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Trajectory-Tracking and Path-Following of
Underactuated Autonomous Vehicles with
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Abstract—We address the problem of position trajectory-
tracking and path-following control design for underactuated
autonomous vehicles in the presence of possibly large modeling
parametric uncertainty. For a general class of vehicles moving
in either two or three-dimensional space, we demonstrate how
adaptive switching supervisory control can be combined with
a nonlinear Lyapunov-based tracking control law to solve the
problem of global boundedness and convergence of the position
tracking error to a neighborhood of the origin that can be
made arbitrarily small. The desired trajectory does not need
to be of a particular type (e.g., trimming trajectories) and can
be any sufficiently smooth bounded curve parameterized by
time. We also show how these results can be applied to solve
the path-following problem, in which the vehicle is required
to converge to and follow a path, without a specific temporal
specification. We illustrate our design procedures through two
vehicle control applications: a hovercraft (moving on a planar
surface) and an underwater vehicle (moving in three-dimensional
space). Simulations results are presented and discussed.

Index Terms—Supervisory adaptive control, path-following,
trajectory-tracking, underactuated autonomous vehicles.

I. INTRODUCTION

THE past few decades have witnessed an increased re-
search effort in the area of motion control of autonomous

vehicles. A typical motion control problem is trajectory-
tracking, which is concerned with the design of control laws
that force a vehicle to reach and follow a time parameterized
reference (i.e., a geometric path with an associated timing
law). The degree of difficulty involved in solving this problem
is highly dependent on the configuration of the vehicle. For
fully actuated systems, the trajectory-tracking problem is now
reasonably well understood.
For underactuated vehicles, i.e., systems with fewer ac-

tuators than degrees-of-freedom1, trajectory-tracking is still
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1The following definition of underactuated mechanical systems is adapted
from [1], [2]. Consider the affine mechanical system described by

q̈ = f(q, q̇) +G(q)u, (1)

an active research topic. The study of these systems is mo-
tivated by the fact that it is usually costly and often not
practical to fully actuate autonomous vehicles due to weight,
reliability, complexity, and efficiency considerations. Typical
examples of underactuated systems include wheeled robots,
hovercraft, spacecraft, aircraft, helicopters, missiles, surface
vessels, and underwater vehicles. The tracking problem for
underactuated vehicles is especially challenging because most
of these systems are not fully feedback linearizable and exhibit
nonholonomic constraints. The reader is refereed to [3] for a
survey of these concepts and to [4] for a framework to study
the controllability and the design of motion algorithms for
underactuated Lagrangian systems on Lie groups.
The classical approach for trajectory-tracking of underactu-

ated vehicles utilizes local linearization and decoupling of the
multi-variable model to steer the same number of degrees of
freedom as the number of available control inputs, which can
be done using standard linear (or nonlinear) control methods.
Alternative approaches include the linearization of the vehicle
error dynamics around trajectories that lead to a time-invariant
linear system (also known as trimming trajectories) combined
with gain scheduling and/or Linear Parameter Varying (LPV)
design methodologies [5]–[7]. The basic limitation of these ap-
proaches is that stability is only guaranteed in a neighborhood
of the selected operating points. Moreover, performance can
suffer significantly when the vehicle executes maneuvers that
emphasize its nonlinearity and cross-couplings. A different
approach is to use output feedback linearization methods, [8]–
[10]. The major challenge in this approach is that a straight-
forward application of this methodology, which in general
involves dynamic inversion, is not always possible because
certain involutivity conditions must hold [11]. In addition, even
when dynamic inversion is possible, the resulting controller
may not render the zero-dynamics stable.
Nonlinear Lyapunov-based designs can overcome some of

the limitations mentioned above. Several examples of non-
linear trajectory-tracking controllers for marine underactuated
vehicles have been reported in the literature [12]–[19]. Typ-
ically, tracking problems for autonomous vehicles are solved
by designing control laws that make the vehicles track pre-

where q is a vector of independent generalized coordinates, f a vector field
that captures the dynamics of the system, G the input matrix, and u the
vector of generalized inputs. The system (1) is underactuated if the rank of
G is smaller than the dimension of q, i.e., the generalized inputs are not able
to instantaneously set the accelerations in all directions of the configuration
space.
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specified feasible “state-space” trajectories, i.e., trajectories
that specify the time evolution of the position, orientation,
as well as the linear and angular velocities, all consistent with
the vehicles’ dynamics, [8], [13], [15]–[20], even through in
practical applications one often only needs to track a desired
position. This approach suffers from the drawback that usually
the vehicles’ dynamics exhibit complex nonlinear terms and
significant uncertainty, which makes the task of computing a
feasible trajectory difficult.
It is relevant to point out that most of the results mentioned

above only solve the problem in the horizontal plane. Only
a few authors have tackled this control problems in three
dimensional space. The reason might be that the vehicle’s
dynamics become more complex and the number of degree
of freedom that are not directly actuated typically increases,
making the control design more involved. For example, for an
underactuated underwater vehicle, the dynamics include sway
and heave velocities that generate nonzero angles of sideslip
and attack.
Motivated by the above considerations, we propose a so-

lution to the trajectory-tracking problem for underactuated
vehicles in both two and three-dimensional spaces. In this
paper we are especially interested in situations for which there
is parametric uncertainty in the model of the vehicle. Typical
parameters for which this uncertainty is high, include mass and
added mass for underwater vehicles which may be subject to
large variations according to the payload configuration, and
friction coefficients that are usually strongly dependent on
the environmental conditions. The main contribution of the
paper is the design of an adaptive supervisory control algo-
rithm that combines logic-based switching [21] with iterative
Lyapunov-based techniques such as integrator backstepping
[22]. The classical approach to adaptive control relies solely
on continuous tuning [22]–[24]. This approach has some
inherent limitations that can be overcome by hybrid adaptive
algorithms based on switching and logic [25]. The basic idea
behind supervisory control [21], [26]–[30] is to design a
suitable family of candidate controllers. Each controller is
designed for an admissible nominal model of the process,
and a supervision logic orchestrates the switching among the
candidate controllers, deciding, at each instant of time, the
candidate feedback controller that is more adequate. In order
to guarantee stability and avoid chattering, a form of hysteresis
is employed. We prove that the adaptive controller solves
the problem of global boundedness and convergence of the
position tracking error to a neighborhood of the origin that
can be made arbitrarily small in the presence of possible large
parametric uncertainty. The adaptive supervisory controller
does not require persistence of excitation which sets it apart
from most parameter estimation algorithms. In the control
design, we take into account that the vehicle may have non-
negligible dynamics and may undergo complex motions and
exhibit large angles of attack and sideslip, which prevents
us from using simple extensions of common control designs
for wheeled robots where the total velocity vector is aligned
with the vehicles main axis. Also, the desired trajectory
does not need to be a trimming trajectory and can be any
sufficiently smooth time-varying bounded curve, including the

degenerate case of a constant trajectory (set-point). The class
of vehicles for which the design procedure is applicable is
quite general and includes any vehicle modeled as a rigid-
body subject to a controlled force and either one controlled
torque if it is only moving on a planar surface or two or
three independent control torques for a vehicle moving in
three dimensional space. Furthermore, contrary to most of the
approaches described above, the controller proposed does not
suffer from geometric singularities due to the parameterization
of the vehicle’s rotation matrix. This is possible because the
attitude control problem is formulated directly in the group of
rotations SO(3). The literature on designing tracking control
laws for underactuated vehicles directly in the configuration
manifold (avoiding in this way geometric singularities) is
relatively scarce. Noteworthy examples include [20], [31].
Another contribution of this paper is the application of these

results to solve the path-following motion control problem.
In path-following, the vehicle is required to converge to and
follow a path that is specified without a temporal law [32]–
[36]. Pioneering work in this area for wheeled mobile robots
is described in [32]. In [34], Samson addressed the path-
following problem for a car pulling several trailers. More
recently, Altafini [36] describes a path-following controller
for a n trailer vehicle that provides local asymptotic stability
for a path of nonconstant curvature. Path-following controllers
for aircraft and marine vehicles have been reported in [6],
[9], [37]–[39]. Using the approach suggested by Hauser and
Hindman [37], an output maneuvering controller was proposed
in [39] for a class of strict feedback nonlinear processes
and applied to path-following of fully actuated ships. The
underlying assumption in path-following is that the vehicle’s
forward speed tracks a desired speed profile, while the con-
troller acts on the vehicle’s orientation to drive it to the
path. Typically, in path-following, smoother convergence to
the path is achieved and the control signals are less likely
pushed into saturation, when compared to trajectory-tracking.
In fact, in [40], [41], we highlight a fundamental difference
between path-following and standard trajectory-tracking by
demonstrating that performance limitations due to unstable
zero-dynamics can be removed in the path-following problem.
Inspired by these ideas, we solve the path-following problem
by decomposing it into two subproblems: i) a geometric task,
which consists of converging the vehicle to and remaining
inside a tube centered around the desired path, and ii) a
dynamic assignment task, which assigns a speed profile to the
path.
In Section II we describe the dynamic model for the

class of underactuated autonomous vehicles considered in the
paper and formulate the trajectory-tracking and path-following
control problems. As a preliminary material for the subsequent
sections, Section III presents a nonlinear control law to solve
the tracking problem and discusses the stability of the resulting
closed-loop. At this point it is assumed that there is no
parametric uncertainty. Sections IV and V present the main
results of the paper. In Section IV, a solution to the trajectory-
tracking is proposed using an estimator-based supervisory
controller, and in Section V an extension is made to solve
the path-following problem. In Section VI, we illustrate our
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design methodologies in the context of two vehicle control
applications: a hovercraft (moving on a planar surface) and an
underwater vehicle (moving in three-dimensional space). The
designs are validated through computer simulations. The paper
concludes with a summary of the results and suggestions for
further research.
A subset of the results reported here were presented in [42]–

[44].
Notation: Throughout this paper, given a matrix A, A′

denotes its transpose, λmin(A), λmax(A) are the minimum
and maximum eigenvalues of A, respectively. Given two
vectors v1 ∈ R

n1 , v2 ∈ R
n2 , we denote by col(v1, v2) the

vector (v′1, v
′
2)

′ ∈ R
n1+n2 . The Euclidean norm is denoted by

‖ · ‖ and the spectral norm by ‖ · ‖2. A piecewise continuous
function g : [0, T ) → R

n, T ∈ (0,∞] is in Li, i being a
positive integer, if

∫ T

0
‖g(τ)‖i dτ < c for some constant c.

