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Motorcycle Modeling 
for High-Performance

Maneuvering
JOHN HAUSER and ALESSANDRO SACCON

M
odern sport motorcycles possess an impres-
sive combination of power and agility and
are capable of a truly broad range of maneu-
vers. What factors limit the performance of
these machines? Racing provides an ideal

testing ground for understanding the limits of performance
since the race pilot (rider) is operating the motorcycle close
to its limits. Furthermore, the best race pilots play a crucial
role in the development of prototype motorcycles.

Producing a high-performance motorcycle prototype
entails extensive engineering before skilled riders can eval-
uate the performance and handling qualities of the physi-
cal system. In the engineering stage, virtual prototyping
can play an important role. The goal is to build a mathe-
matical model (the virtual prototype) that captures signifi-
cant aspects of the physical dynamics to facilitate
performance analysis and assess design tradeoffs.

State-of-the-art motorcycle models, such as those
described in [1] and [2], consist of interconnected rigid bod-
ies together with suspension and other flexible components,
supplemented by sophisticated tire [3] and engine models.
The accuracy of the predicted behavior depends not only on
effective conceptual modeling but also on the use of realistic
parameter values. Frame flexibility, tire-road contact geome-
try, and tire shear force play central roles in motorcycle
modeling. Models are used to explore the dynamic proper-
ties of motorcycles, including linearization to study vibra-
tion modes under constant-speed and constant-turn-radius
conditions [4]. Multibody codes and related tools are find-
ing increased use among designers and engineers interested
in improving handling qualities, performance, and safety.
The automotive and motorcycle industries use virtual proto-
typing tools to reduce the number of physical tests that need
to be performed during the design process.

MAXIMUM VELOCITY PROFILE ESTIMATION
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Simulation studies determine whether the motorcycle
can perform maneuvering tasks such as path following
with a specified velocity profile. Although open-loop sim-
ulation can be used to analyze automobile handling, a vir-
tual motorcycle rider is needed to stabilize the roll mode.
Without feedback to provide appropriate steering and
throttle/brake inputs, the simulated motorcycle usually
falls quickly.

In [5] and [6], a virtual rider based on a simplified
motorcycle model [7], [8] is applied to a commercial multi-
body code motorcycle model. The control strategy is based
on a receding horizon scheme that uses preview informa-
tion on the path to be followed. The development and use
of a virtual rider is described in [9].

This article focuses on high-performance maneuvering
required in racing competitions. We are motivated by the
observation that the best race pilots seek to understand the
performance limits of their motorcycles and then exploit
this knowledge in determining a race line (a path within
the track) that allows them to traverse the circuit in mini-
mum time. The skills of these riders have been honed
through years of experience. Their keen senses are impor-
tant to the development team, providing feedback for
refining the motorcycle design and the particular bike
setup for a given race. Finally, through repeated practice
on the given track, race pilots develop a sense of the best
race line for that track and, for each turn, determine pre-
cise braking points for switching from maximum accelera-
tion to maximum braking.

Simulation models can be used to explore the maxi-
mum performance and minimum lap time problem for
ground vehicles. A common approach involves posing the
problem as a classical minimum-time optimal control
problem [10]. Strategies for approximating the solution to
the minimum-time problem for cars and motorcycles have
been extensively developed. For instance, the quasi-static
strategies developed in [11] for approximating the mini-
mum lap time performance for race cars have been used
since the 1950s. Although transient behavior is neglected,
the approach of [11] allows the use of detailed race car
models. A more direct attack on the minimum-time prob-
lem for race car performance is described in [12], where an
optimal control problem involving a seven-degree-of-free-
dom (7DOF) race car model is discretized using a parallel
shooting method. The resulting nonlinear program is
solved using a sequential quadratic programming algo-
rithm. This work produces both the race line and the
velocity profile, dealing with the dynamic behavior of the
race car model in a more complete manner. We also note
that [12] provides a comprehensive review of maximum
performance research for cars.

Due mainly to instability issues, the exploration of
maximum performance for motorcycle models is more
recent. In [13], optimal control techniques are used to
define and assess a notion of motorcycle maneuverability.

