rn×n, we let det(A) and Tr(A) denote the determinant and the trace of
the matrix A, respectively. We consider the scalar product of A,B ∈ Rn×n as being
defined by 〈A,B〉 def= Tr(ATB). The corresponding norm ‖A‖ =

√
〈A,A〉 is the so-

called Frobenius norm. Further, if the entries of A ∈ Rn×n depend on t, and A(t) is
invertible for all t, from the identity A−1(t)A(t) = In, one may deduce

d
dt

(A−1(t))A(t)+A−1(t)
d
dt

(A(t)) = 0. (1)

The cross product of vectors u,v ∈ R3 is denoted by u× v. For every u ∈ R3,

(u×) =

 0 −u3 u2
u3 0 −u1
−u2 u1 0


denotes the matrix representation of the linear map v 7→ u×v, v∈R3. It can be easily
shown that, for every u,v ∈ R3, Tr((u×)T(v×)) = 2uTv. Given a vector u ∈ R3, we

denote by ū ∈ R4 its homogeneous coordinates, that is, ū =
[

u
1

]
[21].

The special orthogonal group in three-dimensions is denoted by SO(3) def= {R ∈
R3×3 : RTR = I3 and det(R) = +1} and its Lie algebra, that is, the space of all skew-

symmetric matrices by so(3) def= {(u×) ∈ R3×3 : u ∈ R3}.
The special Euclidean group is denoted by SE(3) def={[
gR gT
0 1

]
∈ R4×4 : gR ∈ SO(3) and gT ∈ R3

}
and its Lie algebra is defined

by se(3) def=
{[

(ω×) v
0 0

]
∈ R4×4 : ω, v ∈ R3

}
.

For every g =
[

gR gT
0 1

]
∈ SE(3), we have g−1 =

[
g−1

R −g−1
R gT

0 1

]
. Since g−1g =

I4, we have ġ def=
dg
dt

= g
(
− d

dt
g−1
)

g. Thus, we can rewrite ġ = gΩ where

Ω
def= −

(
d
dt

g−1
)

g ∈ se(3). We notice that in order to verify that Ω ∈ se(3) it is

sufficient to show the following:

i) −
(

d
dt

g−1
)

g = g−1ġ =
[

g−1
R −g−1

R gT
0 1

][
ġR ġT
0 0

]
=
[

g−1
R ġR −g−1

R ġT
0 0

]
,

ii) (g−1
R ġR)T = (ġR)TgR =

(
d
dt

gT
R

)
gR =

(
d
dt

g−1
R

)
gR =−g−1

R ġR.

We next present a result that will be useful later in the paper.
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Lemma 1. Consider ξ =
[

ξR ξT
0 0

]
∈ se(3), where ξR = (ξ×) and ξ ,ξT ∈ R3. Then

‖ξ‖2 = 2‖ξ‖2 +‖ξT‖2.

Proof. A simple computation yields ξ Tξ =
[

ξ T
R ξR ξ T

R ξT
ξ T

T ξR ξ T
T ξT

]
. Then by the definition

‖ξ‖2 = Tr
(
ξ Tξ

)
= Tr(ξ T

R ξR) + ‖ξT‖2. Now the result follows from Tr(ξ T
R ξR) =

Tr((ξ×)T(ξ×)) = 2‖ξ‖2. ut

The Lie bracket of two matrices A,B ∈ Rn×n is denoted by [A,B] or, equivalently,
adAB, and is defined as the commutator [A,B] = AB−BA. Given A,B ∈ Rn×n, we
denote ad1

AB = adAB and adk+1
A B = adAadk

AB for every k ∈ N.

3 Problem statement

Consider a left-invariant dynamical system evolving on SE(3), described by

ġ(t) = g(t)Ω(t), g(0) = g0, (2)

where Ω takes values in se(3) and is assumed to be known for all t ≥ 0.
Consider a set of given points p1, . . . , pN ∈ R3, and let y j = [y j1 y j2 1]T ∈ R3,

j ∈J be the outputs of the dynamical system (2) given implicitly by

α j(t)y j(t) = F(t)Π0g(t)p̄ j, (3)

where J ⊆ {1,2, . . . ,N} is an index set that may depend on time, p̄ j ∈ R4 is the
homogeneous representation of p j, the α j’s are unknown scalar continuous function
of time satisfying α j(t) > 0 for every t ≥ 0, F ∈ R3×3 is a known nonsingular
matrix, and Π0 =

[
I3 0
]
∈ R3×4 is often referred to as the standard (or canonical)

projection matrix [21]. We assume that the right-hand-side of (3) and Π0g(t)p̄ j are
both bounded below and above, that is, for all t ≥ 0,

m≤ ‖FΠ0gp̄ j‖,‖Π0gp̄ j‖ ≤M with 0 < m≤M. (4)

The problem addressed in this paper can be stated as follows.

Consider the continuous-time left-invariant dynamical system described by
(2)-(3). Let ĝ ∈ SE(3) be the estimate of the state g with a given initial esti-
mate ĝ(0) = ĝ0. Design a state observer for (2)-(3) that accepts as inputs the
measured input Ω(τ) and the output of the process y j(τ) for every τ ∈ [0, t),
j ∈J , and returns ĝ(t) at time t, for every t ≥ 0. The observer should satisfy
some desired performance and robustness properties that will be mentioned
later in the paper.
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Remark 1. System (2)–(3) arises for example when one needs to estimate the
position and orientation of a robotic vehicle using measurements from an on-
board monocular charged-coupled-device (CCD) camera. In that case, adopt-
ing the frontal pinhole camera model [21], the scalar α j captures the unknown
depth of a point p j, and F is a matrix transformation that depends on the pa-
rameters of the camera such as the focal length, the scaling factors, and the
center offsets. The assumption in (4) is very reasonable and only means that
the image points are well defined in the sense that they live in some compact
set. Notice that if for some point that assumption does not hold, then this only
implies to take it out from the index set J .

