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ON THE GEOMETRY
OF ROLLING AND INTERPOLATION CURVES
ON Sn, SOn, AND GRASSMANN MANIFOLDS

K. HÜPER and F. SILVA LEITE

Abstract. We present a procedure to generate smooth interpolating
curves on submanifolds, which are given in closed form in terms of
the coordinates of the embedding space. In contrast to other existing
methods, this approach makes the corresponding algorithm easy to
implement. The idea is to project the prescribed data on the man-
ifold onto the affine tangent space at a particular point, solve the
interpolation problem on this affine subspace, and then project the
resulting curve back on the manifold. One of the novelties of this
approach is the use of rolling mappings. The manifold is required to
roll on the affine subspace like a rigid body, so that the motion is de-
scribed by the action of the Euclidean group on the embedding space.
The interpolation problem requires a combination of a pullback/push
forward with rolling and unrolling. The rolling procedure by itself
highlights interesting properties and gives rise to a new, but simple,
concept of geometric polynomial curves on manifolds. This paper is
an extension of our previous work, where mainly the 2-sphere case was
studied in detail. The present paper includes results for the n-sphere,
orthogonal group SOn, and real Grassmann manifolds. In particular,
we present the kinematic equations for rolling these manifolds along
curves without slip or twist, and derive from them formulas for the
parallel transport of vectors along curves on the manifold.

1. Introduction

Many engineering applications call for efficient methods to generate
smooth interpolating curves on non-Euclidean spaces. This is the case, e.g.,
in path planning for mechanical systems whose configuration spaces have
components which are Lie groups or symmetric spaces. Interpolation over
a spherical surface also has immediate applications in the manufacturing
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industry. Several methods to generate interpolating curves on Riemannian
manifolds are available in the literature. They correspond to appropriate
generalizations of classical methods which have been around for many years.
Without being exhaustive, we mention the variational approach to splines
on manifolds [3, 6, 22], which can also be reformulated via a Hamiltonian
formalism; the geometric approach that corresponds to the generalized De
Casteljau algorithm [5, 23]; and the analytic approach undertaken in [10].
These generalized methods posed interesting new mathematical problems
and many challenges regarding implementation as well. Even for the most
simple cases, such as the 3-dimensional rotation group and the 2-sphere,
explicit solutions are extremely hard to obtain. Here, following our previ-
ous work [15, 16], we present a method to generate interpolating curves on
smooth submanifolds, which is based on a rolling and unwrapping technique.
Detailed examples considered in this paper are the sphere Sn, orthogonal
group SOn, and Grassmann manifold of all k-dimensional subspaces of R

n.
The solution of the interpolating problem obtained by this method is given
explicitly in terms of the coordinates of the embedding space. Moreover,
since our solution curves are given in a closed form, they are easily imple-
mented. Some of the ideas contained here were inspired by the work of
Jupp and Kent [17] for the 2-sphere. The rolling of a manifold on its affine
tangent space at a given point plays an important role here. The kinematic
equations for the rolling of our favorite manifolds are derived. While for
the sphere these equations are already known in the literature, for other
manifolds, like the orthogonal group or Grassmann manifolds, the authors
are not aware of any work were the kinematic equations are derived. Prop-
erties of the rolling curves are studied in connection with geometric splines,
which, in turn, can be formulated as solutions of certain optimal control
problems. This brings some insight to explore further optimality proper-
ties of the interpolating curves generated by the presented algorithm. This
comes in contact with the optimal control problems for rolling bodies stud-
ied in [1, 30]. Some of the ideas presented here have been implemented on
an experimental robot arm platform, see [25,26]; for numerical experiments
related to SO3, see [27].

This paper is organized as follows. In Sec. 2, the main problem is stated.
Section 3 includes the abstract definition of a rolling mapping and the kine-
matic equations for rolling Sn, SOn, and Grassmann manifolds are derived.
Rolling along straight lines results in formulas for the geodesics on these
manifolds. In addition, the relation to parallel transport including explicit
formulas for special cases are considered. The connections between rolling
mappings and geometric splines are discussed in Sec. 4. This includes a
short review of the variational approach to geometric splines, the relation
to constrained variational problems and geodesic curvature. In Sec. 5 we
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present a procedure for solving interpolation problems explicitly. This in-
cludes as an example the 2-sphere followed by a few numerical experiments
and plots.

2. Statement of the problem

Let M be a smooth k-dimensional manifold embedded into R
n (Whit-

ney’s theorem guarantees this for suitable n) so that, for all p ∈ M , the
corresponding affine tangent space can also be considered as an affine sub-
space of R

n.

Problem 2.1. Find a C2-smooth curve

γ : [0, τ ] → M (2.1)

satisfying
γ(ti) = pi, 1 ≤ i ≤ k − 1, (2.2)

for a given set of distinct points pi ∈ M and fixed times ti, where

0 = t0 < t1 < · · · < tk−1 < tk = τ, (2.3)

and, in addition,

γ(0) = p0, γ(τ) = pk,

γ̇(0) = ξ0 ∈ Tp0M, γ̇(τ) = ξk ∈ Tpk
M,

(2.4)

where ξ0 and ξk are given tangent vectors to M at p0 and pk, respectively.

3. Rolling mappings

Rolling mappings play an important role in this paper. Here we are
interested in rolling mappings that describe how a compact manifold M
rolls without slipping or twisting on its affine tangent space V at a point
p0 ∈ M . (Both M and V are submanifolds of R

n.) Since this is a rigid-
body motion, it can be described by the usual action of the Euclidean group
SEn = SOn �R

n on R
n, through rotations and translations. We represent

elements of the Euclidean group as pairs (R, s), R ∈ SOn, s ∈ R
n, so that

the group operations are defined by

(R2, s2) ◦ (R1, s1) := (R2R1, R2s1 + s2), (R, s)−1 = (R�,−R�s).

The group SEn acts on points of R
n in the usual way via (R, s) ◦ p =

R ◦ p + s, and this action induces a linear mapping between TpR
n and

TRp+sR
n, sending every ξ to Rξ. For each p ∈ R

n, this action defines a
mapping

σp : SEn → V, (R, s) �→ Rp + s, (3.1)

whose derivative Dσp, at the group identity (I, 0), is computed as

Dσp(I, 0) : sen → V, (A, v) �→ Ap + v, (3.2)
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where
sen = {(A, v) | A ∈ son, v ∈ R

n} (3.3)
is the Lie algebra of SEn.

The general definition of a rolling mapping [24] can easily be adapted to
the present situation as follows.

Definition 3.1. A smooth mapping

h : [0, τ ] → SEn = SOn �R
n, t �→ h(t) = (R(t), s(t)) (3.4)

where
R : [0, τ ] → SOn, s : [0, τ ] �→ R

n (3.5)
satisfying the following properties 1–3 for each t ∈ [0, τ ] is called a rolling
of M on V without slipping or twisting.

1. (The rolling condition.) There exists a smooth rolling curve on M ,
α : [0, τ ] → M such that for all t ∈ [0, τ ]
(a) h(t) ◦ α(t) ∈ V ,
(b) Th(t)◦α(t)(h(t) ◦ M) = Th(t)◦α(t)V .
The curve αdev : [0, τ ] → V defined by αdev(t) = h(t) ◦ α(t) is called
the development of α on V .

2. (The no-slip condition.)(
ḣ(t) ◦ h(t)−1

)
◦ αdev(t) = 0

for all t ∈ [0, τ ].
3. (The no-twist condition.) For all t ∈ [0, τ ], the following conditions

hold:
(a) (tangential part)(

ḣ(t) ◦ h(t)−1
)
◦ Tαdev(t)V ⊂ (Tαdev(t)V )⊥;

(b) (normal part)(
ḣ(t) ◦ h(t)−1

)
◦ (Tαdev(t)V )⊥ ⊂ Tαdev(t)V.

Remark 3.1. Note that in [24, pp. 376], Definition 3.1 appears with a
different notation. Our choice, which will be more convenient in the follow-
ing sections, needs some clarification. Let x ∈ R

n be a point and η ∈ R
n

be a vector, i.e., there exists a smooth curve y ∈ (−ε, ε) → R
n such that

ẏ(0) = η. Then

ḣ(t) ◦ x =
d

dσ
(h(σ) ◦ x)

∣∣∣∣
σ=t

, (3.6)

(
ḣ(t) ◦ h−1(t)

)
◦ x =

d

dσ
((h(σ) ◦ h−1(t)) ◦ x)

∣∣∣∣
σ=t

, (3.7)

(
ḣ(t) ◦ h−1(t)

)
◦ η =

d

dσ
((ḣ(t) ◦ h−1(t)) ◦ y(σ))

∣∣∣∣
σ=0

. (3.8)
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Remark 3.2. In [24, pp. 381] it is proven that given any piecewise-smooth
rolling or development curve, Definition 3.1 ensures the existence and
uniqueness of the corresponding rolling mapping.

Using Definition 3.1, any rolling motion of M on V is completely defined
by the action of some rolling mapping h(t) satisfying h(0) = id: the “posi-
tion” of M at the time t is the submanifold h(t) ◦M , which is tangent to V
at the point αdev(t), and αdev(t) is the curve traced by the point of contact
of h(t) ◦ M on V .