II. PROBLEM STATEMENT

Consider an underactuated vehicle modeled as a rigid body
subject to external forces and torques. Let {I} be an inertial
coordinate frame and {B} a body-fixed coordinate frame
whose origin is located at the center of mass of the vehicle.
The configuration (R, p) of the vehicle is an element of
the Special Euclidean group SE(3) := SO(3) × R

3, where
R ∈ SO(3) := {R ∈ R

3×3 : RR′ = I3,det(R) = +1} is
a rotation matrix that describes the orientation of the vehicle
by mapping body coordinates into inertial coordinates, and
p ∈ R

3 is the position of the origin of {B} in {I}. Denoting
by v ∈ R

3 and ω ∈ R
3 the linear and angular velocities of

the vehicle relative to {I} expressed in {B}, respectively, the
following kinematic relations apply:

ṗ = Rv (2a)

Ṙ = RS(ω) (2b)

where S(·) is a function from R
3 to the space of skew-

symmetric matrices S := {M ∈ R
3×3 : M = −M ′} defined

by

S(x) :=
[ 0 −x3 x2

x3 0 −x1−x2 x1 0

]
, ∀x := (x1, x2, x3)′ ∈ R

3.

We consider here underactuated vehicles with dynamic equa-
tions of motion of the following form:

Mv̇ = −S(ω)Mv + fv(v, p,R) + gvuv (3a)

Jω̇ = −S(v)Mv − S(ω)Jω + fω(v, ω, p,R) + Gωuω (3b)

where M ∈ R
3×3 and J ∈ R

3×3 denote constant symmetric
positive definite mass and inertia matrices; uv ∈ R and
uω ∈ R

3 denote the control inputs, which act upon the
system through a constant nonzero vector gv ∈ R

3 and a
constant nonsingular matrix2 Gω ∈ R

3×3, respectively; the
terms −S(ω)Mv in (3a) and −S(v)Mv−S(ω)Jω in (3b) are
the rigid-body Coriolis terms, and the C1 functions fv(·), fω(·)
represent all the remaining forces and torques acting on the
body. For the special case of an underwater vehicle, M and J
also include the so-called hydrodynamic added-mass MA and

2See Remark 4 for the special case of Gω ∈ R
3×2.

added-inertia JA matrices, respectively, i.e.,M = MRB+MA,
J = JRB +JA, where MRB and JRB are the rigid-body mass
and inertia matrices, respectively.
For an underactuated vehicle restricted to moving on a

planar surface, the same equations of motion (2)–(3) apply
without the first two right-hand-side terms in (3b). Also, in
this case, (R, p) ∈ SE(2), v ∈ R

2, ω ∈ R, gv ∈ R
2, Gω ∈ R,

uω ∈ R, with all the other terms in (3) having appropriate
dimensions, and the skew-symmetric matrix S(ω) is given
by S(ω) =

(
0 −ω
ω 0

)
. For simplicity, in what follows, we

restrict our attention to the three-dimensional case. However,
all results are directly applicable to the two-dimensional case,
as will be illustrated in Section VI-A for the control of a
Hovercraft.

Remark 1: The vehicle dynamic model (3) does not allow
fv to depend on ω. This was done in part to simplify the
analysis and also because in many vehicles this dependance
is not present as is the case of the Hovercraft and the AUV
described in Section VI. The methodology presented here still
applies for the more general case if the dependence on ω is in
the form fv(·) = fv1(v, p,R) + fv2(v, p,R)ω, provided that
fv2 is bounded or that a suitable rank condition holds. For
details see Property 1 in the Appendix and [42], [44]. �
The problems considered in this paper can be stated as

follows:
Trajectory-tracking problem: Let pd(t) : [0,∞) → R

3

be a given sufficiently smooth time-varying desired trajectory
with its time-derivatives bounded. Design a controller such
that all the closed-loop signals are bounded and the tracking
error ‖p(t)−pd(t)‖ converges to a neighborhood of the origin
that can be made arbitrarily small.
Path-following problem: Let pd(γ) ∈ R

3 be a desired path
parameterized by γ ∈ R and vr(γ) ∈ R a desired speed3

assignment. Suppose also that pd(γ) is sufficiently smooth with
respect to γ and its derivatives (with respect to γ) are bounded.
Design feedback control laws for uv, uω , and γ̈ such that all
the closed-loop signals are bounded, the position of the vehicle
converges to and remains inside a tube centered around the
desired path that can be made arbitrarily thin, i.e., ‖p(t) −
pd(γ(t))‖ converges to a neighborhood of the origin that can
be made arbitrarily small, and the vehicle satisfies a desired
speed assignment vr along the path, i.e., the speed error γ̇(t)−
vr(γ(t)) can be confined to an arbitrarily small ball.

III. TRAJECTORY-TRACKING CONTROLLER DESIGN

A. Controller design

This section proposes a Lyapunov-based control law to
solve the trajectory-tracking problem assuming that there is
no parametric uncertainty. For the sake of clarity, control-
Lyapunov functions are introduced iteratively borrowing from
the techniques of backstepping [22].

Step 1. Coordinate transformation: Consider the global
diffeomorphic coordinate transformation

e := R′(p − pd)

3For simplicity of presentation it will be assumed that the speed assignment
vr(γ) ∈ R does not depend directly on time t.
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which expresses the tracking error p − pd in the body-fixed
frame. The dynamic equation of the body-fixed tracking error
e is given by

ė = −S(ω)e + v − R′ṗd.

Step 2. Convergence of e: We start by defining the control-
Lyapunov function

V1 :=
1
2
e′e

and computing its time derivative to obtain

V̇1 = e′[v − R′ṗd]. (4)

We can regard v as a virtual control that one would use to
make V̇1 negative. This could be achieved, by setting v equal to
R′ṗd−keM−1e, for some positive constant ke. To accomplish
this we introduce the error variable

z1 := v − R′ṗd + keM−1e

that we would like to drive to zero, and re-write (4) as

V̇1 = −ke e′M−1e + e′z1. (5)

Step 3. Backstepping for z1: After straightforward algebraic
manipulations, the dynamic equation of the error z1 can be
written as

Mż1 = S(Mz1)ω + Γ(·)ω + gvuv + h(·)
where

Γ(R, ṗd) := S(MR′ṗd) − MS(R′ṗd) (6)

and h(e, p,R, v, z1, p̈d) := fv(v, p,R) − MR′p̈d + kez1 −
k2

eM
−1e. It turns out that it will not always be possible to drive

z1 to zero. We need to explore the coupling of the translation
dynamics with the rotational inputs. To this effect, we will
drive z1 to a constant design vector δ ∈ R

3. To achieve this
we define ϕ := z1 − δ as a new error variable that we will
drive to zero and consider the augmented control-Lyapunov
function

V2 := V1 +
1
2
ϕ′M2ϕ =

1
2
e′e +

1
2
ϕ′M2ϕ.

The time derivative of V2 can be written as

V̇2 = −ke e′M−1e + e′δ + ϕ′(MB(·)ζ + Mh(·) + e) (7)

where

B(R, ṗd, δ) :=
[
gv S(Mδ) + Γ(R, ṗd)

] ∈ R
3×4 (8)

ζ := col(uv, ω) ∈ R
4.

In Appendix (cf. Property 1), we show that the matrix B can
always be made full-rank by choosing a suitable δ. One can
now regard ζ as a virtual control (actually its first component
is already a “real” control) that one would like to use to make
V̇2 negative. This could be achieved, by setting ζ equal to

α := B′(BB′)−1
( − h(·) − M−1e − M−1Kϕϕ

)
,

where Kϕ ∈ R
3×3 is a symmetric positive definite matrix. To

accomplish this we set uv to be equal to the first entry of α,
i.e.,

uv = [ 1 01×3 ] α (9)

and introduce the error variable

z2 := ω − [ 03×1 I3×3 ] α

that one would like to set to zero. We can now re-write (7),
with uv given by (9), as

V̇2 = −ke e′M−1e + e′δ − ϕ′Kϕϕ + ϕ′M[S(Mδ) + Γ(·)]z2.

Step 4. Backstepping for z2: Consider now a third control-
Lyapunov function given by

V3 :=V2 +
1
2
z′2Jz2 =

1
2
e′e +

1
2
ϕ′M2ϕ +

1
2
z′2Jz2. (10)

Computing its time derivative one obtains

V̇3 = −ke e′M−1e + e′δ − ϕ′Kϕϕ + z′2
(
Gωuω − S(v)Mv

−S(ω)Jω + fω(v, ω, p,R) − [ 03×1 J ] α̇
+[−S(Mδ) + Γ(·)′]Mϕ

)
.

For simplicity we did not expand the derivative of α. If we
then choose

uω = G−1
ω

(
S(v)Mv + S(ω)Jω − fω(v, ω, p,R) + [ 03×1 J ] α̇

−[−S(Mδ) + Γ(·)′]Mϕ − Kz2z2

)
(11)

where Kz2 ∈ R
3×3 is a symmetric positive matrix, the time

derivative of V3 becomes

V̇3 = −ke e′M−1e + e′δ − ϕ′Kϕϕ − z′2Kz2z2.

Note that although V̇3 is not necessarily always negative, this
will be sufficient to prove boundedness and convergence of e
to a neighborhood of the origin.

B. Stability analysis

We can now prove that all signals will remain bounded, and
that the tracking error converges exponential to an arbitrarily
small neighborhood of the origin.