The cost function uses penalty functions to address con-
straints such as the width of the road. Using a combina-
tion of penalties, [13] produces plausible approximate
race lines. A more direct attack on the maximum perfor-
mance and minimum lap time problem for motorcycles is
presented in [14], which also uses penalty functions to
handle inequality constraints. The optimal solution is
found by solving a discretized two-point boundary value
problem expressing the first-order optimality conditions.
Symbolic software is used to develop routines for evalu-
ating the derivatives that occur in the boundary value
problem. This strategy is used to compute an optimal tra-
jectory for a complete race track.

One way to reduce the complexity of the maximum per-
formance problem for motorcycles is to seek the optimal
velocity profile for a given fixed path. Removing from con-
sideration the selection of the race line, we can focus
directly on how various constraints limit the performance
of a motorcycle. We pursue this approach here.

We begin by reviewing motorcycle features, including
engine power, tire forces, and wheelie and stoppie maneu-
vers, that lead to performance limitations. Next we devel-
op an algorithm for finding the minimum-time trajectory
for a constrained 1DOF vehicle model. This model is a
point-mass vehicle constrained to follow a given path and
subject to accelerations representative of more general
vehicles. Examination of this idealized situation clarifies
the dynamic features needed to find the minimum-time
velocity profile. A detailed nonholonomic motorcycle
model capturing gross vehicle motion and the associated
contact forces is presented. We then develop a quasi-
steady-state technique for approximating the velocity con-
straint and acceleration limits that are in play for the
vehicle at each location along the desired path. With this
information in hand, an approximately optimal velocity
profile is constructed and used to build an approximate
motorcycle trajectory. Finally, we show by example that a
trajectory produced in this fashion can be used as a refer-
ence trajectory for exploring the aggressive trajectory space
of a comprehensive multibody motorcycle model devel-
oped using commercial software.

MODELING FOR MAXIMUM VELOCITY MANEUVERING
A racing motorcycle is capable of extremely aggressive
maneuvers. During a race competition, the goal of the rider
is to complete a lap in minimum time. At each point on the
track, the motorcycle is subject to physical constraints that
limit the available acceleration and deceleration. The most
important constraint is due to the tires. Since the lateral and
longitudinal forces that a tire can produce are coupled, a
large lateral force greatly reduces the available longitudinal
force. Additional constraints are mainly due to the engine,
aerodynamics, and mass distribution.

Consider first the case in which the motorcycle is mov-
ing along a straight line. No lateral force is needed in this
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case, and the longitudinal acceleration is limited at low
speed by the maximum longitudinal force that the rear tire
can produce. At high speed, due to the presence of
increased aerodynamic drag, the longitudinal acceleration
limit is determined instead by the maximum engine
torque. In contrast, during a turn, the lateral acceleration is
limited by the maximum lateral force that the tires can pro-
duce. The available engine torque is not normally a limit-
ing factor, however, since the available longitudinal tire
force is greatly reduced due to the coupling of lateral and
longitudinal tire forces.

The transition from straight running to cornering must
be approached with care. As the radius of curvature of a
turn decreases, the required lateral tire force increases.
Furthermore, the required lateral acceleration (and corre-
sponding lateral tire forces) is proportional to the square of
the velocity. Consequently, it is easy to enter a turn with so
much speed that the lateral force required for turning far
exceeds what the tires can produce. In that case, the rider
must modify the desired trajectory to avoid losing control
of the motorcycle.

Tire Modeling
To better describe the longitudinal and lateral tire force
coupling, we briefly describe how tire forces are modeled
using Pacejka’s magic formula [3]. The magic formula is a
set of equations relating load, slip ratio, slip angle, and
camber angle, denoted by Fz, κ , α, and γ , respectively, to
the longitudinal force, side force, and aligning moment.
These equations use a clever composition of trigonometric
functions to provide a family of parameterized functions
for fitting empirical tire data. The original formula devel-
oped for car tires has become standard in that context. The
extension to motorcycle tires necessitates substantial
changes to accommodate the different roles of sideslip and
camber forces in the two cases [4], [15].