4 Observer design and convergence analysis

Consider the continuous-time left-invariant dynamical system (2)-(3). We propose
the nonlinear observer

˙̂g(t) = ĝ(t)Ω(t)+ζ Θ(ĝ(t),y(t)) ĝ(t), ĝ(0) = ĝ0, (5)

where ĝ ∈ SE(3) is the estimate of the state g, and Θ(ĝ,y) ∈ se(3) is given by

Θ(ĝ,y) def=
[
ΘR(ĝ,y) ΘT (ĝ,y)

0 0

]
, (6)

with

ΘR(ĝ,y) = ∑
j∈J

1
D(ĝp̄ j)

((((ỹ j×Π0ĝp̄ j)×Π0ĝ p̄ j)×Π0ĝp̄ j)×), (7)

ΘT (ĝ,y) = ∑
j∈J

1
D(ĝp̄ j)

((−2ỹ j×Π0ĝp̄ j)×Π0ĝp̄ j), (8)

ỹ j = F−1 y j

‖y j‖
, (9)

where
D(ĝp̄ j)

def= (#J )‖Π0ĝp̄ j‖2(1+‖Π0ĝp̄ j‖), (10)

#J being the number of elements of J , and ζ > 0 is a tuning constant. Since
α j > 0, the expressions (3) and (9) imply that

ỹ j =
Π0gp̄ j

‖FΠ0gp̄ j‖
. (11)
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Remark 2. Notice that by defining Θ̂
def= ĝ−1Θ ĝ, system (5) can be rewritten

as
˙̂g = ĝ(Ω +ζΘ̂),

and, by a direct computation we can show that Θ̂ ∈ se(3). Thus, like the
dynamics of g in (2), also the dynamics of ĝ is left-invariant. Moreover, if
ĝ(0) = g(0), then Θ̂ = 0 for every t ≥ 0, which means that the observer dy-
namics in that case is exactly the same as the original system.

Using the Lagrange identity for the cross product of vectors together with (11),
the expression in (7) and (8) can be simplified respectively as

ΘR(ĝ,y) = ∑
j∈J

1
D(ĝp̄ j)

‖Π0ĝ p̄ j‖2

‖FΠ0gp̄ j‖
((Π0ĝ p̄ j×Π0gp̄ j)×), (12)

ΘT (ĝ,y) = ∑
j∈J

1
D(ĝp̄ j)

−2
‖FΠ0gp̄ j‖

((Π0gp̄ j×Π0ĝ p̄ j)×Π0ĝ p̄ j). (13)

Remark 3. Note that from (4), a lower bound for D(ĝp̄ j)‖FΠ0gp̄ j‖ is given
by m2(m+1)m, which implies that the observer is well defined.

4.1 The error dynamics

As in [10], we define the error η(t) def= ĝ(t)g−1(t). Therefore, using (1), we may
write

η̇ = ˙̂gg−1 + ĝġ−1 = ζ Θ(ĝ,y)η , η(0) = ĝ0g−1
0 , (14)

where, taking into account that g = η−1ĝ, Θ(ĝ,y) can be rewritten as

Θ(ĝ,y) = Θ(η) =
[
ΘR(η) ΘT (η)

0 0

]
,

with

ΘR(η) = ∑
j∈J

1
D(ĝp̄ j)

‖Π0ĝ p̄ j‖2

‖FΠ0gp̄ j‖
((Π0ĝ p̄ j×Π0η

−1ĝ p̄ j)×), (15)

ΘT (η) = ∑
j∈J

1
D(ĝp̄ j)

−2
‖FΠ0gp̄ j‖

((Π0η
−1ĝp̄ j×Π0ĝ p̄ j)×Π0ĝp̄ j). (16)
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Since a Lie group is a complex geometric object, it is a standard procedure to
estimate results on a matrix Lie group G from results in the vector space which is
its Lie algebra, here denoted by L . We will adopt this procedure to analyze the
error η and, later, prove convergence results. The Lie algebra L is the best linear
approximation of G in the neighborhood of the identity I, and the exponential map
exp, which sends elements in L to elements in G plays a crucial role in transferring
data and results from one structure to the other. The exponential mapping is known
to be bijective from a small neighborhood of 0 ∈L to a small neighborhood of the
identity in G, and its inverse is denoted by log.

If η is sufficiently close to the identity, there is a representation η = exp(εξ ),
where ε > 0 and ξ ∈ se(3) satisfies ‖ξ‖ = 1. Since, exp(εξ ) = I + εξ + O(ε2),
where O(ε2) represents the terms containing εk, for k ≥ 2, for small ε , I + εξ is a
good approximation for η . In the rest of the paper, and for the sake of simplicity,
we may use the alternative notation eA instead of exp(A). We henceforth make the
following assumption.

Assumption 4.1 We assume that the error η is close enough to I4, that is,
η ∈Nε

def= {v = exp(εξ ) : ξ ∈ se(3) and ‖ξ‖= 1}, where 0≤ ε < 1.

Remark 4. We may, without loss of generality assume that η is close to the
identity. This is due to the fact that xL ∼ L , for x ∈ G, is the best linear
approximation of G in the neighborhood of x. So, if η is in the neighborhood
of x ∈ G, then ηx−1 is close to the identity.

Using Lemma 1.7.3 of [22], which can be deduced from Lemma 3.4 in [24], we
have

d
dt

(εξ ) =
u

eu−1

∣∣∣∣
u = adεξ

(η̇η
−1),

where
u

eu−1
=

+∞

∑
m=0

(−1)m

m+1
(eu−1)m. Using (14), we have η̇η−1 = ζΘ(ĝ,y) and

hence
d
dt

(εξ ) =
u

eu−1

∣∣∣∣
u = adεξ

(ζΘ)

or, equivalently,

d
dt

(εξ ) =ζΘ − 1
2

adεξ ζΘ − 1
2

∞

∑
k=2

1
k!

adk
εξ

ζΘ

+
+∞

∑
m=2

(−1)m

m+1
(eu−1)m

∣∣∣∣∣
u = adεξ

(ζΘ). (17)
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On the other hand

exp(εξ ) = I4 + εξ +O(ε2), exp(−εξ ) = I4− εξ +O(ε2)

and, using the fact that Θ(g,y) = Θ(I4) = 0 and noticing that Θ is defined in the
linear space of 4×4 real matrices, containing both SE(3) and se(3), we have