3.1. The rolling of the n-dimensional sphere. The n-dimensional
sphere Sn is naturally embedded into R

n+1 and, therefore, is its affine tan-
gent space at any point. Assume that Sn is rolling (without slipping or
twisting) over the affine tangent space at p0 ∈ Sn denoted by

V := T aff
p0

Sn := {x ∈ R
n+1 | x = p0 + Ωp0, Ω ∈ son+1} (3.9)

with the rolling curve t �→ α(t) satisfying α(0) = p0. The sphere Sn consid-
ered as a rigid body in R

n+1 rotates in R
n+1 so that the proper subspace

which is instantaneously left-invariant under the rotation is parallel to V
and perpendicular to α̇dev(t). Simultaneously, the center of Sn imitates
the development of α on V on the proper n-dimensional subspace of R

n+1

parallel to V . This explains why the kinematic equations for such a motion
are

ṡ(t) = u(t),

Ṙ(t) = R(t)
(
u(t)p�0 − p0u

�(t)
)
,

(3.10)

where the the control function u : R → R
n+1, rotational part of the motion

R : R → SOn+1, coordinate functions s : R → R
n+1 of the development of

the center of Sn, and initial values R(0) = In and s(0) = 0. The function
s(t) lies for all t in the tangent space Tp0S

n considered as a proper n-
dimensional subspace of R

n+1. Consequently, the control u has to solve
p�0 u(t) = 0 for all t. Equations (3.10) are in accordance with [18, p. 467],
where p0 = [0, . . . , 0,−1]� is used. Actually, (3.10) is easily obtained from
the equations from [18] by a rotation of coordinates. Choosing a control
function corresponds to fixing a rolling curve on the sphere. For example,
if the control function u(t) = u0 is constant, this implies that R(t) is such
a one-parameter subgroup of SOn+1 that the rolling curve is a geodesic,
namely, a great circle, on Sn.

In the sequel, it turns out to be convenient to introduce the skew-
symmetric

A : R → son+1, A(t) := u(t)p�0 − p0u
�(t). (3.11)

Let A be as in (3.11). One easily proves by induction the following lemma.
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Lemma 3.1. For all k ∈ N and all t ∈ R,

A2k−1(t) =
(−u�(t)u(t)

)k−1
A(t) (3.12)

holds, where
A2(t) = −u(t)u�(t) − u�(t)u(t)p0p

�
0 . (3.13)

Now we show how to construct a rolling mapping from kinematic equa-
tions (3.10).

Theorem 3.1. If R and s are the solution of kinematic equations (3.10),
corresponding to a particular choice of the control function and satisfying
R(0) = I, s(0) = 0, then t �→ h(t) = (R�(t), s(t)) ∈ SEn+1 is a rolling
mapping, in the sense of Definition 3.1.

Proof. Clearly, α(t) = R(t)p0 is the rolling curve. Therefore,

αdev(t) = h(t) ◦ α(t) = R�(t)α(t) + s(t) = p0 + s(t) ∈ V.

Condition 1b in Definition 3.1 also holds since the submanifolds Sn and V
have exactly one point of contact during the motion. Thus, we can say that

αdev(t) = p0 + s(t) (3.14)

is the rolling condition for the sphere.
In order to prove the no-slip condition, we first note that, using (3.7)

with αdev instead of x, we have
(
ḣ(t) ◦ h(t)−1

)
◦ αdev(t) =

(
Ṙ�(t) ◦ R(t)

)
◦ (αdev(t) − s(t)) + ṡ(t), (3.15)

where the composition ◦ denotes simply matrix multiplication.
Now, using the kinematic equations above, the identity ṡ = A(t)p0,

which is also easy to derive from the kinematic equations, and the iden-
tity αdev(t) = p0 + s(t), we obtain that the no-slip condition

(
ḣ(t) ◦ h(t)−1

)
◦ αdev(t) = 0 (3.16)

is satisfied.
Consequently, for the case of a sphere, the no-slip condition is equivalent

to
ṡ(t) = A(t)p0. (3.17)

Finally, the no-twist conditions follow from (3.8) and the next three obser-
vations:

Tαdev(t)V = {w ∈ R
n+1 : w�p0 = 0} ∼= V,

(Tαdev(t)V )⊥ = span(p0), Ṙ�(t)R(t) = −A(t).
(3.18)

The theorem is proved.
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3.2. The rolling of the rotation group SOn. In contrast to the 2-sphere,
we now loose 3-dimensional geometric intuition. For this reason, we first
construct a rolling mapping and then derive the kinematic equations for the
motion of the rotation group as a rigid body rolling (without slip or twist)
over its affine tangent space at a point.

First, we define the group action for such kind of the motion. The fol-
lowing statements are easily verified. The Lie group SOn ×SOn acts tran-
sitively on SOn via equivalence

σ : (SOn ×SOn) × SOn → SOn, ((U,W ), R) �→ URW�. (3.19)

Moreover, the group G = SOn ×SOn �R
n×n acts on R

n×n via

G × R
n×n → R

n×n, ((U,W,X), Z) �→ UZW� + X, (3.20)

where G acts on itself via

(U2,W2,X2) ◦ (U1,W1,X1) :=
(
U2U1,W2W1, U2X1W

�
2 + X2

)
, (3.21)

with the inverse

(U,W,X)−1 =
(
U�,W�,−U�XW

)
. (3.22)

Now, let P0 be an arbitrary point in SOn and α : [0, τ ] → SOn, α(t) =
U(t)P0W (t)� be a curve on SOn starting from P0 at t = 0 (the transitive
action σ guarantees that any curve on SOn has this form). We will show
that, under some restrictions, the mapping

h : [0, τ ] → G = SOn ×SOn �R
n×n,

t �→ h(t) =
(
U�(t),W�(t),X(t)

) (3.23)

is a rolling mapping of the rotation group over V := T aff
P0

SOn
∼= TP0 SOn,

along
α(t) = U(t)P0W (t)�, (3.24)

with the development

αdev(t) = h(t) ◦ α(t) = U�(t)α(t)W (t) + X(t) = P0 + X(t). (3.25)

A possible way to understand how G, as a closed subgroup of SEn2 , behaves
inside SEn2 , is to use the Kronecker product and vec-notation. The vec-
isomorphism, i.e., “stacking columns,” is defined as

vec : R
n×n → R

n2
, [z1, . . . , zn] = Z �→ vec Z :=

⎡
⎢⎣

z1

...
zn

⎤
⎥⎦ , (3.26)

where
vec(UXW�) = (W ⊗ U) vec X (3.27)

for any U,X,W ∈ R
n×n. Let

θ : G × R
n×n → R

n×n, ((U,W,X), Z) �→ UZW� + X, (3.28)



474 K. HÜPER and F. SILVA LEITE

and let

ϕ : G → ϕ(G) ⊂ SEn2 = SOn2 �R
n2

, (U,W,X) �→ (W⊗U, vec X) (3.29)

with the induced group action

θ : ϕ(G) × R
n2 → R

n2
,

((W ⊗ U, vec X), vec Z) �→ (W ⊗ U) vec Z + vec X.
(3.30)

Introducing

φ : SEn2 ×R
n2 → R

n2
, ((E, x), z) �→ Ez + x, (3.31)

we immediately obtain that θ = φ|ϕ(G)×Rn2 , where

θ(g, x) = vec(θ(ϕ−1(g), vec−1(x))) (3.32)

for g ∈ ϕ(G) and x ∈ R
n2

.
Before proceeding to derive the rolling mapping h, we rewrite relations

(3.6)–(3.8), so that they can be used in the present situation, i.e., when
h(t) =

(
U�(t),W�(t),X(t)

)
and, consequently,

ḣ(t) =
(
U̇�(t), Ẇ�(t), Ẋ(t)

)
,

(h(t))−1 =
(
U(t),W (t),−U(t)X(t)W�(t)

)
.

(3.33)

The following formulas, valid for a point Y ∈ R
n×n and a vector η ∈ R

n×n,
are easily obtained:

ḣ ◦ Y = U̇�Y W + U�Y Ẇ + Ẋ, (3.34)(
ḣ ◦ h−1

)
◦ Y = U̇�U(Y − X) + (Y − X)W�Ẇ + Ẋ, (3.35)
(
ḣ ◦ h−1

)
◦ η = U̇�Uη + ηW�Ẇ . (3.36)

According to Definition 3.1, h defined by (3.23) must satisfy the no-slip
condition (

ḣ(t) ◦ h−1(t)
)
◦ αdev(t) = 0 for all t. (3.37)

Therefore, according to (3.34), we can write
(
ḣ ◦ h−1

)
◦ αdev = 0 ⇐⇒ ḣ ◦ α = 0 ⇐⇒ ḣ ◦ (UP0W

�) = 0

⇐⇒ U̇�UP0W
�W + U�UP0W

�Ẇ + Ẋ = 0

⇐⇒ U̇�UP0 + P0W
�Ẇ + Ẋ = 0. (3.38)

If we set
U̇�U =: −ΩU

2
∈ son, W�Ẇ =: −ΩW

2
∈ son, (3.39)

the no-slip condition takes the form

Ẋ =
ΩU

2
P0 + P0

ΩW

2
. (3.40)
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Now, the no-twist conditions(
ḣ ◦ h−1

)
◦ TαdevV ⊂ (TαdevV )⊥ , (3.41)

(
ḣ ◦ h−1

)
◦ (TαdevV )⊥ ⊂ TαdevV (3.42)

must also hold. That is, for all ξ ∈ TαdevV((
U̇�, Ẇ�, Ẋ

)
◦ (U,W,−UXW�)) ◦ ξ = U̇�Uξ + ξW�Ẇ ∈ (TαdevV )⊥ ,

(3.43)
and, similarly, for all η ∈ (TαdevV )⊥,((

U̇�, Ẇ�, Ẋ
)
◦ (U,W,−UXW�)) ◦ η = U̇�Uη + ηW�Ẇ ∈ TαdevV.