Theorem 1: Given a sufficiently smooth time-varying de-
sired trajectory pd : [0,∞) → R

3 with its time-derivatives
bounded, consider the nonlinear system Σ described by the
underactuated vehicle model (2)–(3) in closed-loop with the
feedback controller (9), (11).
i) For every initial condition of Σ, the solution exists

globally, all closed-loop signals are bounded, and the
tracking error ‖p(t) − pd(t)‖ satisfies

‖p(t) − pd(t)‖ ≤ e−λtc0 + ε, (12)

where λ, c0, and ε are positive constants. From these, only
c0 depends on initial conditions.

ii) For a given upper bound on ‖ṗd(t)‖, by appropriate
choice of the controller parameters ke,Kϕ,Kz2 , any
desired values for ε and λ in (12) are possible.
Proof: To prove (i) we use Young’s inequality4 to

conclude that for any γ > 0,

V̇3 ≤ −e′
(
keM−1 − γ

2
I
)
e − ϕ′Kϕϕ

−z′2Kz2z2 +
1
2γ

‖δ‖2. (13)

4A special case of the Young’s inequality is ab ≤ γ
2
a2 + 1

2γ
b2, where

a, b ≥ 0, and γ is any positive constant.
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Suppose now that we choose γ sufficiently small so that the
matrix keM−1 − γ

2 I is positive definite. In this case we
conclude that there is a sufficiently small positive constant
λ such that

V̇3 ≤ −λV3 +
1
2γ

‖δ‖2, (14)

and therefore it is straightforward to conclude from the Com-
parison Lemma [45] that

V3(t) ≤ e−λtV3(0) +
1

2λγ
‖δ‖2, t ≥ 0 (15)

along solutions to Σ. From here we conclude that all signals
remain bounded and therefore the solution exists globally.
Moreover, V3 converges to a ball of radius 1

2λγ ‖δ‖2 and

therefore ‖e‖ converges to a ball of radius ‖δ‖√
λγ
, because of

(10).
To prove (ii), we show next that the radius ‖δ‖√

λγ
can be made

as small as we want by appropriately choosing the controller
parameters. To this effect, suppose we pick a desired radius ε
and a convergence rate λ > 0, and we select δ such that B is
full rank. Such value for δ may depend on the upper bound
of ‖ṗd(t)‖ (see Property 1). We can then define γ := ‖δ‖2

ε2λ ,
provided that we choose ke sufficiently large so that

keM−1 − γ

2
I = keM−1 − ‖δ‖2

2ε2λ
I ≥ λ

2
I > 0.

If we then select Kϕ := λ
2M2, Kz2 := λ

2J, we conclude
from (13) that (14) indeed holds for the pre-specified λ, from
which (15) follows. However, now the above choices for the
parameters lead to a radius ‖δ‖√

λγ
= ε.

Remark 2: We did not impose any constraints on the de-
sired trajectory (besides being sufficiently smooth and its
derivative being bounded) and we also did not require that
the linear velocity of the vehicle be always non-null. Conse-
quently, pd(t) can be arbitrary, that is, the desired trajectories
do not need to satisfy “dynamic” models, and in particular can
be constant for all t ≥ t0. In that case, the controller solves
the position regulation problem. �

Remark 3: In practice, the vector δ determines if the vehicle
will follow the desired trajectory backwards or forwards. To
observe this, define the following two angles: α = arctan ez

ex

and β = arctan ey√
e2

x+e2
z

, where ex, ey , and ez are the three

components of the body-fixed tracking error e. Notice that
α and β can be seen as the elevation and azimuth angles,
respectively. In steady-state (with ė = 0, V̇3 = 0), from (5),
it follows that e = 1

ke
Mz1 ≈ 1

ke
Mδ. Thus, when the first

component of δ ∈ R
3 is negative and larger (in absolute value)

than the other two components, the vehicle will converge to the
trajectory with positive surge velocity, and will stay “behind”
the desired trajectory, see examples in Section VI. �

Remark 4: When the vehicle is subject to one controlled
force and only two independent control torques, i.e, uv ∈ R,
but uω ∈ R

2 (and consequently Gω ∈ R
3×2), one can use,

e.g., V3 := V2 + 1
2z′2GωPG′

ωz2, provided that there exists a
symmetric positive definite matrix P such that PG′

ω = G′
ωJ

Switching
Logic

Process
Multi-

Controller

Multi-
Estimator

σ

y

yΘ

eΘ

uuΘ

-

+

Fig. 1. Supervisory control architecture.

(which is the case for the AUV in Section VI). If we then set

uω = (G′
ωGω)−1G′

ω

(
S(v)Mv + S(ω)Jω − fω(v, ω, p,R)

+ [ 03×1 J ] α̇ + [−S(Mδ) + Γ(·)′]Mϕ
)
− Kz2G

′
ωz2

the time derivative of V3 becomes

V̇3 = −ke e′M−1e + e′δ − ϕ′Kϕϕ − z′2GωKz2G
′
ωz2 + d

where d is a disturbance term that depends on the component
of the state z2 in the null space of G′

ω . From the above,
one can prove boundedness if this component is bounded. For
underwater vehicles this component typically corresponds to
the roll motion which usually is stable due to the restoring
forces. �

IV. ESTIMATOR-BASED SUPERVISORY CONTROL

Using the previous results, this section proposes an
estimator-based supervisory control architecture to solve the
trajectory-tracking problem in the presence of parametric mod-
eling uncertainty. Let Θ ∈ R

nΘ be a vector that contains all
the unknown parameters of the dynamic equations of motion
(3), where nΘ denotes the number of unknown parameters.
The following technical assumption is assumed to hold:

Assumption 1: Let P be a finite set of candidate parameter
values

P := {Θ1,Θ2, . . . ,ΘN}.
The actual parameter Θ� belongs to P . �
In practice, this assumption can be relaxed to Θ� being

sufficiently close to an element of P , which can be achieved
by taking a fine grid, at the price of increased computational
burden.
The supervisory consists of three subsystems (see Fig. 1)

[21]:

multi-estimator — a dynamical system whose inputs
are the process input u and its output y, and whose
outputs are ŷΘ, Θ ∈ P , where each ŷΘ is a suitably
defined estimate of y which would be asymptotically
correct if Θ� was equal to Θ.
multi-controller — a dynamical system whose inputs
are the output estimate ŷΘ and the estimation errors
eΘ := ŷΘ − y, Θ ∈ P , and whose outputs are
the control signals uΘ, Θ ∈ P , where each uΘ is
generated by a control law that would be adequate
if Θ� was equal to Θ.
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switching logic — a dynamical system whose inputs
are the estimation errors eΘ and whose output is a
switching signal σ which is used to define the control
law u = uσ.

The underlying decision-making strategy used by the
switching logic basically consists of selecting for σ, the
candidate controller index Θ† for which the corresponding
performance signal µΘ† (which is a suitably “normed” value
of eΘ† ) is currently the smallest. This strategy is motivated
by the idea that the nominal process model with the smallest
performance signal is the one that “best” approximates the
actual process, and thus the candidate controller associated
with that model can be expected to have a better performance
of controlling the process.
In this paper we assume that the whole state of the process

is available for feedback. Therefore, y = (p,R, v, ω), ŷΘ =
(p̂Θ, R̂Θ, v̂Θ, ω̂Θ), and eΘ := ŷΘ − y = (ṽΘ, ω̃Θ). Since there
is no uncertainty in (2), we can simply pick p̂Θ = p and
R̂Θ = R. We also restrict our attention to state feedback laws
and therefore uΘ = col(uvΘ , uωΘ) = KΘ(v̂Θ, ω̂Θ, p, R).

A. Multi-estimator

This section addresses the design of a family of estimators
parameterized by Θ ∈ P for the underactuated vehicle model
(2)–(3). Motivated by Assumption 1 and in view of (3), we
consider a family of estimators of the form5

MΘ
˙̂vΘ = −S(ω)MΘv + fvΘ(v, p,R) + gvΘuv − MΘLv ṽΘ

−βvΘ(·)MΘṽΘ (16a)

JΘ
˙̂ωΘ = −S(v)MΘv − S(ω)JΘω + fωΘ(v, ω, p,R)

+GωΘuω − JΘLωω̃Θ − βωΘ(·)JΘω̃Θ (16b)

where Lv, Lω ∈ R
3×3 are diagonal positive definite ma-

trices and for each Θ ∈ P the scalar positive func-
tions βvΘ(v̂Θ, ω̂Θ, v, ω, p,R) := β1Θ(·) + β2Θ(·) and
βωΘ(v̂Θ, ω̂Θ, ω, p,R) satisfy6

‖fvΘ(v̂Θ, p, R) − fvΘ(v, p,R)‖
+‖S(ω)MΘṽΘ‖ ≤ c1 β1Θ(v̂Θ, v, ω, p,R)‖ṽΘ‖ (17a)

‖fωΘ(v̂Θ, ω, p,R) − fωΘ(v, ω, p,R)‖
+‖S(v̂Θ)MΘ − S(MΘv)‖‖ṽΘ‖
+‖ [ 03×1 JΘ ] ϕvΘ(v̂Θ, ω̂Θ, v, ω, p,R)‖

≤ c2 β2Θ(v̂Θ, ω̂Θ, v, ω, p,R)‖ṽΘ‖ (17b)

‖fωΘ(v̂Θ, ω̂Θ, p, R) − fωΘ(v̂Θ, ω, p,R)‖
+‖S(ω̂Θ)JΘ − S(JΘω)‖‖ω̃Θ‖
+‖ [ 03×1 JΘ ] ϕωΘ(v̂Θ, ω̂Θ, ω, p,R)‖

≤ c3 βωΘ(v̂Θ, ω̂Θ, ω, p,R)‖ω̃Θ‖ (17c)

for some positive constants ci, i = 1, . . . , 3. The functions
ϕvΘ(·) and ϕωΘ(·) will be defined later (cf. (28a)–(28b)). The
multi-estimator has the desirable property that the estimator

5When P has a large number of elements, an alternative approach is
described in Section IV-E

6The existence of βvΘ (·) and βωΘ (·) follows directly from the fact that
fvΘ (·) and fωΘ (·) are C1.

error that corresponds to the actual parameter value Θ� con-
verges exponentially to zero and satisfies a L1-like property.

Lemma 1: Let Θ� ∈ P be the actual parameter value. There
exist κ > 0, λµ > 0, such that for every initial condition of
(2)–(3), (16), and continuous signal u = col(uv, uω), there
exist positive constants γ1, γ2, γ3 that depend on the initial
conditions such that

‖eΘ�(t)‖ ≤ e−κtγ1 (18a)∫ t

0

eλµτβvΘ(v̂Θ�(τ), ω̂Θ�(τ), v(τ),

ω(τ), p(τ), R(τ))‖ṽΘ�(τ)‖ dτ ≤ γ2 (18b)∫ t

0

eλµτβωΘ(v̂Θ�(τ), ω̂Θ�(τ),

ω(τ), p(τ), R(τ))‖ω̃Θ�(τ)‖ dτ ≤ γ3 (18c)

for every time t in the maximum interval of existence of
solution to the closed-loop [0, T ), T ∈ (0,+∞].