ΘR(η) = ∑
j∈J
− 1

D(ĝp̄ j)
‖Π0ĝ p̄ j‖2((Π0ĝp̄ j×Π0εξ ĝ p̄ j)×)

‖FΠ0gp̄ j‖
+O(ε2), (18)

ΘT (η) = ∑
j∈J

1
D(ĝp̄ j)

2((Π0εξ ĝ p̄ j×Π0ĝp̄ j)×Π0ĝ p̄ j)
‖FΠ0gp̄ j‖

+O(ε2). (19)

From (15) - (17) with Θ(I4) = 0, we conclude that

d
dt

(εξ ) = ζΘ̄(εξ ) = ζ

[
Θ̄R(εξ ) Θ̄T (εξ )

0 0

]
+O(ε2),

where

Θ̄R(εξ ) = ∑
j∈J

1
D(ĝp̄ j)

‖Π0ĝp̄ j‖2

‖FΠ0gp̄ j‖
((Π0εξ ĝ p̄ j×Π0ĝp̄ j)×), (20)

Θ̄T (εξ ) = ∑
j∈J

1
D(ĝp̄ j)

−2
‖FΠ0gp̄ j‖

((Π0ĝ p̄ j×Π0εξ ĝp̄ j)×Π0ĝ p̄ j). (21)

Up to an approximation of the order ε2, we obtain that εξ satisfies

d
dt

(εξ ) = ζ

[
Θ̄R(εξ ) Θ̄T (εξ )

0 0

]
.

We have the following result.

Proposition 1. Up to an approximation of the order ε2, the following result holds.

d
dt
‖εξ‖2 =−4ζ ∑

j∈J

1
D(ĝ p̄ j)

1
‖FΠ0gp̄ j‖

‖Π0εξ ĝp̄ j×Π0ĝp̄ j‖2. (22)

Proof. From the fact that

d
dt
‖εξ‖2 =

〈
d
dt

(εξ ),(εξ )
〉

+
〈

(εξ ),
d
dt

(εξ )
〉

= 2
〈

d
dt

(εξ ),(εξ )
〉

,

and 〈
d
dt

(εξ ),(εξ )
〉

= ζ Tr
((

Θ̄(εξ )
)T(εξ )

)
,
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it follows that
d
dt
‖εξ‖2 = 2ζ Tr

((
Θ̄(εξ )

)T(εξ )
)

. Using the fact that

Tr
(
(u1×)T(u2×)

)
= 2uT

1 u2 for every u1,u2 ∈ R3, up to an approximation of
order ε3, we have

Tr
((

Θ̄(εξ )
)T(εξ )

)
= 2 ∑

j∈J

1
D(ĝp̄ j)

1
‖FΠ0gp̄ j‖

{
‖Π0ĝp̄ j‖2(Π0εξ ĝp̄ j×Π0ĝ p̄ j)T

εξ̄

−((Π0ĝp̄ j×Π0εξ ĝp̄ j)×Π0ĝp̄ j)T
εξT

}
.

(23)

From the relation (a× b)Tc = det[a b c], where [a b c] stays for the matrix whose
first, second, and third columns are respectively the vectors a,b,c ∈ R3 and using
the skew-symmetry of the determinant function det[· · ·], we obtain

‖Π0ĝ p̄ j‖2(Π0εξ ĝp̄ j×Π0ĝ p̄ j)T
εξ̄

=−(((Π0εξ ĝ p̄ j×Π0ĝ p̄ j)×Π0gp̄ j)×Π0gp̄ j)T
εξ̄

=−((Π0εξ ĝp̄ j×Π0ĝp̄ j)×Π0gp̄ j)T(Π0gp̄ j× εξ̄ )

=−(Π0εξ ĝ p̄ j×Π0ĝp̄ j)T(Π0gp̄ j× (Π0gp̄ j× εξ̄ ))

=−(Π0εξ ĝ p̄ j×Π0ĝ p̄ j)T((εξ̄ ×Π0gp̄ j)×Π0gp̄ j)

and

−((Π0ĝp̄ j×Π0εξ ĝp̄ j)×Π0ĝp̄ j)T
εξT = −(Π0ĝp̄ j×Π0εξ ĝp̄ j)T(Π0ĝ p̄ j× εξT )

= −(Π0εξ ĝp̄ j×Π0ĝp̄ j)T(εξT ×Π0ĝp̄ j).

Therefore, ‖Π0ĝ p̄ j‖2(Π0εξ ĝp̄ j × Π0ĝp̄ j)Tεξ̄ − ((Π0ĝ p̄ j × Π0εξ ĝ p̄ j) ×
Π0ĝ p̄ j)TεξT = −(Π0εξ ĝp̄ j × Π0ĝ p̄ j)T((εξ̄ × Π0gp̄ j) × Π0gp̄ j) −
(Π0εξ ĝp̄ j × Π0ĝp̄ j)T(εξT × Π0ĝp̄ j). Note that the right-hand-side is
−(Π0εξ ĝ p̄ j×Π0ĝ p̄ j)T

(
(εξ̄ ×Π0gp̄ j + εξT )×Π0ĝp̄ j

)
=−‖Π0εξ ĝ p̄ j×Π0ĝp̄ j‖2

by noting that, εξ̄ ×Π0ĝp̄ j + εξT = Π0εξ ĝp̄ j.
Hence (23) reduces to

Tr
((

Θ̄(εξ )
)T(εξ )

)
= −2 ∑

j∈J

1
D(ĝp̄ j)

1
‖FΠ0gp̄ j‖

‖Π0εξ ĝp̄ j×Π0ĝ p̄ j‖2,

and, consequently

d
dt
‖εξ‖2 =−4ζ ∑

j∈J

1
D(ĝ p̄ j)

1
‖FΠ0gp̄ j‖

‖Π0εξ ĝp̄ j×Π0ĝp̄ j‖2.

ut
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4.2 Exponential convergence

In this section we show under suitable assumptions that the estimation error con-
verges exponentially to zero as t→∞. Let M denote the upper bound for ‖FΠ0gp̄ j‖
for all j.