(3.44)
Note that any vector ξ ∈ TαdevV is of the form ξ = P0Ψ for some Ψ ∈ son.
Similarly, any vector η ∈ (TαdevV )⊥ is of the form η = P0S for some sym-
metric matrix S. Consequently, the tangential part of the no-twist condition
is equivalent to requiring that the matrix P0

�(U̇�UP0Ψ + P0ΨW�Ẇ ) is
symmetric for all Ψ ∈ son, while the normal part requires that the matrix
P0

�(U̇�UP0S +P0SW�Ẇ ) be skew-symmetric for all S = S�. After some
simple calculations, we conclude that the tangential condition reduces to[

P0
�ΩUP0 − ΩW ,Ψ

]
= 0 for all Ψ ∈ son,

which is equivalent to P0
�ΩUP0 = ΩW . Hence, by (3.39), the tangential

condition can be written as U̇�UP0 = P0W
�Ẇ . However, it turns out that

if this condition holds, the normal condition holds as well. Therefore, the
no-twist condition reduces to the single equation

U̇�UP0 = P0W
�Ẇ ⇐⇒ ΩUP0 = P0ΩW (no-twist condition). (3.45)

By introducing the control function

t �→ Ω(t) := ΩU (t) = P0ΩW (t)P0
�, (3.46)

the kinematic equations for the rolling of SOn are now easily derived from
the no-slip and no-twist conditions:

Ẋ(t) = Ω(t)P0, U̇(t) =
1
2
U(t)Ω(t), Ẇ (t) = −1

2
W (t)P0

�Ω(t)P0 (3.47)

with the initial conditions X(0) = 0 and U(0) = W (0) = I. The skew-
symmetric matrix function t �→ Ω(t) plays the role of the control function,
since the motion is completely defined by the choice of Ω.

Now we can state an analog of Theorem 3.1.

Theorem 3.2. If (X,U,W ) is the solution of kinematic equations (3.47)
corresponding to a particular choice of the control function Ω and satisfying

(X(0), U(0),W (0)) = (0, I, I),



476 K. HÜPER and F. SILVA LEITE

then
t �→ h(t) = (U�(t),W�(t),X(t)) ∈ SEn2

is a rolling mapping for SOn in the sense of Definition 3.1.

For every U,W ∈ SOn, the action σ in (3.19) defines a mapping

σU,W : SOn → SOn, R �→ URW�. (3.48)

Consequently,
α(t) = U(t)P0W

�(t) = σU,W (P0), (3.49)
which shows that the rolling curve depends also on the choice of Ω. Since
we have a total freedom in the choice of Ω(t) ∈ son, we can conclude that
all rolling mappings of SOn are constructed in this way.

Remark 3.3. The statement of Theorem 3.2 seems to be remarkable. It
is a priori by no way clear, why the rotational part of the rolling mapping
acts simply by equivalence. In a forthcoming paper, the authors will show
that the situation for arbitrary Stiefel manifolds is much more subtle, unless
the manifold is either a sphere or an orthogonal group (see [14]).

Example 3.1. If, e.g., Ω(t) = Ω is a constant matrix, then the solution
of the kinematic equations with initial conditions (X(0), U(0),W (0)) =
(0, I, I) is

X(t) = (tΩ)P0, U(t) = et Ω
2 , W (t) = P0

�e−t Ω
2 P0, (3.50)

and, in this case,

α(t) = et Ω
2 P0P0

�et Ω
2 P0 = etΩP0, (3.51)

i.e., t �→ α(t) is a geodesic on SOn, passing through P0 at t = 0. Conse-
quently, αdev(t) = P0 + X(t) = P0 + tΩP0 is also a geodesic, i.e., a straight
line in T aff

P0
SOn, passing through P0 at t = 0.

3.3. Rolling Grassmann manifolds. We consider the Grassmann man-
ifold Gk,n of all k-dimensional subspaces of R

n. Since any k-dimensional
subspace in R

n can be uniquely associated with an orthogonal projection
(n×n)-matrix P = P� of rank k, we use a representation of the Grassman-
nian as a particular subset of the symmetric matrices Symn, i.e.,

Gk,n := {P ∈ Symn | P 2 = P, rk(P ) = k}. (3.52)

Using this representation of Gk,n, the tangent space at any point P0 ∈ Gk,n

is given by

TP0Gk,n = {T ∈ Symn | T = P0T + TP0}
= {T ∈ Symn | T = [P0, [P0, Z]], Z ∈ Symn}. (3.53)

Note that the second description of the tangent space in (3.53) is proved
in [12].
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The normal space is

T⊥
P0

Gk,n = {T ∈ Symn | tr(TZ) = 0 for all Z ∈ TP0Gk,n}
= {T ∈ Symn | T = Z − [P0, [P0, Z]], Z ∈ Symn} (3.54)

with respect to the usual Euclidean inner product in Symn.

Example 3.2. In particular, if

P0 =
[
Ik 0
0 0

]

and tangent vectors in (3.53) are partitioned accordingly, a typical element
ξ ∈ TP0Gk,n is represented by

ξ =
[

0 Z
Z� 0

]
, (3.55)

where Z is any real (k×(n−k))-matrix, while a typical element η ∈ T⊥
P0

Gk,n

has the form

η =
[
S1 0
0 S2

]
, (3.56)

where S1 and S2 are symmetric matrices of orders k and n−k, respectively.

Looking at Gk,n ⊂ Symn, we now make the necessary computations to
derive the kinematic equations for the rolling of the Grassmann manifold.

Note that dim(Symn) = n(n + 1)/2. Let

G = SOn � Symn . (3.57)

This group acts on Symn by the rule

G × Symn → Symn, ((Θ,X), S) �→ ΘSΘ� + X, (3.58)

while G acts on itself by the rule

(Θ2,X2) ◦ (Θ1,X1) :=
(
Θ2Θ1,Θ2X1Θ�

2 + X2

)
, (3.59)

and the inverse is
(Θ,X)−1 =

(
Θ�,−Θ�XΘ

)
. (3.60)

Remark 3.4. By considerations similar to the case of rolling SOn, one
can find how G behaves inside SEn(n+1)/2. We omit the details since the
derivation using symmetric tensor products would obscure our presentation
considerably.

By the smooth and transitive action of SOn on Gk,n, a smooth curve in
Gk,n through P0 can be given as

t �→ α(t) = Θ(t)P0Θ�(t), (3.61)

where Θ(t) ∈ SOn should also be smooth. Now our objective is to find
conditions under which the mapping

h : [0, τ ] → SOn ×Symn, t �→ h(t) =
(
Θ�(t),X(t)

)
(3.62)
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is a rolling mapping of the Grassmann manifold Gk,n over the affine subspace
associated with TP0Gk,n along the curve [0, τ ] → α(t) = Θ(t)P0Θ�(t) with
the development

αdev(t) = h(t) ◦ α(t) = Θ�(t)α(t)Θ(t) + X(t) = P0 + X(t). (3.63)

Let Y ∈ Symn be a point and η ∈ Symn be a vector. Again, since h =
(Θ�,X), ḣ = (Θ̇�, Ẋ), and h−1 = (Θ,−ΘXΘ�), relations (3.6)–(3.8) can
be easily written as follows:

ḣ ◦ Y = Θ̇�Y Θ + Θ�Y Θ̇ + Ẋ, (3.64)(
ḣ ◦ h−1

)
◦ Y = Θ̇�Θ(Y − X) + (Y − X)Θ�Θ̇ + Ẋ, (3.65)
(
ḣ ◦ h−1

)
◦ η = Θ̇�Θη + ηΘ�Θ̇. (3.66)

Now, for the no-slip condition, we have(
ḣ(t) ◦ h(t)−1

)
◦ αdev(t) = 0 for all t. (3.67)

Thus, by (3.65) with αdev instead of Y , the no-slip condition is equivalent
to

Θ̇�ΘP0 + P0Θ�Θ̇ + Ẋ = 0. (3.68)

Since Θ̇�Θ is skew-symmetric, we obtain

Ẋ = [P0, Θ̇�Θ]. (3.69)

In the rest of this subsection, we will assume for simplicity that

P0 =
[
Ik 0
0 0

]
.