Tire forces and moments are produced through a
combination of geometry and slip. The camber angle γ is
the angle between the wheel plane and the line perpen-
dicular to the road surface. Due to the shape of a motor-
cycle tire, nonzero camber results in a lateral force called
camber thrust. Additional tire forces and moments are
produced by slip between the tire and road surface.
Roughly speaking, slip occurs when the velocity vector
of the contact point between tire and road is different
from the velocity vector determined by the speed and
heading of the wheel. The slip angle α is the angle
between the wheel’s actual direction of travel and the
direction toward which it is pointing, while the slip ratio
κ provides a nondimensional description of the relative
motion between the tire and the road surface [3]. The slip
ratio is nonzero when the tire’s rotational speed is
greater or less than the free-rolling speed.

Magic formula parameter values for a given tire are
used to calculate the steady-state force and moment sys-

tem for realistic operating conditions. Additional features
for modeling dynamic effects are developed [3] but are not
discussed here. In the magic formula scheme, the cases of
pure longitudinal slip and pure lateral slip are treated sep-
arately and then combined using loss functions that char-
acterize the reduction of forces in combined slip.

In pure longitudinal slip, the slip angle α and camber
angle γ are set to zero so that the tire does not generate
any lateral force. The longitudinal force Fx0 in pure slip is
then a function of the slip ratio κ and the normal load Fz.
This function is given by

Fx0(κ, Fz) =
Dx sin[Cx arctan(Bxκ − Ex(Bxκ − arctan(Bxκ)))],

where the coefficient functions Bx = Bx(Fz), Dx = Dx(Fz),
and Ex = Ex(Fz, sgn(κ)), as well as the constant Cx, shape
the response. A typical plot under constant load is depicted
in Figure 1. Note that the longitudinal force increases with
increasing slip ratio κ up to a maximum longitudinal force
followed by a significant drop. When the tire is forced to
work beyond the peak, the rider experiences a sudden loss
of grip as the slip dynamics transition from a stable region
with positive slope to an unstable region. Physically, the
tire spins up rapidly under power as the shear force
decreases under increasing slip ratio while the engine
torque remains nearly constant.

In pure lateral slip, the slip ratio κ is set to zero so that
the tire does not generate any longitudinal force. The later-
al force in pure lateral slip, which is a function of the slip
angle α, the camber angle γ , and the normal load Fz, has
the form

FIGURE 1  Longitudinal tire force in pure longitudinal slip. For a given
load Fz, with zero slip angle and zero camber, the longitudinal tire
force is a function of only the slip ratio κ . For small values of κ , the
curve is nearly linear. The longitudinal force is limited, however,
resulting in a significant and sudden loss of grip upon passing the
peak (at κ � 0.08, in this example).
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Fy0(α, γ, Fz) = Dy sin[Cy arctan(Byα − Ey

× (Byα − arctan(Byα)))

+ Cγ arctan(Bγ γ − Eγ

× (Bγ γ − arctan(Bγ γ )))],

where Cy, Cγ , and Eγ are constant and By = By(Fz, γ ) ,
Dy = Dy(Fz, γ ), Ey = Ey(γ, sgn(α)), and Bγ = Bγ (Fz, γ ). A
typical plot for the lateral force as a function of slip angle α
for a given load and zero slip ratio κ is shown in Figure 2.

The longitudinal and lateral tire forces under combined
slip are given by [4]

Fx = Fx0(κ, Fz) Gxα(α, κ, Fz)

and

Fy = Fy0(α, γ, Fz) Gyκ (α, κ, γ, Fz),

where Gxα(·) describes the loss of longitudinal force due to
sideslip and Gyκ (·) describes the loss of lateral force due to
longitudinal slip. For further details, see [3].

Longitudinal and lateral forces for a given normal load
Fz are illustrated in Figure 3. The envelope of these curves,
representing the maximum available traction and corner-
ing forces, is called the friction ellipse. The shape and posi-
tion of the friction ellipse change according to the normal
load and camber angle.