We will recall Gronwall’s Lemma [27, Ch. III, 1.1.3] that is required to prove our
next result.

Lemma 2 (Gronwall inequality). Let g, h, y,
dy
dt

be locally integrable functions
satisfying

dy
dt
≤ gy+h for t ≥ t0. (24)

Then, for all t ≥ t0,

y(t)≤ y(t0)exp
(∫ t

t0
g(τ)dτ

)
+
∫ t

t0
h(s)exp

(
−
∫ s

t
g(τ)dτ

)
ds.

Our next result is as follows.

Theorem 1. Let T̄ ∈ [0, +∞] and λ > 0 be such that

∑
j∈J

‖Π0εξ ĝp̄ j×Π0ĝ p̄ j‖2

(#J )‖Π0ĝp̄ j‖2(1+‖Π0ĝp̄ j‖)
≥ λ‖εξ‖2

on the time interval [0, T̄ [ . Then, for every t ∈ [0, T̄ [,

‖εξ (t)‖2 ≤ ‖εξ (0)‖2e−4ζ λM−1t ,

where M is an upper bound for ‖FΠ0gp̄ j‖ for all j. In particular, if T̄ = +∞, then
‖εξ (t)‖2 converges exponentially fast to zero as t→ ∞.

Proof. Under the hypothesis, (22) implies that

d
dt
‖εξ‖2 ≤−4ζ λM−1‖εξ‖2, (25)

for all t ∈ [0, T̄ ]. The result follows from Gronwall’s inequality (Lem. 2). ut

Note that the rate of convergence can be improved by tuning ζ > 0, that is, the rate
of convergence increases with ζ . Next we prove the following result.

Theorem 2. Let T̄ ∈ [0, +∞]. Suppose there exists T > 0 such that, for every t ≥
0, with t +T ≤ T̄ ,

1
T

∫ t+T

t
∑

j∈J

‖Π0εξ ĝ p̄ j×Π0ĝp̄ j‖2

(#J )‖Π0ĝ p̄ j‖2(1+‖Π0ĝ p̄ j‖)
1

‖εξ‖2 dτ ≥ λ .

Then, for n ∈ N with t ≥ 0, t +nT ≤ T̄ ,
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‖εξ (t +nT )‖2 ≤ ‖εξ (t)‖2e−4ζ λM−1nT .

In particular, if T̄ = +∞, then ‖εξ (t)‖2 exponentially fast to zero as t→ ∞.

Proof. Multiplying both the sides of (22) by (T‖εξ‖2)−1, we have

1
T

1
‖εξ‖2

d
dt
‖εξ‖2 =

1
T

1
‖εξ‖2 ∑

j∈J

−4ζ

D(ĝ p̄ j)
1

‖FΠ0gp̄ j‖
‖Π0εξ ĝ p̄ j×Π0ĝp̄ j‖2,

or,
1
T

d
dt

log(‖εξ‖2)≤ 1
T

1
‖εξ‖2 ∑

j∈J

−4ζ M−1

D(ĝ p̄ j)
‖Π0εξ ĝ p̄ j×Π0ĝ p̄ j‖2.

Since the statement is trivial for n = 0, we consider the case n ≥ 1. Integrating on
the interval [t +(n−1)T, t +nT ], we obtain

∫ t+nT

t+(n−1)T

1
T

d
dt

log(‖εξ‖2)dτ

≤
∫ t+nT

t+(n−1)T

1
T

1
‖εξ‖2 ∑

j∈J

−4ζ M−1

D(ĝ p̄ j)
‖Π0εξ ĝ p̄ j×Π0ĝp̄ j‖2dτ.

Note that∫ t+nT

t+(n−1)T

d
dt

log(‖εξ (τ)‖2)dτ = log(‖εξ (t +nT )‖2)− log(‖εξ (t +(n−1)T )‖2),

and the properties of logarithm imply that∫ t+nT

t+(n−1)T

d
dt

log(‖εξ (τ)‖2)dτ = log
(

‖εξ (t +nT )‖2

‖εξ (t +(n−1)T )‖2

)
.

Hence using the assumption, we have
1
T

log
(

‖εξ (t +nT )‖2

‖εξ (t +(n−1)T )‖2

)
≤−4ζ M−1

λ

or, equivalently,
‖εξ (t +nT )‖2

‖εξ (t +(n−1)T )‖2 ≤ e−4ζ M−1λT ,

from which we derive
‖εξ (t +nT )‖2

‖εξ (t)‖2 ≤ e−4ζ M−1λnT .

Finally, if T̄ = +∞, we have ‖εξ (t)‖2 ≤ max
s∈[0,T ]

‖εξ (s)‖2 e−4ζ M−1λ [t/T ], where

[t/T ] denotes the largest natural number contained in the quotient t/T , that is,
[t/T ]≤ t/T < [t/T ]+1. [t/T ]≥ 0 is a non-negative integer number. ut
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Remark 5. Theorem 1 may be seen as the “limit” of Theorem 2 when T goes
to 0.

5 Robustness analysis of the observer

In this section we investigate the effect of disturbance and noise on the estimation
error. We now consider the process model (2)-(3) subjected to disturbances and
noise as follows:

ġ(t) = g(t)(Ω(t)+w(t)) , g(0) = g0, (26)
y j(t) = ỹ j(t)+ v j(t), (27)

where w ∈ se(3) is the disturbance, ỹ j = [ỹ j1 ỹ j2 1]T ∈R3 is the real output defined
implicitly by α j ỹ j = FHgp̄ j with 0 < κ ≤α j, y j = [y j1 y j2 1]T ∈R3 is the measured
output with noise v j = [v j1 v j2 0]T ∈ R3. Further, the disturbance and noise signals
are assumed to be deterministic but unknown. Note that (27) is equivalent to y j =

α
−1
j (FΠ0gp̄ j +α jv j). Define Mp

def= sup
t∈[0, t1]
j∈J

‖FΠ0gp̄ j +α jv j‖.