The general case will be covered by Theorem 3.4 at the end of this subsec-
tion. We define

Θ̇�Θ =:
[

Ψ11 Ψ
−Ψ� Ψ22

]
, Ψ11 ∈ sok, Ψ22 ∈ son−k, Ψ ∈ R

k×n−k. (3.70)

Let η ∈ T⊥
P0

Gk,n as in (3.56). Now, for the normal part of the no-twist
conditions, we must have(

ḣ(t) ◦ h(t)−1
)
◦ η ∈ TP0Gk,n for all η ∈ T⊥

P0
Gk,n. (3.71)

Taking into account (3.66), a few computations lead to some constraints on
the matrix Θ. More precisely, we obtain the relations

[Ψ11, S1] = 0 for all S1 = S�
1 ,

[Ψ22, S2] = 0 for all S2 = S�
2 ,

(3.72)

which, in turn, imply
Ψ11 = 0, Ψ22 = 0. (3.73)
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Therefore, (3.70) is reduced to

Θ̇�Θ =
[

0 Ψ
−Ψ� 0

]
. (3.74)

With this restriction, the tangential part of the no-twist condition,
(
ḣ(t) ◦ h(t)−1

)
◦ ξ ∈ T⊥

P0
Gk,n for all ξ ∈ TP0Gk,n, (3.75)

always holds and the no-slip condition (3.69) is reduced to

Ẋ =
[

0 Ψ
Ψ� 0

]
. (3.76)

Therefore, the kinematic equations for the rolling of Gk,n over its affine
tangent space at the point

P0 =
[
Ik 0
0 0b

]

are given by

Ẋ(t) =
[

0 Ψ(t)
Ψ�(t) 0

]
,

Θ̇(t) = Θ(t)
[

0 −Ψ(t)
Ψ�(t) 0

]
= Θ(t)

[[
0 Ψ(t)

Ψ�(t) 0

]
, P0

] (3.77)

with the initial conditions Θ(0) = In and X(0) = 0n.
The matrix function Ψ : R → R

k×n−k plays the role of the control
function, since the motion is completely defined by the choice of Ψ. Now
we can state an analog of Theorems 3.1 and 3.2.

Theorem 3.3. If (X,Θ) is the solution of the kinematic equations (3.77)
corresponding to a particular choice of the control function Ψ and satisfying
(X(0),Θ(0)) = (0, I), then t �→ h(t) = (Θ�(t),X(t)) ∈ SEn(n+1)/2 is a
rolling mapping for the Grassmann manifold Gk,n in the sense of Defini-
tion 3.1.

For the special situation, where Ψ(t) = Ψ is constant, the solution of the
kinematic equations is given by

X(t) = t

[
0 Ψ

Ψ� 0

]
, Θ(t) = exp

(
t

[
0 −Ψ

Ψ� 0

])
(3.78)

and, in this case,
t �→ α(t) = Θ(t)P0Θ�(t) (3.79)

is a geodesic on Gk,n passing through P0 at t = 0 with the velocity

α̇(0) =
[

0 Ψ
Ψ� 0

]
.
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Consequently,

αdev(t) = P0 + X(t) = P0 + t

[
0 Ψ

Ψ� 0

]

is also a geodesic in the affine subspace T aff
P0

Gk,n passing through P0 at
t = 0.

An explicit formula for the exponential of matrices with this special block
structure can be found in [11, p. 351]. Therefore, Θ in (3.78) can be written
in the form

Θ(t) =

[(
Ik − BB�)1/2 −B

B� (
In−k − B�B

)1/2

]
, (3.80)

where

B := Ψ
sin (Ψ�Ψ)1/2

(Ψ�Ψ)1/2
(3.81)

is defined by the series expansion.
Note that the Grassmann manifold is an isospectral manifold (see, e.g.,

[13]). Consequently, if

P0 =
[
Ik 0
0 0

]
,

then
Gk,n = {P̂0 = QP0Q

�, Q ∈ SOn}.
Theorem 3.4. The kinematic equations to roll Gk,n starting from an

arbitrary point P̂0 ∈ Gk,n along a curve in T aff
P̂0

Gk,n are as follows:

Ẋ(t) = ξ(t), Θ̇(t) = Θ[ξ(t), P̂0], (3.82)

with the initial conditions Θ(0) = In and X(0) = 0n and the control function
ξ : R → TP̂0

Gk,n, i.e., ξ(t) has to solve the equation

ξ(t) = ξ(t)P̂0 + P̂0ξ(t)

for all t.

Proof. Note that T ∈ TP0Gk,n if and only if QTQ� ∈ TP̂0
Gk,n, where

P̂0 = QP0Q
�. Now, a simple calculation shows that (X̂, Θ̂) is a solution

of the initial-value problem (3.82) if and only if (X, Θ) is a solution of the
initial-value problem (3.77), where X̂ = QXQ� and Θ̂ = QΘQ�. This
proves the theorem.

Corollary 3.1. For the simple case where ξ(t) = ξ0 is a constant, we
obtain

X(t) = tξ0, Θ(t) = et[ξ0,P̂0] (3.83)
as solutions of kinematic equations (3.82).
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3.4. The rolling versus parallel transport. The parallel transport of
a vector Y0 tangent to a manifold M at a point p0 along a curve t �→
α(t) ∈ M satisfying α(0) = p0 can be accomplished by rolling (without
slip or twist) of T aff

p0
M on M along this curve. Thus, we can apply the

results of the previous section to compute parallel vector fields along curves
belonging to our favorite manifolds, Sn, SOn, and Gk,n. When the curve
is a geodesic, we recover known results contained in the literature on the
differential geometry.

3.4.1. The n-sphere Sn.

Proposition 3.1. If t �→ h(t) = (R�(t), s(t)) is a rolling mapping for
Sn with rolling curve t �→ α(t) satisfying α(0) = p0 and Y0 ∈ Tp0S

n, then

Y (t) = h−1(t) ◦ Y0 = R(t)Y0 (3.84)

defines the parallel vector field along t �→ α(t), satisfying Y (0) = Y0.

Proof. The initial condition is trivially satisfied. Clearly, since α(t) =
R(t)p0 and Y �

0 p0 = 0, we have

Y (t)�α(t) = (R(t)Y0)�R(t)p0 = Y �
0 p0 = 0, (3.85)

i.e., Y (t) ∈ Tα(t)S
n for all t. We just need to show that ∇α̇(t)Y (t) = 0 for all

t. But, since Y �
0 p0 = 0 and Ṙ(t) = R(t)A(t), where A(t) = u(t)p�0 −p0u

�(t)
as in (3.11), we have that A(t)Y0 = −u(t)�Y0 · p0, and, consequently,

∇α̇(t)Y (t) =
(
In+1 − α(t)α�(t)

)
Ẏ (t)

=
(
In+1 − R(t)p0p

�
0 R�(t)

)
Ṙ(t)Y0 = R(t)A(t)Y0 − R(t)p0p

�
0 A(t)Y0

= −u(t)�Y0 · R(t)p0 + u(t)�Y0 · R(t)p0 = 0. (3.86)

The proposition is proved.

Example 3.3. If A(t) = A = u0p
�
0 − p0u

�
0 is constant and ‖u0‖ = 1, then

α(t) = eAtp0 is the geodesic emanating from p0 in the direction of the unit
vector Ap0 = u0. Note that, due to the form of the constant matrix A, we
have

etA = I + A sin t + A2(1 − cos t), (3.87)

which is easily seen by applying Lemma 3.1. As a consequence, the parallel
translation of Y0 along this geodesic is given by

Y (t) = etAY0 = Y0 + AY0 sin t + A2Y0(1 − cos t)

= Y0 − p0u
�
0 Y0 sin t − u0u

�
0 Y0(1 − cos t)

= Y0 − u�
0 Y0 (p0 sin t + u0(1 − cos t)) . (3.88)
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3.4.2. The special orthogonal group SOn. Now we obtain similar results for
the orthogonal group.

Proposition 3.2. Let t �→ h(t) = (U�(t),W�(t),X(t)) be a rolling
mapping for SOn, with the rolling curve t �→ α(t) satisfying α(0) = P0,
and let Y0P0 ∈ TP0 SOn. Then

Y (t) = h−1(t) ◦ (Y0P0) = U(t)Y0P0W
�(t) (3.89)

defines the parallel vector field along t �→ α(t) satisfying Y (0) = Y0P0.

Proof. The initial condition is satisfied since U(0) = W (0) = I. The rolling
curve is defined by α(t) = U(t)P0W

�(t), and the tangent space to SOn

at each point α(t) can be parameterized by {U(t)ΨP0W
�(t), Ψ ∈ son}.

Similarly, {U(t)SP0W
�(t), S = S� ∈ R

n×n} parameterizes the normal
space at α(t). Thus, since Y0 ∈ son, Y (t) defines a vector field along the
rolling curve, and to prove that it is indeed parallel along t �→ α(t), it
suffices to show that Ẏ (t) belongs to the normal space to α(t) for all t.
Using kinematic equations (3.47), we can write

Ẏ (t) = U̇(t)Y0P0W
�(t) + U(t)Y0P0Ẇ

�(t)

=
1
2

(
U(t)Ω(t)Y0P0W

�(t) + U(t)Y0P0P
�
0 Ω(t)P0W

�(t)
)

= U(t)
1
2

(
Ω(t)Y0 + Y0Ω(t)

)
P0W

�(t). (3.90)

Since the matrix Ω(t)Y0 + Y0Ω(t) is always symmetric, we conclude that
∇α̇(t)Y (t) ≡ 0.

Example 3.4. If the rolling curve is a geodesic, then U(t) = et Ω
2 and

W (t) = P�
0 e−t Ω

2 P0, and, therefore, the parallel translation of Y0P0 along
the rolling geodesic is given by

Y (t) = et Ω
2 Y0P0P

�
0 et Ω

2 P0 = et Ω
2 Y0e

t Ω
2 P0. (3.91)

Remark 3.5. Formula (3.88) can be found in [29, p. 120] (see also [28,
p. 23]). Formula (3.91) appears in [28, p. 22] for the case P0 = In.