Proof: See the Appendix.

B. Multi-controller

We now design a family of candidate feedback laws KΘ(·)
such that for each Θ ∈ P , u = col(uv, uω) = KΘ(·) would
solve the tracking problem formulated in Section II for a
process model given by (2) and (16), and “sufficiently” small
estimation errors ṽΘ, ω̃Θ. For a givenΘ ∈ P , we design KΘ by
constructing control-Lyapunov functions iteratively, following
the design procedure proposed in Section III.

Step 1 and 2: Same as in Section III. However, in this case
z1 is re-defined as

z1Θ := v̂Θ − R′ṗd + keΘM−1
Θ e, (19)

and therefore V̇1 = −keΘ e′M−1
Θ e + e′z1Θ − e′ṽΘ.

Step 3: The dynamic equation of the error z1Θ is now given
by

MΘż1Θ = S(MΘz1Θ)ω + ΓΘ(·)ω + gvΘuv + h1Θ(·) + h2Θ(·)
where

ΓΘ(R, ṗd) := S(MΘR′ṗd) − MΘS(R′ṗd)
h1Θ(e, p,R, v̂Θ, z1Θ , p̈d) := fvΘ(v̂Θ, p, R) − MΘR′p̈d

+keΘz1Θ − k2
eΘ

M−1
Θ e

h2Θ(ṽΘ, v̂Θ, v, ω, p,R) := −MΘLv ṽΘ − keΘ ṽΘ

−βvΘ(v̂Θ, ω̂Θ, v, ω, p,R)MΘṽΘ + S(ω)MΘṽΘ

+fvΘ(v, p,R) − fvΘ(v̂Θ, p, R)

Thus, V2 is re-defined as

V2 := V1 +
1
2
ϕ′

ΘM2
ΘϕΘ =

1
2
e′e +

1
2
ϕ′

ΘM2
ΘϕΘ

where ϕΘ := z1Θ − δΘ. The time derivative of V2 can be
written as

V̇2 = −keΘ e′M−1
Θ e + e′δΘ − e′ṽΘ

+ϕ′
Θ

[
MΘBΘ(·)ζΘ + MΘh1Θ(·) + h3Θ(·) + e

]
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where

h3Θ(ṽΘ, ω̃Θ, v̂Θ, ṗd, v, ω, p,R) := MΘh2Θ(·)
−MΘ

[
S(MΘδΘ) + ΓΘ(·)]ω̃Θ (20)

BΘ(R, ṗd, δΘ) :=
[
gvΘ S(MΘδΘ) + ΓΘ(R, ṗd)

]
ζΘ := col(uv, ω̂Θ).

Following the same line of reason described in Step 3 of
Section III, let

αΘ := B′
Θ(BΘB′

Θ)−1
( − h1Θ(·) − M−1

Θ e − M−1
Θ KϕΘϕΘ

)
(21)

be a virtual control law for each Θ ∈ P , where δΘ is chosen
such that BΘB′

Θ is nonsingular. Let uv be equal to the first
entry of αΘ, i.e.,

u1 = [ 1 01×3 ] αΘ (22)

and

z2Θ := ω̂Θ − [ 03×1 I3×3 ] αΘ. (23)

Then,

V̇2 = −keΘ e′M−1
Θ e + e′δΘ − e′ṽΘ − ϕ′

ΘKϕΘϕΘ

+ϕ′
ΘMΘ [S(MΘδΘ) + ΓΘ(·)] z2Θ + ϕ′

Θh3Θ(·).
Step 4: The third control-Lyapunov function is now given

by

V3 :==
1
2
e′e +

1
2
ϕ′

ΘM2
ΘϕΘ +

1
2
z′2Θ

JΘz2Θ . (24)

Computing its time derivative one obtains

V̇3 = −keΘ e′M−1
Θ e + e′δΘ − e′ṽΘ − ϕ′

ΘKϕΘϕΘ

+ϕ′
Θh3Θ(·) + z′2Θ

[
GωΘuω − S(v)MΘv − S(ω)JΘω

+fωΘ(v, ω, p,R) − JΘLωω̃Θ − βωΘ(·)JΘω̃Θ

− [ 03×1 JΘ ] α̇Θ + [−S(MΘδΘ) + ΓΘ(·)′]MΘϕΘ

]

where α̇Θ can be decomposed in two terms: α̇Θ = ˙̂αΘ − ˙̃αΘ.
Here, ˙̃αΘ := ˙̂αΘ−α̇Θ, and ˙̂αΘ is defined to be the same as α̇Θ,
but substituting the arguments v, ω by v̂Θ, ω̂Θ, respectively.
Selecting

uω = G−1
ωΘ

(
S(v̂Θ)MΘv̂Θ + S(ω̂Θ)JΘω̂Θ

−fωΘ(v̂Θ, ω̂Θ, p, R) + [ 03×1 JΘ ] ˙̂αΘ − [ − S(MΘδΘ)

+ΓΘ(·)′]MΘϕΘ − Kz2Θ
z2Θ

)
(25)

where for each Θ ∈ P , Kz2Θ
∈ R

3×3 is a symmetric positive
matrix, the time derivative of V3 becomes

V̇3 = −keΘ e′M−1
Θ e − ϕ′

ΘKϕΘϕΘ − z′2Θ
Kz2Θ

z2Θ + e′δΘ

−e′ṽΘ + ϕ′
Θh3Θ(·) + z′2Θ

h4Θ(·) (26)

where

h4Θ(v̂Θ, ω̂Θ, v, ω, p,R) := S(v̂Θ)MΘv̂Θ − S(v)MΘv

+S(ω̂Θ)JΘω̂Θ − S(ω)JΘω + fωΘ(v, ω, p,R)
−fωΘ(v̂Θ, ω̂Θ, p, R) − JΘLωω̃Θ − βωΘ(·)JΘω̃Θ

− [ 03×1 JΘ ]
(
α̇Θ − ˙̂αΘ

)
(27)

The last term α̇Θ− ˙̂αΘ can be rewritten as α̇Θ− ˙̂αΘ = ϕvΘ +
ϕωΘ , where

ϕvΘ(v̂Θ, ω̂Θ, v, ω, p,R) := α̇Θ(v̂Θ, ω̂Θ, v, ω, p,R)
−α̇Θ(v̂Θ, ω̂Θ, v̂Θ, ω, p,R) (28a)

ϕωΘ(v̂Θ, ω̂Θ, ω, p,R) := α̇Θ(v̂Θ, ω̂Θ, v̂Θ, ω, p,R)
−α̇Θ(v̂Θ, ω̂Θ, v̂Θ, ω̂Θ, p, R) (28b)

From (26), although V̇3 has indefinite terms, it will be verified
that they will be dominated by the negative definite terms
when the estimator errors ṽΘ, ω̃Θ are sufficiently small. This
is stated in the following lemma.

Lemma 2: Let [0, T ), T ∈ [0,∞] denote the maximum
interval of existence of solution to the closed-loop and suppose
that there exists a time T † ≥ 0 such that u(t) = KΘ†(·) for
all t ∈ [T †, T ) and

∫ T

T †
γ
(
y(τ), ṽΘ†(τ), ω̃Θ†(τ)

)
dτ < ∞ (29)

where the control law KΘ is defined in (22) and (25) and

γ(·) := ‖eΘ†‖2 + βvΘ(v + ṽΘ† , ω + ω̃Θ† , v, w, p,R)‖ṽΘ†‖
+βωΘ(v + ṽΘ† , w + ω̃Θ† , w, p,R)‖ω̃Θ†‖. (30)

Given a sufficiently smooth time-varying desired trajectory
pd : [0, T ) → R

3 with its time-derivatives bounded and
any initial condition of the resulting closed-loop system, the
signals e(t), v̂Θ(t), ω̂Θ(t), and u(t) are bounded on [T †, T ).
Moreover, if (29) holds with T = +∞, then, as t → ∞, the
tracking error ‖p(t) − pd(t)‖ converges to a neighborhood of
the origin that can be made arbitrarily small by appropriate
choice of the controller parameters.

Proof: See the Appendix.
Loosely speaking, Lemma 2 states that each candidate con-
troller solves the trajectory-tracking problem formulated in
Section II provided that the input disturbances due to the
estimation errors have finite energy as defined by the integral
(29). The switching-logic will guarantee that (29) holds by
the Scale-Independent Hysteresis Switching Lemma [21] (cf.
proof of Theorem 2).

C. Switching-logic

Motivated by (29)–(30), for each Θ ∈ P , we start by
defining the performance signal µΘ as the state of the dynamic
equation

µ̇Θ = −λµµΘ + γ(y, ṽΘ, ω̃Θ), (31)

with the initial values satisfying µΘ(0) > 0. Equation (31)
implies that each performance signal µΘ is the sum of an
exponentially decaying term that depends on initial conditions
and a suitable exponentially weighted “norm” of the corre-
sponding estimation errors. The control parameter λµ acts as
a forgetting factor in the evaluation of the performance signals,
hence establishing a compromise between adaptation alertness
and switching dither.
The switching logic consider here is the scale-independent

hysteresis switching logic proposed in [21]. Let h be a positive
constant called the hysteresis constant. The operation of the
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switching logic can be briefly explained as follows: First, we
set σ(0) = arg minΘ∈P{µΘ(0)}. Suppose that at a certain
time ti the value of σ has just switched to some Θ† ∈ P .
Then, σ will be kept fixed until a time ti+1 > ti such that
(1 + h)minΘ∈P{µΘ(ti+1)} ≤ µΘ†(ti+1), at which point
we set σ(ti+1) to σ(ti+1) = arg minΘ∈P{µΘ(ti+1)}. When
the indicated minimum is not unique, a particular value for
σ among those that achieve the minimum can be chosen
arbitrarily. Repeating this procedure, a piecewise constant
signal σ is generated that is continuous from right everywhere.
Setting µΘ(0) > 0 for all Θ ∈ P avoids chattering. The
switching signal is used to define the control signal as follows:

u = col(uv, uω) = Kσ(v̂Θ, ω̂Θ, p, R), (32)

where the candidate control laws KΘ are defined by (22), (25).