Let |F−1| denotes a bound for the functional norm of F−1(t) defined by

|F−1(t)| def= sup{F−1(t)u : u ∈ R3and ‖u‖ = 1}, that is, we assume F−1(t) is
bounded in the time interval [0, t1] we are considering the estimator in. Define

Mv
def= sup

t∈[0, t1]
j∈J

‖v j(t)‖ and Mw
def= sup

t∈[0, t1]
‖w(t)‖, that is, Mv and Mw respectively de-

note the upper bounds for the noise ‖v j‖ and disturbance ‖w‖, we suppose to exist,
in the same time interval [0, t1].

We consider the same observer claimed in (5), which can be rewritten as

˙̂g(t) = ĝ(t)Ω(t)+ζΘ (ĝ(t),y(t)) ĝ(t), ĝ(0) = ĝ0, (28)

where Θ(ĝ,y) is given by

Θ(ĝ,y) = Θ̄(ĝ,y)+Θ̃(ĝ,y),

with

Θ̄(ĝ,y) =
[
Θ̄R(ĝ,y) Θ̄T (ĝ,y)

0 0

]
and Θ̃(ĝ,y) =

[
Θ̃R(ĝ,y) Θ̃T (ĝ,y)

0 0

]
,

where
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Θ̄R(ĝ,y) = ∑
j∈J

1
D(ĝ p̄ j)

‖Π0ĝp̄ j‖2((Π0ĝ p̄ j×Π0gp̄ j)×)
‖FΠ0gp̄ j +α jv j‖

,

Θ̄T (ĝ,y) = ∑
j∈J

−2
D(ĝ p̄ j)

((Π0gp̄ j×Π0ĝp̄ j)×Π0ĝ p̄ j)
‖FΠ0gp̄ j +α jv j‖

,

Θ̃R(ĝ,y) = ∑
j∈J

1
D(ĝ p̄ j)

‖Π0ĝp̄ j‖2((Π0ĝ p̄ j×F−1α jv j)×)
‖FΠ0gp̄ j +α jv j‖

,

Θ̃T (ĝ,y) = ∑
j∈J

−2
D(ĝ p̄ j)

((F−1α jv j×Π0ĝ p̄ j)×Π0ĝp̄ j)
‖FΠ0gp̄ j +α jv j‖

.

Note that both Θ̄ and Θ̃ depend on noise v j. Again, we define the error η(t) def=
ĝ(t)g−1(t). Therefore, using (1) yields

η̇ = ˙̂gg−1 + ĝġ−1 = ζΘ(η)η− ĝwĝ−1
η , η(0) = ĝ0g−1

0 , (29)

where, by using g = η−1ĝ we can rewrite Θ(η) as

Θ(η) = Θ̄(η)+Θ̃ =
[
Θ̄R(η) Θ̄T (η)

0 0

]
+
[
Θ̃R Θ̃T
0 0

]
,

with

Θ̄R(η) = ∑
j∈J

1
D(ĝ p̄ j)

‖Π0ĝ p̄ j‖2((Π0ĝp̄ j×Π0η−1ĝp̄ j)×)
‖FΠ0gp̄ j +α jv j‖

, (30)

Θ̄T (η) = ∑
j∈J

−2
D(ĝ p̄ j)

((Π0η−1ĝ p̄ j×Π0ĝp̄ j)×Π0ĝ p̄ j)
‖FΠ0gp̄ j +α jv j‖

, (31)

Θ̃R = ∑
j∈J

1
D(ĝ p̄ j)

‖Π0ĝ p̄ j‖2((Π0ĝp̄ j×F−1α jv j)×)
‖FΠ0gp̄ j +α jv j‖

, (32)

Θ̃T = ∑
j∈J

−2
D(ĝ p̄ j)

((F−1α jv j×Π0ĝp̄ j)×Π0ĝ p̄ j)
‖FΠ0gp̄ j +α jv j‖

. (33)

Remark 6. Note that ‖FΠ0gp̄ j + α jv j‖ is equal to α j‖α−1
j FΠ0gp̄ j + v j‖ =

α j‖y j‖ ≥ α j ≥ κ and from (4), it follows that m2(m + 1)κ is a lower bound
for D(ĝ p̄ j)‖FΠ0gp̄ j +α jv j‖. From this we conclude that the observer is well
defined.

Note that η = exp(εξ ) = I4 +εξ +O(ε2). Using Lemma 1.7.3 of [22], we obtain

d
dt

(εξ ) =η̇η
−1− 1

2
[εξ , η̇η

−1]+O(ε2).
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From (29), we have η̇η−1 = ζ (Θ̄(η)+Θ̃)− ĝwĝ−1 and hence the above equation
becomes

d
dt

(εξ ) =ζΘ̄(εξ )+ζΘ̃ − ĝwĝ−1− 1
2
[εξ , ζΘ̃ − ĝwĝ−1]+O(ε2).

Up to an approximation of the order ε2, we have that εξ satisfies

d
dt

(εξ ) = ζΘ̄(εξ )+ζΘ̃ − ĝwĝ−1− 1
2
[εξ , ζΘ̃ − ĝwĝ−1], (34)

and, multiplying by εξ yields,

d
dt
‖εξ‖2 =2〈ζΘ̄(εξ ), εξ 〉+2〈ζΘ̃ , εξ 〉−2〈ĝwĝ−1, εξ 〉

−〈[εξ , ζΘ̃ − ĝwĝ−1], εξ 〉. (35)

To estimate a bound for the variation
d
dt
‖εξ‖2, we may start by estimate a bound

for the individual terms on the right-hand-side of (35), which are given by the fol-
lowing result.

Proposition 2. The following statements hold.

i) 〈Θ̄(εξ ),εξ 〉=− ∑
j∈J

2
D(ĝ p̄ j)

‖Π0εξ ĝp̄ j×Π0ĝ p̄ j‖2

‖FΠ0gp̄ j +α jv j‖
.

ii)
〈
Θ̃ ,εξ

〉
≤ ∑

j∈J

2|F−1|Mv

(#J )
‖εξ‖.

iii) 〈ĝwĝ−1, εξ 〉 ≤ ‖w‖‖εξ‖.

iv) 〈[εξ , ζΘ̃ − ĝwĝ−1], εξ 〉 ≤

(
2ζ ∑

j∈J

|F−1|Mv

(#J )(1+‖Π0ĝ p̄ j‖)
+Mw

)
‖εξ‖2.