3.4.3. The Grassmann manifold Gk,n. Finally, for the Grassmann manifold,
we obtain the following proposition.

Proposition 3.3. Let t �→ h(t) = (Θ�(t),X(t)) be a rolling mapping
for Gk,n with the rolling curve t �→ α(t) = Θ(t)P0Θ�(t) satisfying α(0) =
P0 ∈ Gk,n. Let Y0 ∈ TP0Gk,n. Then

Y (t) = h−1(t) ◦ Y0 = Θ(t)Y0Θ�(t) (3.92)

defines the parallel vector field along t �→ α(t) satisfying Y (0) = Y0.
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Proof. The initial condition is satisfied since Θ(0) = I. Also, since
Y0 ∈ TP0Gk,n and α(t) = Θ(t)P0Θ�(t), the invariance properties mentioned
above guarantee that Y (t) = Θ(t)Y0Θ�(t) ∈ Tα(t)Gk,n, i.e., it is indeed a
vector field along t �→ α(t). To complete the proof, it suffices to show that
Ẏ (t) ∈ T⊥

α(t)Gk,n. Using kinematic equations (3.82), we can write

Ẏ (t) = Θ̇(t)Y0Θ�(t) + Θ(t)Y0Θ̇�(t)

= Θ(t)[ξ(t), P0]Y0Θ�(t) + Θ(t)Y0[P0, ξ(t)]Θ�(t)

= Θ(t)
(
[ξ(t), P0]Y0 + Y0[P0, ξ(t)]

)
Θ�(t). (3.93)

Again, by the invariance properties, it suffices to analyze the matrix expres-
sion in brackets in the last line of (3.93), i.e., [ξ(t), P0]Y0 + Y0[P0, ξ(t)] in
the case where

P0 =
[
Ik 0
0 0

]
. (3.94)

Setting

Y0 =:
[

0 Z0

Z�
0 0

]
, ξ(t) =:

[
0 η(t)

η(t)� 0

]
(3.95)

and computing

[ξ(t), P0]Y0 + Y0[P0, ξ(t)]

=
[

0 −η(t)
η(t)� 0

] [
0 Z0

Z�
0 0

]
+
[

0 Z0

Z�
0 0

] [
0 η(t)

−η(t)� 0

]

=
[−η(t)Z�

0 − Z0η(t)� 0
0 η(t)�Z0 + Z�

0 η(t)

]
, (3.96)

we conclude that Ẏ (t) ∈ T⊥
α(t)Gk,n for all t. The proposition is proved.

Example 3.5. Let the control function be constant, i.e.,

ξ(t) = [P0, [P0,X]] = [[X,P0], P0]

for some constant symmetric matrix X. Then the rolling curve is a geodesic,
and the parallel translation of Y0, along the rolling geodesic is given by

Y (t) = Θ(t)Y0Θ�(t) = et[[[X,P0],P0],P0]Y0e
−t[[[X,P0],P0],P0]

= et[X,P0]Y0e
−t[X,P0]. (3.97)

4. Rolling mappings and geometric splines

Since geometric cubic splines on Riemannian manifolds were defined
in [22], there has been an increasing interest to the geometry of these curves,
and the several ways to compute them have been found. In spite of many in-
teresting results, which can be found, e.g., in [3,6,7] and references therein,
many questions remain open. Inspired by some ideas contained in [17], we
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developed in [15] a rolling and unwrapping technique to construct interpo-
lating curves on manifolds. Again, we concentrate on spheres, orthogonal
groups, and Grassmann manifolds to clarify the connection between un-
rolled splines on the Euclidean space and geometric splines on embedded
manifolds. To this end, we first show how rolling mappings transform co-
variant derivatives of vector fields along rolling curves into usual derivatives
of vector fields along their developments.

For a submanifold M of an Euclidean space, the covariant derivative of a
vector field X along a smooth curve t �→ α(t) on M is obtained by projecting
the usual derivative onto the tangent space to M at α(t) with respect to
the Euclidean inner product. In what follows, if no explicit reference to α is
necessary, we use the notation DX/dt to represent ∇α̇(t)X. Similarly, the
(k+1)st covariant derivative of a vector field along a smooth curve t �→ α(t)
on M is obtained from the kth covariant derivative by differentiating it as
an ordinary vector-valued function of t and then projecting the result on the
tangent space at α(t). For the particular case, where X = α̇(t), we write
Dkα

dtk
instead of

Dk−1α̇

dtk−1
, to simplify the notation.

In the previous section, we have seen that, while M is rolling, geodesics
on M develop as geodesics on V . At this point, we ask the following natural
question.

Question 4.1. If a manifold M embedded in an Euclidean space rolls
(without slip or twist) on its affine tangent space at a point along a curve
which is a geometric spline, is the development of this curve an Euclidean
spline?

4.1. The variational approach to geometric splines revisited. In or-
der to answer Question 4.1 for the manifolds under study, we first recall the
definition of a geometric spline on a manifold M equipped with a Riemann-
ian metric 〈·, ·〉. In the variational approach to cubic splines on manifolds,
one looks for curves on M which minimize the following functional:

J(γ) =
1
2

T∫

0

〈
D2γ(t)

dt2
,
D2γ(t)

dt2

〉
dt, (4.1)

over the class Ω of C2-smooth paths γ on M satisfying interpolation condi-
tions (2.2) and the boundary conditions (2.4).

A well-known result is as follows. More details can be found, e.g., in
[6, 7, 22].

Theorem 4.1. A necessary condition for γ to minimize functional (4.1)
over Ω is the condition that γ satisfies the Euler–Lagrange equation

D4γ

dt4
+ R

(
D2γ

dt2
, γ̇

)
γ̇ ≡ 0 (4.2)
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on each sub-interval [ti−1, ti], where R denotes the curvature tensor associ-
ated with the connection which is compatible with the metric.

Generalizations of geometric cubic splines appeared in [4]. The second
derivative in functional (4.1) is replaced by any higher order derivative, say
Dmγ(t)

dtm
, and the corresponding Euler–Lagrange equation becomes

D2mγ

dt2m
+

m∑
j=2

(−1)jR
(

D2m−jγ

dt2m−j
,
Dj−1γ

dtj−1

)
γ̇ ≡ 0. (4.3)

Geometric cubic (polynomial) splines have been defined in the literature as
solutions of Eqs. (4.2) or (4.3), respectively.

Remark 4.1. Note that formulas (4.2) and (4.3) were derived in the gen-
eral context of a Riemannian manifold (M, 〈·, ·〉), while in this paper we
work only in the embedding space, i.e., the Riemannian metric is induced
by the Euclidean metric. More precisely, consider the following cases.

1. Let Sn = {x ∈ R
n+1 | x�x = 1}. The Riemannian metric on Sn

〈·, ·〉 : TSn × TSn → R (4.4)

is that induced by the Euclidean metric on R
n+1, i.e.,

〈ξ1, ξ2〉 := ξ�1 ξ2 for all ξ1, ξ2 ∈ TxSn = {ξ ∈ R
n+1 | ξ�x = 0}. (4.5)

The orthogonal projection operator onto the tangent space at x ∈ Sn

with respect to (4.5) is

πTxSn : R
n+1 → TxSn, z �→ z − 〈x, z〉x = (1 − xx�)z. (4.6)

2. Let SOn = {R ∈ R
n×n | R�R = In, det R = 1}. The Riemannian

metric on SOn

〈·, ·〉 : T SOn ×T SOn → R (4.7)

is that induced by the trace form on R
n×n

〈Ω1R,Ω2R〉 :=
1
2

tr((Ω1R)�Ω2R) = −1
2

tr(Ω1Ω2), (4.8)

where Ω1R,Ω2R ∈ TR SOn = son · R. This also defines an inner
product on son, which is nothing but the Killing form conveniently
scaled. The orthogonal projection operator onto the tangent space at
R ∈ SOn with respect to (4.8) is

πTR SOn
: R

n×n → TR SOn, X �→ X − RX�R

2
. (4.9)

3. Let Gk,n := {P ∈ Symn | P 2 = P, rk(P ) = k}. The Riemannian
metric on Gk,n

〈·, ·〉 : TGk,n × TGk,n → R (4.10)
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is that induced by the inner product on Symn

〈K1,K2〉 :=
1
2

tr(K1K2), (4.11)

where K1,K2 ∈ TP Gk,n (i.e., K1,K2 ∈ Symn) solve the equation
K = KP + PK with P ∈ Gk,n. The orthogonal projection operator
onto the tangent space at P ∈ Gk,n with respect to (4.11) is

πTP Gk,n
: Symn → TP Gk,n, X �→ [P, [P,X]]. (4.12)

Now consider Question 4.1 for spheres and special orthogonal groups.

4.2. Rolling mappings and splines on spheres. The following theorem
is a generalization of a result for S2 contained in [17] to n-dimensional
spheres.