Engine and Drivetrain Modeling
The engine supplies the torque needed for controlling the
speed of the vehicle. In a modern motorcycle, the engine
torque is transmitted through a chain or a driveshaft to
the rear wheel. The interaction between the rear wheel
and the ground produces a shear force causing the vehi-
cle to move.

It is common practice to measure the steady-state
engine torque on a test bench. This measurement is per-
formed by setting the throttle valve to a fixed position and
then modulating the load torque to achieve a desired
engine speed. In this manner, one obtains the steady-state

torque for several load points, that is, for sev-
eral combinations of throttle opening position
and engine speed. The steady-state torque map
is used for simulating the engine in handling
and performance analysis. A more sophisticated
engine model is the mean value engine model
(MVEM), which describes the development of
measured engine variables (or states) such as
revolutions per minute and intake manifold
pressure on time scales longer than an engine
cycle [16], [17]. For control purposes, the
MVEM attempts to provide accuracy while
ensuring fast computation time.

Figure 4 provides an example of the engine
torque curve. The curve shown, which is plot-
ted versus the engine speed, refers to a wide-
open throttle condition. Engine torque is
transmitted to the rear wheel through a set of
gears and a chain. A simple mathematical
description of the drivetrain takes into account
inertial properties of the crankshaft, the main
and counter shafts, and the rear wheel. A
graphical representation of a modern motorcy-
cle drivetrain is shown in Figure 5.

FIGURE 3  The friction ellipse. The envelope of longitudinal and lateral tire forces,
obtained by varying the slip ratio κ and slip angle α, resembles an ellipse, from
which the name derives. The shape and position of this ellipse depend on the
load and camber angle.
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FIGURE 2  Lateral tire force in pure lateral slip. For constant load Fz,
with zero slip ratio and zero camber, the lateral tire force is a sym-
metric and strictly increasing function of the slip angle α. For small
slip angles, the lateral tire force characteristic is nearly linear.
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The load seen by the engine depends on factors such as
the selected gear and the slip ratio. The longitudinal dynam-
ics of a straight-running vehicle with a
rigid suspension and other simplifications
can be written as

mv̇x = Fr
x − FA, (1)

where m is the vehicle mass, vx is the lon-
gitudinal velocity, Fr

x is the rear-wheel
longitudinal force, and FA is the aerody-
namic drag. The inertia of the gears
forming the drivetrain can be lumped
into the equivalent gear-dependent rear-
wheel dynamics model

Ieqω̇rw = τe ρe,rw − rrw Fr
x, (2)

where rrw is the rear-wheel radius, τe is
the engine torque, Ieq is the gear-depen-
dent equivalent rear-wheel inertia, and
the gear ratio ρe,rw is the gear-dependent
ratio of the engine rotation speed to the
rear-wheel rotation speed. Equations (1)
and (2) constitute a planar dynamical
system with states vx and ωrw and input
τe. We can also use (vx, κr) as state coor-
dinates, where κr = (ωrw rrw − vx)/vx

denotes the rear-wheel slip ratio. Differ-
entiating the slip ratio with respect to time yields

κ̇r = −
[

1 + κr

mvx
+ r2

rw
Ieqvx

]
Fr

x(κr)

+ 1 + κr

mvx
FA(vx) + rrwρe,rw

Ieqvx
τe, (3)

where Fr
x = Fr

x(κr) is the slip-dependent rear-tire force and
FA = FA(vx) is the velocity-dependent aerodynamic drag
force. Within the normal working region, the slope of the
longitudinal-force-versus-slip curve is large so that the slip
dynamics (3) are stable and fast relative to the rigid body
velocity mode. That is, for slowly varying τe, κ̇r goes to
zero quickly, and thus κr behaves like a static function of
vx and τe, that is,

κr ≈ κ̄r(vx, τe) ,

where κ̄r(·, ·) is the implicit function defined by setting
κ̇r = 0 in (3). The use of a static relation to approximate a
relatively fast dynamic subsystem can be analyzed using
singular perturbation theory [18]. Under the condition
κ̇r = 0, v̇x and ω̇r satisfy the static relationship