Proof. In the following
[

ξR ξT
0 0

]
def= ξ with (ξ̄×) def= ξR.

i) The result follows from the noise free case, proceeding as in the proof of Propo-
sition 1.

ii) First, note that

(Θ̃)T
εξ =

[
Θ̃R Θ̃T
0 0

]T [
εξR εξT

0 0

]
=

[(
Θ̃R
)T

εξR
(
Θ̃R
)T

εξT(
Θ̃T
)T

εξR
(
Θ̃T
)T

εξT

]
.

Then
〈
Θ̃ ,εξ

〉
= Tr

(
Θ̃ Tεξ

)
= Tr

((
Θ̃R
)T

εξR

)
+
(
Θ̃T
)T

εξT . Now, we have

Tr
((

Θ̃R
)T

εξR

)
= ∑

j∈J

2
D(ĝ p̄ j)

‖Π0ĝ p̄ j‖2(Π0ĝ p̄ j×F−1α jv j)Tεξ

‖FΠ0gp̄ j +α jv j‖
, and
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(Θ̃T )T
εξT = ∑

j∈J

−2α j

D(ĝp̄ j)
((F−1v j×Π0ĝp̄ j)×Π0ĝ p̄ j)TεξT

‖FΠ0gp̄ j +α jv j‖
.

Proceeding as in the proof of Proposition 1, we can arrive to

〈
Θ̃ ,εξ

〉
= ∑

j∈J

2α j

D(ĝp̄ j)
(F−1v j×Π0ĝ p̄ j)T(Π0εξ ĝp̄ j×Π0ĝ p̄ j)

‖FΠ0gp̄ j +α jv j‖
,

〈
Θ̃ ,εξ

〉
≤ ∑

j∈J

2α j

D(ĝp̄ j)
‖F−1v j×Π0ĝ p̄ j‖‖Π0εξ ĝ p̄ j×Π0ĝ p̄ j‖

‖FΠ0gp̄ j +α jv j‖
.

Since ‖u1×u2‖ ≤ ‖u1‖‖u2‖ for every u1,u2 ∈ R3, we have

〈
Θ̃ ,εξ

〉
≤ ∑

j∈J

2
(#J )(1+‖Π0ĝ p̄ j‖)

(
α j

‖FΠ0gp̄ j +α jv j‖

)
‖F−1v j‖‖Π0εξ ĝ p̄ j‖.

Further, note that ‖y j‖−1 =
α j

‖FΠ0gp̄ j +α jv j‖
≤ 1 and ‖F−1v j‖ ≤ |F−1|Mv. Hence

〈
Θ̃ ,εξ

〉
≤ ∑

j∈J

2|F−1|Mv

(#J )(1+‖Π0ĝp̄ j‖)
‖Π0εξ ĝp̄ j‖.

Recall that Π0εξ ĝp̄ j = εξ̄ ×Π0ĝ p̄ j + εξT and by triangle inequality it follows that
‖Π0εξ ĝp̄ j‖ ≤ ‖εξ̄ ×Π0ĝp̄ j‖+ ‖εξT‖. In other words, ‖Π0εξ ĝ p̄ j‖ ≤ ‖εξ‖(1 +
‖Π0ĝp̄ j‖) by noting that ‖εξ̄ × Π0ĝ p̄ j‖ ≤ ‖εξ̄‖‖Π0ĝ p̄ j‖, ‖εξ̄‖ ≤ ‖εξ‖, and
‖εξT‖ ≤ ‖εξ‖. Hence

〈
Θ̃ ,εξ

〉
≤ ∑

j∈J

2|F−1|Mv

(#J )
‖εξ‖.

iii) First note that, 〈ĝwĝ−1, εξ 〉 ≤ ‖ĝwĝ−1‖‖εξ‖. By the definition, we
have ‖ĝwĝ−1‖ =

√
Tr(ĝwTĝ−1ĝwĝ−1). Since ĝ−1ĝ = I4, we have ‖ĝwĝ−1‖ =√

Tr(ĝwTwĝ−1). Recall that, the trace of a matrix is invariant under similarity trans-
formation, that is, Tr(BAB−1) = Tr(A) for every A ∈ Rn×n [23, Ch. V, 7]. Thus, we
conclude that ‖ĝ−1wĝ‖=

√
Tr(wTw) = ‖w‖. Hence 〈ĝwĝ−1, εξ 〉 ≤ ‖w‖‖εξ‖.

iv) For simplicity, we define Z def=
[

ZR ZT
0 0

]
def= ζΘ̃ − ĝwĝ−1. We find

〈[εξ , Z], εξ 〉= Tr(εξ T(Zεξ −εξ Z)). Note that, for every A, B, C ∈ se(3), we have

ATBC =
[

AT
R 0

AT
T 0

][
BRCR BRCT

0 0

]
=
[

AT
RBRCR AT

RBRCT
AT

T BRCR AT
T BRCT

]
and Tr(ATBC) = −Tr(ARBRCR) + AT

T BRCT . Hence 〈[εξ , Z], εξ 〉 =(
−Tr(εξRZRεξR)+(εξT )TZRεξT

)
−
(
−Tr(εξRεξRZR)+(εξT )TεξRZT

)
. It is

easy to check that (εξRZRεξR)T = −(εξRZRεξR), and hence εξRZRεξR is skew-
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symmetric, which implies that its trace is zero. On the other hand, the term
(εξT )TZRεξT = (εξT )T(z̄× εξT ) vanishes as well, where (z̄×) def= ZR. The term
Tr(εξRεξRZR) vanishes because for positive semi-definite matrices A and B, we
have 0≤ Tr(AB)≤ Tr(A)Tr(B) [1, pg. 329], so that

0≤ Tr(−εξRεξRZR)≤ Tr(−εξRεξR)Tr(ZR) = 0.