Theorem 4.2. Assume that t �→ h(t) = (R�(t), s(t)) ∈ SEn is a rolling
mapping of the sphere Sn on V with the rolling curve t �→ α(t). Then

R�(t)
Djα

dtj
(t) = α

(j)
dev(t) for all t and all j ∈ N. (4.13)

Proof. First, we note that, since α
(j)
dev(t) ∈ Tp0S

n for all t, we have that
R(t)α(j)

dev(t) ∈ TR(t)p0S
n = Tα(t)S

n for all t and, therefore, the statement
has sense.

We will use induction on k to prove (4.13). For k = 1, using the identities
α(t) = R(t)p0 and Ṙ(t) = R(t)A(t), where A(t) is as in (3.11) and the no-
slip condition (3.17), we obtain

α̇(t) = Ṙ(t)p0 = R(t)A(t)p0 = R(t)ṡ(t) = R(t)α̇dev(t).

Now, assuming that (4.13) holds for some j ∈ N, we can write

Dj+1α(t)
dtj+1

= πTα(t)Sn

(
d

dt

Djα(t)
dtj

)

= πTα(t)Sn

(
Ṙ(t)α(j)

dev(t) + R(t)α(j+1)
dev (t)

)
. (4.14)

Since R(t)α(j+1)
dev (t) already belongs to Tα(t)S

n, we just have to show that
Ṙ(t)α(j)

dev(t) is parallel to α(t) for all t. This easily follows from the properties
of the matrix function A and no-slip condition (3.17). Indeed,

Ṙ(t)α(j)
dev(t) = R(t)A(t)α(j)

dev(t) = R(t)A(t)s(j)(t)

= R(t)A(t)A(j−1)(t)p0 = −u�(t)u(j−1)(t) · R(t)p0

= −u�(t)u(j−1)(t) · α(t), (4.15)
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with the scalar-valued function t �→ u�(t)u(j−1)(t) defined by the controls.
Since

πTα(t)Sn(Ṙ(t)α(j)
dev(t)) = −u�(t)u(j−1)(t)

(
In+1 − α(t)α(t)�

)
α(t) = 0,

(4.16)
the theorem is proved.

An important conclusion can be derived from this theorem.

Corollary 4.1. Assume that Sn is rolling without slip or twist on its
affine tangent space at a point p0 along a curve t �→ α(t). If the development
t �→ αdev(t) is an Euclidean cubic spline, then t �→ α(t) is a geometric cubic
spline on Sn if and only if it is a re-parameterized geodesic.

Proof. This can be justified by the result in Theorem 4.2. Indeed, t �→
αdev(t) is an Euclidean cubic spline if and only if

....
α dev ≡ 0 on each sub-

interval and, consequently,
D4α

dt4
≡ 0 on each sub-interval as well. The curve

α(t) is not a cubic spline on Sn except for the case where the curvature term
in (4.2) vanishes. This can be seen as follows.

Recall that
α(t) = R(t)p0, α̇(t) = Ṙ(t)p0 = R(t)u(t),

α̈(t) = Ṙ(t)u(t) + R(t)u̇(t) = R(t)
(
u̇(t) − u(t)�u(t)p0

)
,

α(t)α�(t) = R(t)p0p
�
0 R�(t), α̇�(t)α̇(t) = u(t)�u(t),

α̇(t)α̇�(t) = R(t)u(t)u(t)�R�(t), u(t)�p0 = 0, u̇(t)�p0 = 0.

(4.17)

Therefore, using the following formula, valid for spaces of constant sectional
curvature κ, which can be found in [19],

R(Y,Z)W = κ (〈W,Z〉Y − 〈W,Y 〉Z) ,

we can write

R
(

D2α(t)
dt2

, α̇(t)
)

α̇(t) = 〈α̇(t), α̇(t)〉D
2α(t)
dt2

−
〈

α̇(t),
D2α(t)

dt2

〉
α̇(t)

=
(
α̇�(t)α̇(t)In+1 − α̇(t)α̇�(t)

)(
In+1 − α(t)α�(t)

)
α̈(t)

= R(t)
(
u(t)�u(t)In+1 − u(t)u(t)�

)
u̇(t). (4.18)

But the expression

(u(t)�u(t)In+1 − u(t)u(t)�)u̇(t)

in the last line of (4.18) is identically zero if and only if u(t) = f(t)u0, where
f : R → R is a smooth scalar-valued function and the constant u0 ∈ Tp0S

n.
As a consequence, using A0 := u0p

�
0 − p0u

�
0 , we have

R(t) = ef(t)A0 (4.19)
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and using (3.87), we obtain that the rolling curve is

α(t) = R(t)p0 =
(
In+1 + A0 sin f(t) + A2

0(1 − cos f(t))
)
p0

= u0 sin f(t) + p0 cos f(t), (4.20)

which is the well-known formula for a re-parameterized great circle on Sn.

4.2.1. A relation to a constrained variational problem on SOn+1. In spite of
the last result, we can show that, under the assumption of Theorem 4.1 and
for M = Sn, the variational problem that gives rise to the Euclidean cubic
spline αdev is equivalent to a constrained variational problem on SOn+1.
Let R ∈ SOn+1, and let πTR SOn+1 be the projection operator as defined
in (4.9).

Let R(t) and s(t) be the solution of kinematic equations (3.10). Using
the relations

Ṙ(t) = R(t)A(t), R̈(t) = Ṙ(t)A(t) + R(t)Ȧ(t)

and the orthogonal projection defined by (4.9), we obtain

D2R(t)
dt2

= πTR SOn+1(R̈(t)) =
R̈(t) − R(t)R̈�(t)R(t)

2
= R(t)Ȧ(t) (4.21)

and, therefore,

τ∫

0

〈
D2R(t)

dt2
,
D2R(t)

dt2

〉
dt =

τ∫

0

〈
Ȧ(t), Ȧ(t)

〉
dt = −1

2

τ∫

0

tr Ȧ2(t)dt

=

τ∫

0

u̇�(t)u̇(t)dt =

τ∫

0

s̈�(t)s̈(t)dt =

τ∫

0

α̈�
dev(t)α̈dev(t)dt. (4.22)

Therefore, the optimization problem on R
n+1

min
αdev

τ∫

0

〈α̈dev(t), α̈dev(t)〉 dt,

which gives rise to the cubic spline on R
n+1, is equivalent to the following

constrained variational problem:

min
R

τ∫

0

〈
D2R(t)

dt2
,
D2R(t)

dt2

〉
dt, (4.23)

subject to dynamics (3.10), which, in turn, gives rise to a geometric cubic
spline on Sn, with nonholonomic constraints. This agrees with the case
n = 2 discussed in [2, p. 365].
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This class of problems was studied in [7] and, in particular, the Euler–
Lagrange equations for problem (4.23) have been derived. These equations
are highly nonlinear but it is now clear that the solution of such equations,
acting on p0, produces a curve α which satisfies D4α/dt4 = 0.

4.3. Rolling mappings and splines on SOn. We obtain an analog of
Theorem 4.2 in the case of the orthogonal group, one just needs to use
expression (3.49) for the rolling curve and compute covariant derivatives of
the velocity vector field, using also kinematic equations (3.47). Let α(t) =
U(t)P0W

�(t) be as before, let the orthogonal projection operator πTα(t) SOn

be defined by (4.9), and let the control Ω be as in (3.46).

Claim 4.1.
Djα(t)

dtj
= U(t)Ω(j−1)(t)P0W

�(t), for all t and all j ∈ N. (4.24)

Proof. We prove the claim by induction on j. Indeed, for j = 1 this equality
holds since

Dα(t)
dt

= α̇(t) = U̇(t)P0W
�(t) + U(t)P0Ẇ

�(t) = U(t)Ω(t)P0W
�(t).

(4.25)
Now we assume that (4.24) holds for j. We define

S(t) :=
1
2

(
Ω(t)Ω(j−1)(t) + Ω(j−1)(t)Ω(t)

)
. (4.26)

Then (omitting the dependency on t for the convenience),

Dj+1α

dtj+1
= πTα(t) SOn

(
U̇Ω(j−1)P0W

� + UΩ(j−1)P0Ẇ
� + UΩ(j)P0W

�
)

= πTα(t) SOn

(
USP0W

� + UΩ(j)P0W
�
)

=
1
2

(
USP0W

� + UΩ(j)P0W
� − α(USP0W

� + UΩ(j)P0W
�)�α

)

=
1
2

(
USP0W

� + UΩ(j)P0W
�

− UP0W
�(WP�

0 SU� − WP�
0 Ω(j)U�)UP0W

�
)

= UΩ(j)P0W
�

which completes the proof of identity (4.24).

Now, since X(j)(t) = Ω(j−1)(t)P0 and αdev(t) = P0 + X(t), the following
result is straightforward.

Theorem 4.3. Assume that t �→ h(t) =
(
U�(t),W�(t),X(t)

) ∈ SEn2

is a rolling mapping for SOn with the rolling curve t �→ α(t). Then

U�(t)
Djα(t)

dtj
W (t) = α

(j)
dev(t) (4.27)
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holds for all t and all j ∈ N. �

Corollary 4.1 was stated for the sphere Sn. It does not hold for the case
of SOn, except for n = 3. To see this, according to Theorem 4.3 and the
definition of a geometric spline, one just needs to find conditions on the
control function Ω(t) such that the curvature term in (4.2) vanishes.