D. Stability analysis

We are now ready to prove that all closed-loop signals will
remain bounded, and that the tracking error converges to an
arbitrarily small neighborhood of the origin in the presence of
possible large parametric modeling uncertainty.

Theorem 2: Given a sufficiently smooth time-varying de-
sired trajectory pd : [0,∞) → R

3 with its time-derivatives
bounded, consider the hybrid system Σtrack described by the
underactuated vehicle model (2)-(3) in closed-loop with the
switched multi-controller (32), the multi-estimator (16), and
the switching logic described in Section IV-C.
i) For any initial condition of Σtrack with µΘ(0) > 0, ∀Θ ∈

P , the solution exists globally and all closed-loop signals
are bounded.

ii) Furthermore, there exists a finite time T † ≥ 0 such that
σ(t) = Θ† ∈ P for all t ≥ T † (i.e., the switching stops
in finite time) and as t → ∞ the tracking error ‖p(t) −
pd(t)‖ converges to a neighborhood of the origin that
can be made arbitrarily small by appropriate choice of
the control parameters.
Proof: Consider the scaled performance signals µ̄Θ(t) :=

eλµtµΘ(t), Θ ∈ P . From (31) we conclude that

µ̄Θ(t) = µ̄Θ(0) +
∫ t

0

eλµτγ(y(τ), ṽΘ(τ), ω̃Θ(τ)) dτ, Θ ∈ P.

(33)
Because of the scale independence property of the switching
logic, replacing µΘ by µ̄Θ would have no effect on σ. From
(33) we see that each µ̄Θ is nondecreasing. This, the finiteness
of P , and the fact that µ̄Θ(0) > 0 for each Θ ∈ P guarantee
the existence of a positive number ε such that µ̄Θ(t) > ε, ∀t ≥
0, ∀Θ ∈ P . It is not hard to conclude from the definition
of the switching logic that chattering cannot occur. In fact,
there must be an interval [0, T ) of maximal length on which
the solution of the system is defined, and σ can only have
a finite number of discontinuities on each proper subinterval
of [0, T ). For details, see [21]. To prove that the switching
stops in finite time, observe from (33) and (30) that µ̄Θ� is
bounded by virtue of Lemma 1. It follows now that the signals
µ̄Θ satisfy the hypotheses of the Scale-Independent Hysteresis
Switching Lemma [21] which enables us to conclude that the
switching stops in finite time. More precisely, there exists a

time T † < T such that σ(t) = Θ† ∈ P for all t ∈ [T †, T ). In
addition, µ̄Θ† is bounded on [0, T ). Using (33) with Θ = Θ†

and the boundedness of µ̄Θ† , we see that the integral
∫ T

T †
γ(y(τ), ṽΘ†(τ), ω̃Θ†(τ)) dτ

is finite (recall that λµ is positive). Therefore, resorting to
Lemma 2, this implies that v̂Θ† , ω̂Θ† , e, and u are bounded
on [T †, T ).
Next we will prove that v̂Θ� and ω̂Θ� are also bounded on

[T †, T ), where Θ� ∈ P is the actual parameter value. Consider
the following nonnegative function

V =
1
2
v̂′
Θ�Mv̂Θ� +

1
2
ω̂′

Θ�Jω̂Θ� . (34)

Its time derivative satisfies (c.f. Appendix)

V̇ ≤ −λV + [a1(t) + a2(t)]V + b1(t) + b2(t) + κ1, (35)

where λ > 0, a1(t), b1(t) are functions in L1 defined on
[T †, T ), and a2(t), b2(t) are functions in L2 defined on
[T †, T ). Consider now the ordinary differential equation

ẋ(t) = −λx(t) + [a1(t) + a2(t)]x(t)
+b1(t) + b2(t) + κ1, t ∈ [T †, T ) (36)

Using [46, Lemma 1] we conclude that for any initial con-
dition, the solution x(t) to (36) exists and is bounded on
[T †, T ). Moreover, when T = +∞, x(t) converges to κ1

λ
as t → +∞. Thus, applying the Comparison Lemma to (35)
it can be concluded that V (t) and, consequently, v̂Θ� , ω̂Θ�

are bounded on [T †, T ). Since eΘ� is bounded by virtue of
Lemma 1, it follows that (v′, ω′) = (v̂′

Θ� , ω̂′
Θ�) − e′Θ� is

bounded on [T †, T ). Combining the boundedness of (v, ω) and
KΘ† with the estimators (16), it can be seen that the dynamic
equations for the quadratic estimation error ‖eΘ‖2, Θ ∈ P
can be expressed (after applying the Comparison Lemma)
as an exponential stable linear system with bounded inputs.
Therefore, this implies that eΘ and (v̂′Θ, ω̂′

Θ) = (v′, ω′) + e′Θ
are bounded on [T †, T ) for each Θ ∈ P . Since all signals
are bounded in the maximal interval of existence of solutions,
one conclude that the solutions exist globally, i.e., T = +∞.
The convergence of the tracking error ‖p(t) − pd(t)‖ to a
neighborhood of the origin now follows from Lemma 2.

E. State-sharing

In the previous sections we have relied on the fact that
the set P was finite, so that the estimators (16). If the set P
is infinite or it has a large number of elements, a different
approach is required. One alternative, which leads to a more
efficient design, is to replace the individual estimator equations
by a single system and use it to generate the estimation errors.
In other words, to make the estimators in (16) “share” the same
state. The performance signals µΘ can be obtained in a similar
way. To this effect, suppose that the functions fvΘ(v, p,R),
and fωΘ(v, ω, p,R) are separable on the unknown parameter
Θ, i.e, take the form a′(v, ω, p,R)b(Θ). In that case, we can
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define

a′
v(v, ω, p,R, uv) bv(Θ):= −M−1

Θ S(ω)MΘv

+M−1
Θ fvΘ(v, p,R) + M−1

Θ gvΘuv

a′
ω(v, ω, p,R, uω) bω(Θ):= −J−1

Θ S(v)MΘv − J−1
Θ S(ω)JΘω

+J−1
Θ fωΘ(v, ω, p,R) + J−1

Θ GωΘuω

and replace the estimators (16) by

˙̂xv1 = −Lvx̂v1 − β̄v(x̂v, v, ω, p,R)x̂v1 + Lvv

+β̄v(x̂v, v, ω, p,R)v (37a)
˙̂xv2 = −Lvx̂v2 − β̄v(x̂v, v, ω, p,R)x̂v2

+a′
v(v, ω, p,R, uv) (37b)

˙̂xω1 = −Lωx̂ω1 − β̄ω(xv, xω, ω, p,R)x̂ω1 + Lωω

+β̄ω(xv, xω, ω, p,R)ω (37c)
˙̂xω2 = −Lωx̂ω2 − β̄ω(xv, xω, ω, p,R)x̂ω2

+a′
ω(v, ω, p,R, uω) (37d)

with outputs

v̂Θ = x̂v1 + x̂v2bv(Θ), ω̂Θ = x̂ω1 + x̂ω2bω(Θ)

where

β̄v(x̂v, v, ω, p,R) = sup
Θ

βvΘ(x̂v1 + x̂v2bv(Θ), x̂ω1

+x̂ω2bω(Θ), v, ω, p,R)
β̄ω(xv, xω, ω, p,R) = sup

Θ
βωΘ(x̂v1 + x̂v2bv(Θ), x̂ω1

+x̂ω2bω(Θ), ω, p,R).

Note that v̂Θ and ω̂Θ satisfy (16) but with possible larger βvΘ

and βωΘ that still satisfy (17). However, the dimension of (37)
is now independent of the number of elements in P .

V. PATH-FOLLOWING CONTROLLER DESIGN

In this section, inspired by [39], the results described in
Section IV are utilized to solve the path-following problem.
Let pd(γ) ∈ R

3 be a desired geometric path parameterized by
a variable γ ∈ R and vr(γ) ∈ R a desired speed assignment.
Contrary to trajectory-tracking, in path-following we have the
freedom to select a timing law for γ(t). In particular, we
can regard γ(t) as an additional control input. In this paper,
we actually regard γ̈(t) as the additional input, because this
will necessarily produce a differentiable γ(t). Let us define
the position body-fixed path-following error e := R′[p(t) −
pd(γ(t))

]
and the speed error zγ := γ̇ − vr. Following the

same steps described in Section III and IV-B, and defining
z1Θ (see (19)) as z1Θ := v̂Θ − R′pγ

dvr + keΘM−1
Θ e, where

pγ
d := ∂pd

∂γ , we obtain

V̇1 = −keΘ e′M−1
Θ e + e′z1Θ − e′ṽΘ − e′R′pγ

dzγ .