Notice that, for a given vector u ∈ R3, uT(−εξR)εξRu = (εξRu)T(εξRu) =
‖εξRu‖2 ≥ 0 and uTZRu = 0. Therefore 〈[εξ , Z], εξ 〉=−(εξT )TεξRZT = ZT

T (εξ ×
εξT ).
Note the following facts:

a) ‖y j‖−1 =
α j

‖FΠ0gp̄ j +α jv j‖
≤ 1.

b) Using (33) together with a), we have

ζΘ̃
T
T (εξ × εξT )≤ 2ζ ∑

j∈J

∣∣∣∣∣ ((F−1v j×Π0ĝp̄ j)×Π0ĝ p̄ j)T(εξ × εξT )
D(ĝ p̄ j)

∣∣∣∣∣ .
From |((F−1v j ×Π0ĝ p̄ j)×Π0ĝp̄ j)T(εξ × εξT )| ≤ |F−1|Mv ‖Π0ĝp̄ j‖2 ‖εξ ×
εξT‖ we obtain

ζΘ̃
T
T (εξ × εξT )≤ 2ζ ∑

j∈J

|F−1|Mv ‖εξ‖2

(#J )(1+‖Π0ĝp̄ j‖)
.

c) It can be easily shown that (ĝwĝ−1)T
T (εξ × εξT ) ≤ ‖w‖‖εξ‖2 or, equivalently,

(ĝwĝ−1)T
T (εξ × εξT )≤Mw‖εξ‖2.

Using b) and c) above, we conclude that

〈[εξ , ζΘ̃ − ĝwĝ−1], εξ 〉 ≤

(
2ζ ∑

j∈J

|F−1|Mv

(#J )(1+‖Π0ĝp̄ j‖)
+Mw

)
‖εξ‖2.

ut

The following result follows immediately from Proposition 2.

Proposition 3. The following statement holds.

d
dt
‖εξ‖2 ≤− ∑

j∈J

4ζ

D(ĝp̄ j)
‖Π0εξ ĝp̄ j×Π0ĝp̄ j‖2

‖FΠ0gp̄ j +α jv j‖
+Mw(2+‖εξ‖)‖εξ‖

+2ζ ∑
j∈J

|F−1|Mv‖
(#J )

(
2+

‖εξ‖
1+‖Π0ĝp̄ j‖

)
‖εξ‖.

Proof. The result follows by using the bounds given by Proposition 2 in the expres-
sion (35). ut
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The following result follows immediately, by recalling that ε < 1 from Assumption
4.1.

Proposition 4. We have the estimate

d
dt
‖εξ‖2 ≤− ∑

j∈J

4ζ

D(ĝp̄ j)
‖Π0εξ ĝ p̄ j×Π0ĝp̄ j‖2

‖FΠ0gp̄ j +α jv j‖
+6ζ |F−1|Mv +3Mw. (36)

By (4), ‖FΠ0gp̄ j‖ is bounded above by M and, by the definition α j ≤‖FΠ0gp̄ j‖.
Then each ‖FΠ0gp̄ j +α jv j‖ is bounded above by Mp = M(1+Mv).

Next, we derive the noisy version of Theorem 1.

Theorem 3. Let T̄ ∈ [0, +∞] and λ > 0 be such that

i) ‖εξ (0)‖< 1,

ii) ∑
j∈J

‖Π0εξ ĝ p̄ j×Π0ĝ p̄ j‖2

(#J )‖Π0ĝp̄ j‖2(1+‖Π0ĝp̄ j‖)
≥ λ‖εξ‖2, and

iii)
6ζ |F−1|Mv +3Mw

4ζ λM−1
p

< 1.

are satisfied on the time interval [0, T̄ ). Then, for every t ∈ [0, T̄ [,

‖εξ (t)‖2 ≤ ‖εξ (0)‖2e−4ζ λM−1
p t +

6ζ |F−1|Mv +3Mw

4ζ λM−1
p

(
1− e−4ζ λM−1

p t
)

.

In particular, if T̄ = +∞, then for every constant ρ > 0 there exists tρ ≥ 0 such that

‖εξ (t)‖2 <
6ζ |F−1|Mv +3Mw

4ζ λM−1
p

+ρ

for all t ≥ tρ .

Proof. Define Mv,w
def= 6ζ |F−1|Mv + 3Mw and λ̃

def= 4ζ λM−1
p . Since ‖εξ (0)‖ < 1

there exists small enough t0 ∈ (0, T̄ ] such that ‖εξ (t)‖ < 1 for all t ∈ [0, t0). From
Proposition 4, we obtain

d
dt
‖εξ‖2 ≤−λ̃‖εξ‖2 +Mv,w,

for all t ∈ [0, t0]. From Gronwall’s inequality (24) we have

‖εξ (t)‖2 ≤‖εξ (0)‖2e−λ̃ t +
∫ t

0
Mv,w exp

(
−
∫ s

t
−λ̃ dτ

)
ds. (37)

Note that exp
(
−
∫ s

t
−λ̃ dτ

)
= eλ̃ (s−t). Hence
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‖εξ (t)‖2 ≤‖εξ (0)‖2e−λ̃ t +
∫ t

0
Mv,weλ̃ (s−t) ds

≤‖εξ (0)‖2e−λ̃ t +Mv,wλ̃
−1(1− e−λ̃ t) (38)

for all t ∈ [0, t0).Therefore we see that ‖εξ‖ is non-increasing in [0, t0) if we have
that

‖εξ (0)‖2e−λ̃ t +Mv,wλ̃
−1(1− e−λ̃ t)≤ ‖εξ (0)‖2,

that is, if ‖εξ (0)‖2 ≥Mv,wλ̃−1. Since at time t0, we have ‖εξ (t0)‖2 < 1 we may re-
peat the argument for a suitable interval [t0, t0 + t1] for some t1 > 0 with t0 + t1 ≤ T̄ .
Therefore, if ‖εξ (t0)‖2 ≥ Mv,wλ̃−1, then ‖εξ (t)‖2 decreases in [t0, t0 + t1]. Re-
peating again successively the argument, we see that the sequence of instants of

time sm
def=

m

∑
i=0

ti must “reach” the instant T̄ , otherwise by the definition we must

have ‖εξ (s)‖ = 1 at s = lim
m→+∞

sm ≤ T̄ that is impossible because ‖εξ (sm)‖2 ≤

‖εξ (0)‖2 < 1 for all m ∈ N. So, in particular ‖εξ‖2 ≤ ‖εξ (0)‖2 < 1 in [0, T̄ [.
Coming back to the beginning of this proof we may then suppose that t0 = T̄ and so,
estimate (37) holds for all t ∈ [0, T̄ [. In the case T̄ = +∞, from (37), we conclude that
for any given constant ρ > 0, we may find tρ ≥ 0 such that ‖εξ (t)‖2 < Mv,wλ̃−1 +ρ

for all t ≥ tρ . ut

We also have the noisy version of Theorem 2.