Corollary 4.2. For SOn, the vanishing of the curvature term in (4.2)
is equivalent to

[Ω, Ω̇] = 0. (4.28)

Proof. Here we use a result contained in [21], which guarantees that every
connected and compact Lie group G admits a bi-invariant Riemannian met-
ric such that if Y , Z, and W are right- or left-invariant vector fields on G,
then the curvature tensor is

R(Y,Z)W = −1
4
[[Y,Z],W ]. (4.29)

For SOn, the corresponding metric is precisely the metric induced by the
Euclidean metric of the embedding space, which we have used before. Since
α(t) = U(t)P0W

�(t),

α̇ = UΩP0W
� = UΩU�α,

D2α

dt2
= U Ω̇P0W

� = U Ω̇U�α,
(4.30)

and, therefore,
[
D2α

dt2
, α̇

]
=
[
U Ω̇U�, UΩU�

]
α = U

[
Ω̇,Ω
]
U� α,

[[
D2α

dt2
, α̇

]
, α̇

]
= U

[[
Ω̇,Ω
]
,Ω
]
U� α.

(4.31)

Consequently, the curvature term in (4.2) vanishes if and only if
[[

Ω̇,Ω
]
,Ω
]

= 0. (4.32)

Therefore, to prove the corollary, it suffices to show that (4.32) implies
(4.28).

Recall that an inner product on son has been defined in terms of the
trace form (scaled Killing form) and that the endomorphism adW defined
by adW Z = [W,Z] is skew-symmetric with respect to the Killing form κ,
i.e., κ(adW Z, Y ) = −κ(Z, adW Y )). Therefore, (4.32) implies

tr([Ω, [Ω, Ω̇]]Ω̇) = 0, (4.33)

which is equivalent to
tr([Ω, Ω̇]2) = 0. (4.34)
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Finally, by the sign-definiteness of the trace form, we obtain

[Ω, Ω̇] = 0. (4.35)

The corollary is proved.

For n = 3, due to the isomorphism between the Lie algebra so3 and R
3

equipped with the cross product, Eq. (4.32) is equivalent to

ω × (ω × ω̇) = 〈ω, ω̇〉ω − 〈ω, ω〉ω̇ = 0, (4.36)

where ω ∈ R
3 is the 3-vector function associated with Ω ∈ so3. Therefore,

in this case, the condition Ω(t) = g(t)Ξ, where Ξ ∈ so3 is a constant skew-
symmetric matrix and g : R → R is a scalar function, must hold. For
n > 3, the condition holds for more general constraints. For example, if
Ω(t) belongs to an Abelian Lie subalgebra of son for all t, condition (4.32)
is always satisfied. Clearly, Ω(t) belongs to an Abelian Lie subalgebra of
so3 if and only if Ω(t) = g(t)Ξ, since every nontrivial Abelian subalgebra of
so3 is of dimension one.

4.3.1. The relation to constrained variational problems. Under the assump-
tion of Theorem 4.3, the variational problem that gives rise to the Euclidean
cubic spline αdev is equivalent to a constrained variational problem on SOn

as well. Indeed, let (X,U,W ) be the solution of kinematic equations (3.47).
Then

D2U

dt2
=

1
2
U Ω̇,

D2W

dt2
= −1

2
WP�

0 Ω̇P0, (4.37)

and, therefore,

τ∫

0

〈
D2U

dt2
,
D2U

dt2

〉
dt =

τ∫

0

〈
D2W

dt2
,
D2W

dt2

〉
dt

=
1
4

τ∫

0

〈
Ω̇, Ω̇
〉

dt =
1
4

τ∫

0

〈α̈dev, α̈dev〉 dt. (4.38)

Therefore, the optimization problem

min
αdev

τ∫

0

〈α̈dev, α̈dev〉 dt ,

which gives rise to the cubic spline on TP0 SOn, is equivalent to the con-
strained variational problem on SOn

min
U

τ∫

0

〈
D2U

dt2
,
D2U

dt2

〉
dt, (4.39)
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subject to the dynamics

U̇(t) =
1
2
U(t)Ω(t), (4.40)

which, in turn, is equivalent to

min
U

τ∫

0

〈
D2W

dt2
,
D2W

dt2

〉
dt, (4.41)

subject to the dynamics

Ẇ (t) = −1
2
W (t)P�

0 Ω(t)P0. (4.42)

It is again in the class of problems studied in [7]. For Ω(t) =
n∑

i=1

ui(t)An+1,i

as in (3.10), this constrained problem coincides with the constrained prob-
lem formulated for the sphere.

4.4. Rolling mappings on the Grassmann manifold. An analog of
Theorems 4.2 and 4.3 holds also for Gk,n.

Theorem 4.4. Assume that t �→ h(t) =
(
Θ�(t),X(t)

) ∈ SEn(n+1)/2 is
a rolling mapping for Gk,n with the rolling curve t �→ α(t) = Θ(t)P0Θ�(t).
Then

Θ�(t)
Djα

dtj
(t)Θ(t) = α

(j)
dev(t) for all t and all j ∈ N. (4.43)

Proof. We prove (4.43) by induction on j.
We recall the kinematic equations for Gk,n and formulas for α and αdev.

For arbitrary P ∈ Gk,n, we have

α(t) = Θ(t)PΘ�(t),

α̇(t) = [Θ̇(t)Θ�(t), α(t)],

αdev(t) = P + X(t),

Ẋ(t) = ξ(t),

Θ̇(t) = Θ(t)[ξ(t), P ].
(4.44)

For j = 1, (4.43) holds, since

Θ�(t)
Dα(t)

dt
Θ(t) = Θ�(t)πTα(t)Gk,n

(α̇(t))Θ(t)

= Θ�(t)[α(t), [α(t), α̇(t)]] Θ(t) = [P, [P, [[ξ(t), P ], P ]]]

= [P, [P, ξ(t)]] = ξ(t) = Ẋ(t) =
d

dt
(P + X(t)) = α̇dev(t). (4.45)
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Assume that (4.43) holds for some j ∈ N. Hence (omitting t-dependencies),
we obtain

Θ�Dj+1α

dtj+1
Θ = Θ� πTα(t)Gk,n

(
d

dt

Djα

dtj

)
Θ

= Θ� πTα(t)Gk,n

(
d

dt

(
Θα

(j)
devΘ

�
))

Θ

= Θ� [α, [α, Θ̇ξ(j−1)Θ� + Θξ(j)Θ� + Θξ(j−1)Θ̇�]] Θ

= [P, [P, [[ξ, P ], ξ(j−1)]]] + [P, [P, ξ(j)]]

= [P, [P, [[ξ, P ], ξ(j−1)]]] + [P, [P, α
(j+1)
dev ]]

= [P, [P, [[ξ, P ], ξ(j−1)]]] + α
(j+1)
dev . (4.46)

It remains to show that

[P, [P, [[ξ, P ], ξ(j−1)]]] = 0 (4.47)

which is equivalent to showing that

[[ξ, P ], ξ(j−1)] ∈ T⊥
P Gk,n. (4.48)

By the orthogonal invariance properties of Gk,n considered as a submanifold
of Symn, it suffices to show that (4.48) holds at the point P =

[
Ik 0
0 0

]
. Using

kinematic equations (3.77) for this special case, i.e., exploiting the fact that
ξ, ξ(j−1) are of the form

ξ(t) =
[

0 Ψ(t)
Ψ�(t) 0

]
, ξ(j−1)(t) =

[
0 Ψ(j−1)(t)

(Ψ(j−1))�(t) 0

]
, (4.49)

we obtain

[[ξ, P ], ξ(j−1)] =
[−Ψ(Ψ(j−1))� − Ψ(j−1)Ψ� 0

0 Ψ�Ψ(j−1) + Ψ(j−1))�Ψ

]
,

(4.50)
which is clearly in T⊥

P Gk,n as commutes with P =
[

Ik 0
0 0

]
. The theorem is

proved.

4.5. The relation to the geodesic curvature. Finally, a simple obser-
vation shows that the rolling motion preserves the geodesic curvature if M
is any of our favorite manifolds, i.e., M ∈ {Sn, SOn, Gk,n}.

Corollary 4.3. Assume that M rolls without slip or twist on its tangent
space at a point along a curve t �→ α(t) with the development t �→ αdev(t).
Then both of these curves have the same geodesic curvature.

Proof. The geodesic curvature (see, e.g., [20]) of a curve t �→ γ(t) on a
differentiable manifold M with the Riemannian metric 〈·, ·〉 is the function
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t �→ κ(t) defined by

κ(γ(t)) =

∥∥∥Dγ̇(t)
dt

∥∥∥
‖γ̇(t)‖2 −

〈
Dγ̇(t)

dt , γ̇(t)
〉

‖γ̇(t)‖3 . (4.51)

Since the Euclidean metric is orthogonally invariant, we can use this def-
inition and the result of theorems of this section to conclude immediately
that

κ(α(t)) = κ(αdev(t)). (4.52)

5. Solving the interpolation problem

For the problem stated in Sec. 2, we propose the following algorithm,
which is based on rolling and unwrapping techniques. This approach works
for any manifold M embedded into some Euclidean space R

N , so that both
M and V ∼= T aff

p0
M can be considered as submanifolds of R

N . The resulting
curve will be given explicitly in terms of the coordinates of the embedding
space.

The algorithm can be described as follows.