Notice also that

MΘż1Θ = S(MΘz1Θ)ω + ΓΘ(·)ω + gvΘuv

+h1Θ(·) + h2Θ(·) + h5Θ(·)zγ

where

ΓΘ(R, pγ
d , vr) := S(MΘR′pγ

dvr) − MΘS(R′pγ
dvr)

h1Θ(e, p,R, v̂Θ, z1Θ , pγ
d , pγ2

d , vr, v
γ
r ) := fvΘ(v̂Θ, p, R)

−MΘR′(pγ2

d v2
r + pγ

dvγ
r vr) + keΘz1Θ − k2

eΘ
M−1

Θ e

h2Θ(ṽΘ, v̂Θ, v, ω, p,R) := −MΘLv ṽΘ

−βvΘ(v̂Θ, ω̂Θ, v, ω, p,R)MΘṽΘ − keΘ ṽΘ + S(ω)MΘṽΘ

+fvΘ(v, p,R) − fvΘ(v̂Θ, p, R)

h5Θ(R, pγ
d , pγ2

d , vr, v
γ
r ) := −MΘR′(pγ2

d vr + pγ
dvγ

r ) − keΘR′pγ
d

and pγ2

d := ∂2pd

∂γ2 , vγ
r := ∂vr

∂γ . Therefore, using (21)–(23), we
obtain

V̇2 = −keΘ e′M−1
Θ e + e′δΘ − e′ṽΘ − ϕ′

ΘKϕΘϕΘ

+ϕ′
ΘMΘ [S(MΘδΘ) + ΓΘ] z2Θ

+ϕ′
Θh3Θ(·) + [−e′R′pγ

d + ϕ′
ΘMΘh5Θ(·)]zγ

where

h3Θ(ṽΘ, ω̃Θ, v̂Θ, pγ
d , vr, v, ω, p,R) := MΘh2Θ(·)

−MΘ

[
S(MΘδΘ) + ΓΘ(·)]ω̃Θ

BΘ(R, pγ
d , vr, δΘ) :=

[
gvΘ , S(MΘδΘ) + ΓΘ(R, pγ

d , vr)
]

ζΘ := col(uv, ω̂Θ)

Notice that α̇Θ can be decomposed as α̇Θ = h6Θ(·)+h7Θ(·)zγ .
Thus, if we then choose

uω = G−1
ωΘ

(
S(v̂Θ)MΘv̂Θ + S(ω̂Θ)JΘω̂Θ − fωΘ(v̂Θ, ω̂Θ, p, R)

+ [ 03×1 JΘ ] ĥ6Θ(·) − [−S(MΘδΘ) + ΓΘ(·)′]MΘϕΘ

−Kz2Θ
z2Θ

)
, (38)

the time derivative of V3 becomes

V̇3 = −keΘ e′M−1
Θ e + e′δΘ − e′ṽΘ − ϕ′

ΘKϕΘϕΘ

+ϕ′
Θh3Θ(·) − z′2Θ

Kz2Θ
z2Θ + z′2Θ

h4Θ(·)
−(

e′R′pγ
d − ϕ′

ΘMΘh5Θ(·) + z′2Θ
[ 03×1 JΘ ] ĥ7Θ(·))zγ

where h̃iΘ := ĥiΘ − hiΘ , i = 6, 7, ĥiΘ is defined to be the
same as hiΘ , but substituting v, ω by v̂Θ, ω̂Θ, and

h4Θ(v̂Θ, ω̂Θ, v, ω, p,R) := S(v̂Θ)MΘv̂Θ − S(v)MΘv

+S(ω̂Θ)JΘω̂Θ − S(ω)JΘω + fωΘ(v, ω, p,R)
−fωΘ(v̂Θ, ω̂Θ, p, R) − JΘLωω̃Θ + βωΘ(·)JΘω̃Θ

+ [ 03×1 JΘ ]
(
h̃6Θ(·) + h̃7Θ(·)zγ

)
Introduce now a forth control Lyapunov function given by

V4 := V3 +
1
2
z2
γ =

1
2
e′e +

1
2
ϕ′

ΘM2
ΘϕΘ +

1
2
z′2Θ

JΘz2Θ +
1
2
z2
γ .

Computing its time derivative, we get

V̇4 = −keΘ e′M−1
Θ e + e′δΘ − e′ṽΘ − ϕ′

ΘKϕΘϕΘ + ϕ′
Θh3Θ(·)

−z′2Θ
Kz2Θ

z2Θ + z′2Θ
h4Θ(·) + zγ

( − e′R′pγ
d

+ϕ′
ΘMΘh5Θ(·) − z′2Θ

[ 03×1 JΘ ] ĥ7Θ(·) + γ̈ − vγ
r γ̇

)
.

Selecting the following update law for γ̈:

γ̈ = e′R′pγ
d − ϕ′

ΘMΘh5Θ(·) + z′2Θ
[ 03×1 JΘ ] ĥ7Θ(·)

+vγ
r γ̇ − kγzγ (39)

where kγ is a positive constant, we obtain

V̇4 = −keΘ e′M−1
Θ e + e′δΘ − e′ṽΘ − ϕ′

ΘKϕΘϕΘ
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+ϕ′
Θh3Θ(·) − z′2Θ

Kz2Θ
z2Θ + z′2Θ

h4Θ(·) − kγz2
γ .

An extension of Theorem 2 to the path-following then follows.
Theorem 3: Given a sufficiently smooth (with respect to

γ) desired path pd(γ) : R → R
3 with its derivatives (with

respect to γ) bounded, and a desired assignment speed vr(γ) :
R → R, consider the hybrid system Σpath described by the
underactuated vehicle model (2)–(3) in closed-loop with the
switched multi-controller (22), (38), (39), the multi-estimator
(16), and the switching logic described in Section IV-C.

i) For any initial condition of Σpath with µΘ(0) > 0, ∀Θ ∈
P , the solution exists globally and all closed-loop signals
are bounded.

ii) There exist a finite time T † ≥ 0 such that σ(t) =
Θ† ∈ P for all t ≥ T † (i.e., the switching stops in
finite time). Moreover, as t → ∞, the position error
‖p(t)− pd(γ(t))‖ and the speed error ‖γ̇(t)− vr(γ(t))‖
converge to neighborhoods of the origin that can be made
arbitrarily small by appropriate choice of the control
parameters.
Proof: The proof is not given since it is a simple

application of the arguments used in the previous theorems.

VI. APPLICATION TO SPECIFIC VEHICLES

This section illustrates the application of the previous results
to two vehicles: a hovercraft (moving on a planar surface) and
an underwater vehicle (moving in three-dimensional space).

A. Trajectory-tracking of an underactuated Hovercraft

Consider the Caltech MVWT vehicle described in [43], [47]
consisting of a platform mounted on three low-friction, omni-
directional casters, with two attached high-performance ducted
fans. Let p = (x, y)′ ∈ R

2 be the Cartesian coordinates of the
vehicle’s center of mass and θ ∈ S

1 its orientation. Assuming
that the friction and moment forces can be modeled by viscous
friction, the equations of motion are

mẍ = −dvẋ + (Fs + Fp) cos θ

mÿ = −dv ẏ + (Fs + Fp) sin θ

Jθ̈ = −dω θ̇ + l(Fs − Fp)

where m = 5.5 kg is the mass of the vehicle and J =
0.047Kg m2 is the rotational inertia. The starboard and port-
board fan forces are denoted Fs and Fp, respectively, and
l = 0.123m denotes the moment arm of the forces. The
geometric and mass centers of the vehicle are assumed to
coincide. The coefficient of viscous friction dv is 5.5Kg/s
and the coefficient of rotational friction dω is 0.41Kg m/s.
Expressing the equations of motion in the body fixed frame,
yields (2)–(3) with (R, p) ∈ SE(2), v ∈ R

2, ω ∈ R, R(θ) =(
cos θ − sin θ
sin θ cos θ

)
, S(ω) =

(
0 −ω
ω 0

)
, M = diag{m,m}, J = J ,

fv = −diag{dv, dv}v, fω = −dωω, gv = (1, 0)′, Gω = 1,
uv = Fs +Fp, and uω = l(Fs−Fp). In this case the matrix B
introduced in (8) is given by B =

(
1 mδ2
0 −mδ1

)
with δ = (δ1, δ2)′.

The reader is referred to [43] for a detailed coverage of the
trajectory-tracking controller with experimental results.
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Fig. 2. First experiment. Trajectory of the hovercraft in the xy-plane and
reference trajectory performed by a unicycle vehicle using the trajectory-
tracking controller presented in Section III (diagram (a)) and the estimator-
based supervisory controller for trajectory-tracking (diagram (b)). Time evo-
lution of the tracking error in x-direction, in y-direction, and the switching
signal σ for the estimator-based supervisory controller (diagram (c)).

We now describe two simulation results that illustrate the
performance of the proposed tracking controller with and with-
out supervisory control. The objective of the first experiment is
to force the hovercraft to track the “virtual” kinematic unicycle
vehicle

ẋd = Vd cos θd, ẏd = Vd sin θd, θ̇d = ωd,

which starts at xd(0) = yd(0) = θd(0) = 0 and moves with
velocities Vd(t) = 0.2m/s and ωd(t) = 0.1 rad/s. The initial
conditions for the hovercraft are (x0, y0) = (−0.2m,−1m),
R0 = I , v0 = ω0 = 0. For simplicity, only the coefficient
of viscous friction is unknown, but assumed to belong to the
set P = {0.5, 1.0, . . . , 9.5, 10.0}. The control parameters were
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Fig. 3. Second experiment. Trajectory of the hovercraft in the xy-plane
and reference trajectory performed by a unicycle vehicle using the trajectory-
tracking controller presented in Section III (diagram (a)) and the estimator-
based supervisory controller for trajectory-tracking (diagram (b)). Time evo-
lution of the tracking error in x-direction, in y-direction, and the switching
signal σ for the estimator-based supervisory controller (diagram (c)).

selected as follows: keΘ = 1.5, KϕΘ = 8I , Kz2Θ
= 8, and

δΘ = (−0.01, 0)′ for all Θ ∈ P . The hysteresis constant for
the switching logic was set to h = 0.1, the forgetting factor
to λµ = 1.0, and the multi-estimator gains to Lv = 0.1I and
Lω = 0.1. The functions βv(·) and βω(·) introduced in (16)
are given by βv(·) = βω(·) = ω2.

To illustrate the benefits derived from the supervisory con-
trol scheme proposed in Section IV, we show in Fig. 2(a)
the closed-loop trajectory for the (non-adaptive) trajectory-
tracking controller presented in Section III when the value
of the coefficient of viscous friction assumed by the control
system was set to 10% of the real value. It can be seen that

although the closed-loop is still stable, the parameter error
affects considerably the closed-loop performance. In contrast,
Fig. 2(b) shows the closed-loop trajectory for the supervisory
controller where, as expected, the hovercraft converges to a
small neighborhood of the “virtual” unicycle vehicle, in spite
of the uncertainty in dv . Fig. 2(c) shows the time evolution
of some relevant variables. In steady-state the vehicle is not
aligned with the direction of the tangent velocity of pd.
Contrary to what happens for wheeled mobile robots (with
inherent lateral drag coefficient dv = +∞) in the hovercraft
case we cannot force the orientation θ to converge to the
direction of the tangent velocity pd.
To further illustrate the usefulness of the adaptive scheme

and test its robustness with respect to sensor noise, a second
experiment is described. In this case, all the initial conditions
and control parameters are as in the first experiment, but now
the “virtual” unicycle vehicle moves with linear velocity Vd =
0.2m/s and angular velocity ωd such that

ω̇d = −0.1(ωd + 0.3 sin(t/8)), ωd(0) = 0.