Theorem 4. Let T̄ ∈]0, +∞]. Suppose there exist positive constants T, λ such that,

i) ‖εξ (0)‖2 ≤ (6ζ |F−1|Mv +3Mw)T

1− e−4ζ λM−1
p T

,

ii)
1
T

∫ T

t
∑

j∈J

‖Π0εξ ĝp̄ j×Π0ĝ p̄ j‖2

(#J )‖Π0ĝp̄ j‖2(1+‖Π0ĝp̄ j‖)
dτ ≥ λ for every 0 ≤ t, t + T < T̄ ,

and

iii)
(6ζ |F−1|Mv +3Mw)T (2− e−4ζ λM−1

p T )

1− e−4ζ λM−1
p T

< 1,

are satisfied. Then for all s ∈ [0, T̄ ),

‖εξ (s)‖2 ≤ (6ζ |F−1|Mv +3Mw)T (2− e−4ζ λM−1
p T )

1− e−4ζ λM−1
p T

.

Proof. Define Mv,w
def= 6ζ |F−1|Mv + 3Mw and λ̃

def= 4ζ λM−1
p . Suppose that

‖εξ (t)‖2−Mp(t− s) > 0 for all t ∈ [s, s+T ]. From estimate (36), we may derive

1
T

1
‖εξ (t)‖2−Mv,w(t− s)

d
dt

(
‖εξ (t)‖2−Mv,w(t− s)

)
≤− 1

T ∑
j∈J

4
D(ĝ p̄ j)

‖Π0εξ ĝp̄ j×Π0ĝp̄ j‖2

‖FΠ0gp̄ j + v j‖(‖εξ (t)‖2−Mp(t− s))
.
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Integrating on [s, s+T ], we arrive to

log
(
‖εξ (s+T )‖2−Mv,wT )

‖εξ (s)‖2

)
≤−λ̃T,

that is, ‖εξ (s+T )‖2 ≤ e−λ̃T‖εξ (s)‖2 +Mv,wT, and so ‖εξ (s+T )‖2 ≤ ‖εξ (s)‖2 if

‖εξ (s)‖2 ≥
Mv,wT

e−λ̃T
. (39)

On the other hand notice that from estimate (36), we have
d
dt
‖εξ‖2 ≤Mv,w. Since

‖εξ (0)‖2 ≤
Mv,wT

1− e−λ̃T
, we have that

‖εξ (t)‖2 ≤
Mv,wT

1− e−λ̃T
+Mv,wt =

Mv,wT +(1− e−λ̃T )Mv,wt

1− e−λ̃T
(40)

for all t ∈ [0, T ]. Now we notice that to have, for some time τ ≥ T ,

‖εξ (τ)‖2 =
Mv,wT (2− e−λ̃T )

1− e−λ̃T
(41)

at some time τ > 0 we need to have ‖εξ (t)‖2 ≥
Mv,wT

1− e−λ̃T
in the interval [τ−T, τ],

because if for some t ∈ [τ−T, τ] we have ‖εξ (t)‖2 <
Mv,wT

1− e−λ̃T
then necessarily

‖εξ (τ)‖2 <
Mv,wT

1− e−λ̃T
+Mv,w(τ− t)

≤
Mv,wT

1− e−λ̃T
=

Mv,wT (2− e−λ̃T )

1− e−λ̃T

which contradicts (41). On the other side, if ‖εξ (t)‖2 ≥
Mv,wT

1− e−λ̃T
in the interval

[τ − T, τ], then since
Mv,wT

1− e−λ̃T
≥Mv,wT and, using estimate (39), we have that

‖εξ (τ)‖2 ≥ ‖εξ (τ−T )‖2 so, for every τ > T , ‖εξ (τ)‖2 =
Mv,wT (2− e−λ̃T )

1− e−λ̃T
only

if

‖εξ (τ−T )‖2 =
Mv,wT (2− e−λ̃T )

1− e−λ̃T
. (42)

Now from estimate (40) we have
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‖εξ (t)‖2 ≤
Mv,wT +(1− e−λ̃T )Mv,wt

1− e−λ̃T

<
Mv,wT (2− e−λ̃T )

1− e−λ̃T

for all t ∈ [0, T [. Therefore, from (42), we have ‖εξ (t)‖2 <
Mv,wT (2− e−λ̃T )

1− e−λ̃T
for

all t > 0. ut

Remark 7. Theorem 3 may be “almost” seen as the limit of Theorem 4 as T
goes to 0. We say almost because we need to impose that the square of the

norm of the initial error is smaller than
Mv,wT

1− e−λ̃T
<

Mv,wT (2− e−λ̃T )

1− e−λ̃T
, that is,

‖εξ (0)‖2 ≤
Mv,wT

1− e−λ̃T
< 1, while in Theorem 3 it was enough to impose that

‖εξ (0)‖2 < 1. Notice that
Mv,wT (2− e−λ̃T )

1− e−λ̃T
goes to

Mv,w

λ̃
as T goes to 0.

6 Conclusions

This paper provides a nonlinear observer design structure for a left-invariant dy-
namical system evolving on the three-dimensional special Euclidean group with
measurements given by implicit functions. The observer is simple in construction.
Under suitable assumptions, we show that the linearized state estimation error con-
verges exponentially fast to the true state. Furthermore, we show that if the dy-
namical system is subject to disturbance and noise, the estimator converges to an
open neighborhood of the true value of the state. The size of the neighborhood in-
creases/decreases gracefully with the bound of the disturbance and noise.
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