Algorithm 5.1. 1. Compute an arbitrary smooth curve

α : [0, τ ] → M (5.1)

connecting p0 with pK such that

α(0) = p0, α(τ) = pk. (5.2)

2. Roll M on V , with the rolling curve α([0, τ ]) and rolling mapping
h(t). This produces a smooth curve αdev : [0, τ ] → V , which joins the
unrolled initial and final points. The rolling conditions ensure that all
boundary conditions are mapped to V as follows:

α(0) = p0 �→ αdev(0) = p0 =: q0,

α(τ) = pk �→ αdev(τ) =: qk,
(5.3)

ξ0 �→ h(0)ξ0 = ξ0 =: η0, ξk �→ h(τ)ξk =: ηk. (5.4)

3. Choose a suitable local diffeomorphism

φ : M ⊃ Ω → V, p0 ∈ Ω open, (5.5)

satisfying
φ(p0) = p0, Dφ(p0) = id, (5.6)

to unwrap the remaining data {p1, . . . , pk−1} onto V , so that

pi �→ φ
(
h(ti)pi − αdev(ti) + p0

)
+ αdev(ti) − p0 =: qi. (5.7)
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4. Solve Problem 2.1 on V using the mapped data, namely
{q0, . . . , qk; η0, ηk}, instead of the data {p0, . . . , pk; ξ0, ξk}. This will
generate a curve

β : [0, τ ] → V (5.8)
with the properties

β(0) = p0 = q0, β(ti) = qi, β(τ) = qk,

β̇(0) = ξ0 = η0, β̇(τ) = ηk.
(5.9)

5. Wrap β([0, τ ]) back onto the manifold giving the solution γ of Prob-
lem 2.1 by means of the following formula:

γ(t) := h(t)−1
(
φ−1
(
β(t) − αdev(t) + p0

)
+ αdev(t) − p0

)
. (5.10)

Theorem 5.1. The curve t �→ γ(t) defined by (5.10) solves Problem 2.1
if M = Sn, or M = SOn, or M = Gk,n.

Proof. This result was proved in [15] for the case where M is the sphere Sn.
Now, for M = SOn, we can equivalently write

γ(t) = U(t)
(
φ−1
(
β(t) − X(t)

))
W�, (5.11)

where U , W , and X are the solutions of kinematic equations (3.47) that
satisfy the conditions U(0) = W (0) = I and X(0) = 0. Thus, the following
calculations follow from putting together all conditions of Sec. 3.2 and taking
into account that

γ̇ = U̇φ−1
(
β − X

)
W� + Uφ−1

(
β − X

)
Ẇ�

+ U
(
Dφ−1

(
β − X

) ◦ (β̇ − Ẋ
))

W�, (5.12)

γ(0) = φ−1
(
β(0)
)

= φ−1
(
α(0)
)

= φ−1
(
P0

)
= P0, (5.13)

γ(τ) = U(τ)φ−1
(
β(τ) − X(τ)

)
W�(τ)

= U(τ)φ−1
(
αdev(τ) − X(τ)

)
W�(τ)

= U(τ)φ−1
(
P0 + X(τ) − X(τ)

)
W�(τ)

= U(τ)P0W
�(τ) = α(τ) = pk, (5.14)

γ(ti) = U(ti)φ−1
(
β(ti) − X(ti)

)
W�(ti)

= U(ti)
(
φ−1
(
P0

))
W�(ti) = U(ti)P0W

�(ti) = α(ti) = pi, (5.15)

γ̇(0) = U̇(0)P0 + P0Ẇ
�(0) + β̇(0) − Ẋ(0)

=
1
2
Ẋ(0) +

1
2
Ẋ(0) + β̇(0) − Ẋ(0) = β̇(0) = ξ0, (5.16)
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γ̇(τ) = U̇(τ)P0W
�(τ) + U(τ)P0Ẇ

�(τ)

+ U(τ)
(
β̇(τ) − Ẋ(τ)

)
W�(τ) = U(τ)Ω(τ)P0W

�(τ)

+ U(τ)
(
U�(τ)ξkW (τ) − Ω(τ)P0

)
W�(τ) = ξk. (5.17)

For the Grassmann manifold, we just have to replace both U and W by Θ
and use kinematic equations (3.82). The theorem is proved.

This procedure is now illustrated by an example.

5.1. Example. Here we present an example for the two-sphere

S2 = {x ∈ R
3 | x2

1 + x2
2 + x2

3 = 1}
rolling on its tangent plane V at the south pole p0 = [0, 0,−1]� ∈ S2. We
want to solve Problem 2.1 for M = S2 using Algorithm 5.1. Two choices
have to be made: the rolling curve α and the diffeomorphism φ. For the
first, the obvious choice is the geodesic that joins p0 (at t = 0) and pk (at
t = τ). In this case, the rolling mapping is given by

h(t) =
(
R(t)�, s(t)

)
=
(
e−tΩ, tAp0

)
, (5.18)

where Ω is the constant matrix,

Ω =

⎡
⎣

0 0 −u1

0 0 −u2

u1 u2 0

⎤
⎦ ∈ so3. (5.19)

The development αdev([0, τ ]) is a straight line segment in V , parameter-
ized by t, starting for t = 0 from p0 as one would expect.

Let us now fix the diffeomorphism φ : S2 → V corresponding to (5.6).
Natural candidates are

(i) the stereographic projection with respect to the north pole,
(ii) orthogonal projection, or
(iii) more general, Riemannian normal coordinates.

The stereographic projection of S2 with respect to the north pole
[0, 0, 1]� ∈ S2 is

φstereo : S2 \ {[0, 0, 1]�} → V,

⎡
⎣

x1

x2

x3

⎤
⎦ �→ 1

1 − x3

⎡
⎣

2x1

2x2

x3 − 1

⎤
⎦ , (5.20)

with the inverse

(φstereo)−1 : V → S2 \ {[0, 0, 1]�},
⎡
⎣

ξ1

ξ2

−1

⎤
⎦ �→ 1

ξ2
1 + ξ2

2 + 4

⎡
⎣

4ξ1

4ξ2

ξ2
1 + ξ2

2 − 4

⎤
⎦ .

(5.21)
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We define the orthogonal projection on the sphere by

φortho : S2 \ {x ∈ S2 | x3 ≥ 0} → V,

⎡
⎣

x1

x2

x3

⎤
⎦ �→

⎡
⎣
−x1/x3

−x2/x3

−1

⎤
⎦ , (5.22)

with the inverse

(φortho)−1 : V → S2 \ {x ∈ S2 | x3 ≥ 0},
⎡
⎣

ξ1

ξ2

−1

⎤
⎦ �→ 1√

ξ2
1 + ξ2

2 + 1

⎡
⎣

ξ1

ξ2

−1

⎤
⎦ .

(5.23)
Obviously, for the south pole p0 = [0, 0,−1]�,

φstereo(p0) = φortho(p0) = p0; (5.24)

moreover, taking the derivative evaluated at p0 acting on an arbitrary h ∈
Tp0S

2, we obtain

Dφstereo(p0) · h = Dφortho(p0) · h = h. (5.25)

Interpolating the mapped data on V can be done by computing a cubic
spline, e.g., by means of the classical De Casteljau algorithm, see [8, 9]).

According to Problem 2.1, we are given five points on S2 together with
five instants of time. Following Algorithm 5.1, we compute the great circle
α connecting the initial point (south pole) with the final point. The de-
velopment αdev is then a straight line segment in the affine tangent plane
attached to the south pole. In Fig. 1, the sphere is attached to the tan-
gent plane at p0 at the time t0. One can see the cubic spline lying in the
tangent plane and the solution curve of the interpolation problem living on
the sphere. Figure 2 shows the sphere after rolling along the blue straight
line segment. The ray emanating from the midpoint of the sphere clarifies
that we have used the orthogonal projection. On the contrary, Figs. 3 and 4
show the result by using the stereographic projection instead of orthogonal
projection. The ray emanating from the top of the sphere connects cor-
responding points on the sphere and tangent plane. The cubic spline and
solution curve are both plotted in white. The last picture Fig. 5 allows for
a qualitative comparison of the two methods.

6. Appendix

Acknowledgments. Part of this work was developed when the second
author visited the NICTA Canberra Research Laboratory, Australia, in
2005. It was completed while the authors visited SISSA/ISAS in Trieste.
Fruitful discussions with their host, Andrei Agrachev, are most appreciated.
The second author also thanks the financial support from the Institute of
Systems and Robotics, University of Coimbra and FCT (Fundação para a
Ciência e a Tecnologia), Portugal.
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Fig. 1. Wrapping back by the orthogonal projection, see
(5.22) and (5.23). The sphere is still at rest at the south
pole.

Fig. 2. Wrapping back by the orthogonal projection, see
(5.22) and (5.23). The sphere rolls along the straight line
segment.

We are grateful to Don Wenura Dissanayake, who produced the five fig-
ures during his summer scholar project at the Australian National Univer-
sity, Canberra.
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Fig. 3. Wrapping back by the stereographic projection, see
(5.20) and (5.21). The sphere is still at rest at the south
pole.

Fig. 4. Wrapping back by the stereographic projection, see
(5.20) and (5.21). The sphere rolls along the straight line
segment.

The first author would like to thank Martin Kleinsteuber, Würzburg
University, Germany, for some fruitful discussions.

The authors thank the reviewers for their valuable suggestions and com-
ments.
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Fig. 5. Comparison of different interpolation curves which
both solve the problem.
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