Zero mean uniform random noise was introduced in every
sensed signal: the measured velocities v, and ω; the orientation
angle θ; and the x and y positions. The amplitude was set
to (0.05, 0.05), 0.05, 0.1, 0.1, and 0.1, respectively. We also
consider the situation where the Hovercraft moves between
two surfaces characterized by distinct friction coefficients (e.g.,
from water to land). To simulate this effect, we set the value
of the coefficient of viscous friction to dv = 1.5Kg/s while
the Hovercraft is in the region {(x, y) ∈ R

2 : x ≥ −0.5} and
dv = 5.5Kg/s, otherwise. We can see in Fig. 3(b) that the
hovercraft still converges to a very small neighborhood of the
target unicycle vehicle and its performance is not significantly
affected by the switching in dv .

B. Trajectory-tracking and path-following of an underwater
vehicle in 3-D space

Consider an ellipsoidal shaped underactuated autonomous
underwater vehicle (AUV) not necessarily neutrally buoyant.
Let {B} be a body-fixed coordinate frame whose origin is
located at the center of mass of the vehicle and suppose that
we have available a pure body-fixed control force τu in the
xB direction, and two independent control torques τq and τr

about the yB and zB axes of the vehicle, respectively. The
kinematics and dynamics equations of motion of the vehicle
can be written as (2)–(3), where M = diag{m11,m22,m33},
J = diag{J11, J22, J33}, uv = τu, uω = (τq, τr)′, Dv(v) =
diag{Xv1 + X|v1|v1 |v1|, Yv2 + Y|v2|v2 |v2|, Zv3 + Z|v3|v3 |v3|},
Dω(ω) = diag{Kω1 +K|ω1|ω1 |ω1|,Mω2 +M|ω2|ω2 |ω2|, Nω3 +
N|ω3|ω3 |ω3|}, gv =

(
1
0
0

)
, Gω =

(
0 0
1 0
0 1

)
, ḡ1(R) = R′

(
0
0

W−B

)
,

ḡ2(R) = S(rB)R′
(

0
0
B

)
fv = −Dv(v)v − ḡ1(R), fω =

−Dω(ω)ω − ḡ2(R). The gravitational and buoyant forces are
given by W = mg and B = ρg∇, respectively, where
m is the mass, ρ is the mass density of the water and ∇
is the volume of the displaced water. The numerical values
used for the physical parameters match those of the Sirene
AUV, described in [48], [49]. The matrix B defined in (8)
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takes the form B = [b1, b2, b3, b4], where b1 := [1, 0, 0]′,
b2 := [0,m33δ3+a3(m33−m22),−m22δ2−a2(m22−m33)]′,
b3 := [−m33δ3−a3(m33−m11), 0,m11δ1+a1(m11−m33)]′,
b4 := [m22δ2+a2(m22−m11),−m11δ1+a1(m11−m22), 0]′,
a = (a1, a2, a3)′ := R′ṗd.
Two simulation results are included to illustrate the dynamic

behavior of the AUV in closed-loop with the trajectory-
tracking controller presented in Section III, and the path-
following controller in Section V. Fig. 4(a) displays the vehicle
trajectory using the trajectory-tracking controller in the 3D-
space for the following desired trajectory

pd(t) =
[
V1 cos(

2π

T
t + φd), V1 sin(

2π

T
t + φd), V2t

]
with V1 = 20, V2 = 0.05, T = 400, and φd = −π

2 .
The initial conditions of the AUV are p0 = (x0, y0, z0) =
(10m,−10m, 0), R = I , and v0 = ω0 = 0. The control
parameters were selected as follows: ke = 0.1, Kϕ = I ,
Kz2 = I , and δ = (−2max(|m11−m22|, |m11−m33|), 0, 0)′.
Figures 4(c) and 4(e) show the time evolution of the tracking
error e and the Euler angles (computed from R), respectively.
The damped oscillatory behavior of pitch and roll are due to
the gravitational and buoyancy forces. Notice that the initial
position of the desired position was deliberately chosen to be
almost behind the initial position of the vehicle. As we can
see, the vehicle turns back in its attempt to be at the given
reference position at the prescribed time, requiring significant
control effort and consequently inducing a strong oscillatory
behavior. The path-following controller in Section V was used
to generate the trajectories in Fig. 4(b), 4(d), and 4(f) where
the desired path, the initial conditions and the control gains are
the same as in the experiment for the tracking controller. The
guidance gain and the speed assignment were set to kγ = 2
and vr = 1m/s, respectively. The initial condition for γ was
chosen to be the one that minimizes the distance between
the initial position of the AUV and the desired path. The
convergence of the vehicle to the path is now much smoother.
From these two experiments one can see that when the primary
objective is to steer the vehicle to converge to and move
along a geometric path, the path-following controller offers
significant performance improvement. For simplicity, in these
experiments we did not include model uncertainty.

VII. CONCLUSIONS

We proposed a solution to the trajectory-tracking and path-
following problem for underactuated autonomous vehicles in
the presence of possibly large modeling parametric uncer-
tainty. For a general class of vehicles moving in either two
or three-dimensional space, we demonstrated how adaptive
switching supervisory control can be combined with a nonlin-
ear Lyapunov-based tracking control law to design a hybrid
controller that yields global boundedness and convergence
of the position tracking error to a small neighborhood, and
robustness to parametric modeling uncertainty. We illustrated
our results in the context of two vehicle control applications:
a hovercraft (moving on a planar surface) and an underwa-
ter vehicle (moving in three-dimensional space). Simulations
show that the control objectives were accomplished.

An alternative approach to the Lyapunov-based control
scheme proposed in Section III consists in choosing an ade-
quate point linked to the vehicle and then utilize output feed-
back linearization to design a simple controller that drives that
point to the reference trajectory. See for example [10] for the
case of unicycle-like mobile robots. For general underactuated
vehicles, the stability of the zero-dynamics would have to be
established independently. This is an issue for future research.
A problem that warrants further research is the control

of underactuated vehicles with noise and in the presence of
disturbances. Typical disturbances for marine vehicles include
the ones induced by wave, wind, and ocean current.

APPENDIX

Property 1: Let gv = (gv1 , gv2 , gv3)
′ be non-zero and ṗd

uniformly bounded by ‖ṗd‖ ≤ γṗd
. Then, there exists a vector

δ that makes B(R, ṗd, δ) defined in (8) full-rank.
Proof: Pick δ = M−1µε, where µ = (µ1, µ2, µ3)′ :=

(1, 0, 0)′ and ε is a positive constant to be selected shortly.
Defining ∆ := 1

εΓ, we conclude that

rank B = rank
[
gv εS(µ) + Γ

] [
I 0
0 1

ε I

]
= rank

[
gv S(µ) + ∆

]
= rank

[
gv1 ∆11 −µ3+∆12 µ2+∆13

gv2 µ3+∆21 ∆22 −µ1+∆23

gv3 −µ2+∆31 µ1+∆32 ∆33

]
(40)

where we used the fact that the rank of a matrix does not
change when it is multiplied by a non-singular matrix. From
the definition of Γ (see (6)) we conclude that each element of
∆ can be bounded by |∆ij | ≤ 2λmax(M)γṗd

ε . Much tighter
bounds can be obtained for specific class of vehicles. For
example when M = mI then Γ = ∆ = 0. Assume now that
gv1 �= 0. From (40), we conclude that B has full-rank if one
can find at least one 3×3 minor determinant of

[
gv S(µ)+∆

]
non-zero. Consider the one formed by the first, third and forth
columns, i.e.,∣∣∣∣

gv1 ∆12 ∆13

gv2 ∆22 −µ1+∆23

gv3 µ1+∆32 ∆33

∣∣∣∣ = µ1[µ1gv1 + gv1∆32 − gv1∆23

+gv2∆13 − gv3∆12] + h∆ (41)

where h∆ collects all the remaining terms and does not depend
on µ1. It follows now from the fact that each ∆ij can be
arbitrarily small by choosing ε (and consequently δ) sufficient
large, that (41) can be made nonzero and therefore B full-rank.
If gv1 = 0, the same conclusion about the full-rank of B can be
made by following the same reasoning but with µ = (0, 1, 0)′

if gv2 �= 0, or µ = (0, 0, 1)′ for the case gv1 = gv2 = 0.

Lemma 1

Proof: Throughout this proof, to avoid cumbersome
notation, we will use v̂, ṽ, ω̂, ω̃ to denote v̂Θ� , ṽΘ� , ω̂Θ� ,
and ω̃Θ� , respectively. Note also that Θ = Θ� corresponds to
the nominal model and therefore MΘ� is equal to M. The
same applies for the other model parameters. Consider the
following exponentially weighted Lyapunov-like functions

Vv :=
1
2

e2λµt‖ṽ‖2, Vω :=
1
2

e2λµt‖ω̃‖2
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Fig. 4. Vehicle trajectory in 3-D space using the trajectory-tracking controller presented in Section III (diagram (a)), and the path-following controller
(diagram (b)). Time evolution of the position error e = (ex, ey , ez), the roll φ, pitch θ, and yaw ψ Euler angles for the trajectory-tracking (diagrams (c),
(e)), and the path-following (diagrams (d), (f)).

where λµ is any positive constant that satisfies

λµ < min{λmin(Lv), λmin(Lω)}. (42)

Computing the time derivative of Vv and Vω along the solu-
tions of (2b), (3), and (16) for Θ = Θ�, we obtain

V̇v = −e2λµt
[
ṽ′Lv ṽ − λµ‖ṽ‖2

]
−e2λµtβvΘ� (v̂, ω̂, v, ω, p,R)‖ṽ‖2 (43a)

V̇ω = −e2λµt
[
ω̃′Lωω̃ − λµ‖ω̃‖2

]
−e2λµtβωΘ� (v̂, ω̂, ω, p,R)‖ω̃‖2. (43b)

To prove (18a), consider the Lyapunov function V :=
1
2‖eΘ�‖2, which is the same as V = Vv + Vω

with λµ = 0. From (43) it follows that V̇ ≤
−2min{λmin(Lv), λmin(Lω)}V . Using the Comparison

Lemma [45] one concludes that (18a) holds with κ =
min{λmin(Lv), λmin(Lω)} and γ1 = ‖eΘ�(0)‖.
To prove (18b), observe from (43a) and (42) that

V̇v ≤ −e2λµtβvΘ� (v̂, ω̂, v, ω, p,R)‖ṽ‖2

≤ −2βvΘ� (v̂, ω̂, v, ω, p,R)Vv.

Defining Wv :=
√

Vv = 1√
2

eλµt‖ṽ‖ and taking an

interval [0, τ) on which Vv > 0, we have Ẇv ≤
−βvΘ� (v̂, ω̂, v, ω, p,R)Wv , t ∈ [0, τ) and therefore

Wv(t) − Wv(0) ≤ −
∫ t

0

βvΘ� (v̂(τ), ω̂(τ), v(τ), ω(τ), p(τ),

R(τ))Wv(τ)dτ, t ∈ [0, τ)
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Consequently,
∫ t

0

eλµτβvΘ� (v̂(τ), ω̂(τ), v(τ), ω(τ),

p(τ), R(τ))‖ṽ(τ)‖dτ ≤ γ2 < ∞, t ∈ [0, τ)

with γ2 = ‖ṽ(0)‖. On the other hand, if Vv(τ) = 0 for some
τ > 0, Vv(t) = 0 for all t ≥ τ . Therefore,
∫ t

0

eλµτβvΘ� (v̂(τ), ω̂(τ)v(τ), ω(τ), p(τ), R(τ))‖ṽ(τ)‖dτ

=
∫ τ

0

eλµτβvΘ� (v̂(τ), ω̂(τ), v(τ), ω(τ),

p(τ), R(τ))‖ṽ(τ)‖dτ ≤ γ2 < ∞
Inequality (18c) can be also concluded by applying the same
arguments to (43b). In that case γ3 = ‖ω̃(0)‖.

Lemma 2

Proof: Taking norms to h3Θ(·) defined in (20) and using
(17a) we conclude that

‖h3Θ(·)‖ ≤ [‖M2
ΘLv‖2 + keΘλmax(MΘ)

]‖ṽΘ‖
+λmax(MΘ)βvΘ(·)[λmax(MΘ) + c1

]‖ṽΘ‖
+λmax(MΘ)

[‖MΘδΘ‖
+2λmax(MΘ)‖ṗd‖

]‖ω̃Θ‖
Also, from (17b)–(17c), a bound for h4Θ(·) given in (27) can
be computed as follows.

‖h4Θ(·)‖ ≤ ‖S(v̂Θ)MΘv̂Θ − S(v̂Θ)MΘv + S(v̂Θ)MΘv

−S(v)MΘv‖ + ‖S(ω̂Θ)JΘω̂Θ − S(ω̂Θ)JΘω

+S(ω̂Θ)JΘω − S(ω)JΘω‖ + ‖fωΘ(v, ω, p,R)
−fωΘ(v̂Θ, ω, p,R) + fωΘ(v̂Θ, ω, p,R)
−fωΘ(v̂Θ, ω̂Θ, p, R)‖ +

[‖JΘLω‖2

+βωΘ(·)λmax(JΘ)
]
ω̃Θ + ‖ [ 03×1 JΘ ] ϕvΘ(·)‖

+‖ [ 03×1 JΘ ] ϕωΘ(·)‖
≤ c2 β2Θ(v̂Θ, ω̂Θ, v, ω, p,R)‖ṽΘ‖ +

[
(λmax(JΘ)

+c3)βωΘ(v̂Θ, ω̂Θ, ω, p,R) + ‖JΘLω‖2

]‖ω̃Θ‖
Using these two bounds in (26) and resorting to Young’s
inequality it follows that for every positive constant γi, i =
1, . . . , 9, V̇3 satisfies

V̇3 ≤ −
[
keΘλmin(M−1

Θ ) − γ1

2
− γ2

2

]
‖e‖2

−
[
λmin(KϕΘ) − γ3

2
‖M2

ΘLv‖2 + keΘλmax(MΘ)
]

−γ4

2
λmax(MΘ)βvΘ(·)(λmax(MΘ) + c1

)‖ṽΘ‖
−γ5

2
λmax(MΘ)

[‖MΘδΘ‖ + 2λmax(MΘ)‖ṗd‖
]]‖ϕΘ‖2

+
[ 1
2γ2

+
1

2γ3

[‖M2
ΘLv‖2 + keΘλmax(MΘ)

]]‖ṽΘ‖2

+
[ 1
2γ5

λmax(MΘ)
(‖MΘδΘ‖ + 2λmax(MΘ)‖ṗd‖

)

+
1

2γ9
‖JΘLω‖2

]
‖ω̃Θ‖2 +

[ 1
2γ4

λmax(MΘ)βvΘ(·)

×(
λmax(MΘ) + c1

)
+

1
2γ7

c2β2Θ(·)
]
‖ṽΘ‖

+
1

2γ8
(λmax(J) + c3)βωΘ(·)‖ω̃Θ‖

−
[
λmin(Kz2Θ

) − γ7

2
c2β2Θ(·)‖ṽΘ‖ − γ8

2
(λmax(JΘ)

+c3)βωΘ(·)‖ω̃Θ‖ − γ9

2
‖JΘLω‖2

]
‖z2Θ‖2 +

1
2γ1

‖δΘ‖2

where we used the facts that ‖ṽΘ‖‖ϕΘ‖ ≤ ‖ṽΘ‖
[

1
2γ4

+
γ4
2 ‖ϕ‖2

]
and ‖ω̃Θ‖‖z2Θ‖ ≤ ‖ω̃Θ‖

[
1

2γ8
+ γ8

2 ‖z2Θ‖2
]
. There-

fore, there exist sufficiently small positive constants λ, γi,
i = 1, . . . , 9, and sufficiently large positive constants κj ,
j = 1, . . . , 5 such that

V̇3 ≤ −λV3 +
[
κ1βvΘ(·)‖ṽΘ‖ + κ2βωΘ(·)‖ω̃Θ‖

]
V3

+κ3‖eΘ‖2 + κ4βvΘ(·)‖ṽΘ‖ + κ5βωΘ(·)‖ω̃Θ‖
+

1
2γ1

‖δΘ‖2 (44)

where in view of (29)–(30), the signals κ1β1Θ(·)‖ṽΘ‖,
κ2βωΘ(·)‖ω̃Θ‖, κ4βvΘ(·)‖ṽΘ‖, κ5βωΘ(·)‖ω̃Θ‖ are L1 defined
on [T †, T ), and κ3‖eΘ‖2 is L2 defined on [T †, T ). Applying
the Comparison Lemma to (44) and using [46, Lemma 1]
we conclude that V3 is bounded on [T †, T ). Moreover, when
T = +∞, V3 converges to a ball of radius

‖δΘ‖2

2λγ1
as t → ∞.

Standard signal chasing arguments can now be applied to
conclude that the signals v̂Θ(t), ω̂Θ(t), uΘ(t) and e(t) in
closed-loop system remain bounded. Furthermore, applying
the same arguments described in the proof of item ii) of
Theorem 1, one conclude that the tracking error ‖p(t)−pd(t)‖
converges to a neighborhood of the origin that can be made
arbitrarily small.

Derivation of (35)

Using (16) for Θ = Θ� and the fact that v = v̂Θ� − ṽΘ� =
v̂Θ† − ṽΘ† , and ω = ω̂Θ� − ω̃Θ� = ω̂Θ† − ω̃Θ† , the time-
derivative of V in (34) can be written as

V̇ = −v̂′
Θ�MLv v̂Θ� − ω̂′

Θ�JLωω̂Θ�

+v̂′
Θ�

[ − S(ω̂Θ† − ω̃Θ†)Mv̂Θ† + S(ω)MṽΘ†

+fv(v̂Θ† , p, R) + fv(v, p,R) − fv(v̂Θ† , p, R)
+gv [ 1 01×3 ]KΘ†(·) + MLv(v̂Θ† − ṽΘ†)
−βvΘ� (v̂Θ� , ω̂Θ� , v, ω, p,R)MṽΘ�

]
+ω̂′

Θ�

[ − S(v̂Θ† − ṽΘ†)M(v̂Θ† − ṽΘ†) − S(ω̂Θ†

−ω̃Θ†)J(ω̂Θ† − ω̃Θ†) + fω(v̂Θ† , ω̂Θ† , p, R)
+fω(v, ω, p,R) − fω(v̂Θ† , ω, p,R) + fω(v̂Θ† , ω, p,R)
−fω(v̂Θ† , ω̂Θ† , p, R) + Gω [ 03×1 I3×3 ]KΘ†(·)
−JLω(ω̂Θ� − ω̃Θ�) − βωΘ� (v̂Θ� , ω̂Θ� , ω, p,R)Jω̃Θ�

]
.

Using the Young’s inequality, after a straightforward but messy
computations, one can conclude that there exist a sufficiently
small λ > 0 and sufficiently large κj > 0, j = 1, . . . , 13 such
that for all t ∈ [T †, T ), inequality (35) holds with

a1(t) = κ2β1Θ† (v̂Θ† , v, ω, p,R)‖ṽΘ†‖ + κ3βvΘ� (v̂Θ� , ω̂Θ� ,

v, ω, p,R)‖ṽΘ�‖ + κ4β2Θ† (v̂Θ† , ω̂Θ† , v, ω, p,R)‖ṽΘ†‖
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+κ5βωΘ† (v̂Θ† , ω̂Θ† , ω, p,R)‖ω̃Θ†‖
+κ6βωΘ� (v̂Θ� , ω̂Θ� , v, ω, p,R)‖ω̃Θ�‖

a2(t) = κ7‖ẽΘ†‖2

b1(t) = κ8β1Θ† (v̂Θ† , v, ω, p,R)‖ṽΘ†‖ + κ9βvΘ� (v̂Θ� , ω̂Θ� ,

v, ω, p,R)‖ṽΘ�‖ + κ10β2Θ† (v̂Θ† , ω̂Θ† , v, ω, p,R)‖ṽΘ†‖
+κ11βωΘ† (v̂Θ† , ω̂Θ† , ω, p,R)‖ω̃Θ†‖
+κ12βωΘ� (v̂Θ� , ω̂Θ� , v, ω, p,R)‖ω̃Θ�‖,

b2(t) = κ13‖ẽΘ†‖2.
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