(1 + κ̄r(vx, τe))v̇x = ω̇rrrw . (4)

Combining (4) with (1) and (2), we obtain the instanta-
neous slip system governed by

FIGURE 4  Engine torque curve. The engine torque increases with engine speed until
reaching the maximum torque value. This measured curve corresponds to a wide-
open throttle for a sport motorcycle.
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FIGURE 5  Modern motorcycle drivetrain. The crankshaft is con-
nected through the primary drive to the gearbox. The main shaft
and countershaft are connected through the pair of gears selected
by the rider using the gearshift pedal. The secondary drive con-
nects the gearbox to the rear wheel.
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(
m + Ieq

r2
rw

(1 + κ̄r(vx, τe))

)
v̇x = ρe,rw

rrw
τe − FA(vx) .

Taking the slip ratio as nearly constant, κr ≈ κ̂r gives the
useful quasi-steady-state approximation

meqv̇x = Feq − FA , (5)

where the equivalent force

Feq = ρe, rw

rrw
τe

depends on the selected gear, while the equivalent mass

meq = m + Ieq

r2
rw

(1 + κ̂r)

depends on both the selected gear and the quasi-steady-
state slip ratio κ̂r.

Figure 6 provides an example of how the engine
torque in Figure 4 is transformed to the rearwheel
torque, which is proportional to the equivalent force
according to τrw = ρe,rw τe as the gear setting ranges from
first to sixth. The envelope of those curves, given by the
red line in Figure 6, represents maximum wheel torque
versus wheel speed.

Brake Modeling
Since acceleration at high speed is limited by available
engine torque, one might expect a similar deceleration lim-
itation due to the brakes. In reality, this case does not exist
since modern brake disks, pads, and hydraulics are dimen-

sioned so that brakes have virtually no capacity problem.
On a racing motorcycle, the rider can always apply suffi-
cient brake force to lock the wheels. In high-fidelity simu-
lations, brakes are typically modeled as torques applied to
the front and rear wheels.

Wheelie and Stoppie
Skilled riders like to show off by performing tricks such as
the wheelie (see Figure 7) and the stoppie (see Figure 8) in
which the front and rear wheels, respectively, come off the
ground. Upon passing the apex (roughly, the point of max-
imum curvature of a turn), the racing rider opens the
throttle to accelerate out of the turn. The apex of a corner is
the place where the chosen race line touches the inside
edge of the track. Since modern motorcycles possess
motors with considerable power and torque, this exit
acceleration can result in the front wheel lifting off the
ground. This phenomenon is often observed during pro-
fessional races such as the SuperBike and MotoGP champi-
onships. Race wheelies, however, are typically short-lived
since a sustained wheelie requires precise throttle action to
precisely control the pitch motion of the motorcycle. A
similar phenomenon, the stoppie, can occur during hard
braking when entering a turn. In this situation, if too much
torque is applied to the front wheel, the rear wheel can lift
off the ground.

COMPUTING THE OPTIMAL VELOCITY PROFILE 
FOR A POINT-MASS MOTORCYCLE
We now describe the basis for estimating the maximum
velocity profile for a given path. The algorithm is first dis-
cussed for a point-mass vehicle and then extended to a
simplified motorcycle model.

Consider a smooth curve in the plane, which we wish
to traverse in minimum time. Here, we view the motorcy-
cle as a point mass moving along the curve with velocity v.
Using a moving frame, the accelerations seen by the point
motorcycle are given as a tangential or longitudinal accel-
eration v̇ and a perpendicular or lateral acceleration σ v2.
The lateral acceleration depends on the instantaneous cur-
vature σ = ±1/R, where R is the radius of the osculating
circle that is second-order tangent to the curve at the cur-
rent location. As viewed from above, the sign of σ is posi-
tive when the curve is turning right and negative when the
curve is turning left. The curvature is zero at points where
the curve is straight, that is, R = ∞.

The physics of the point motorcycle are thus described
by

mv̇ = flong, (6)

mσ v2 = flat, (7)

where the applied force ( flong, flat) is an idealization of the
force provided by the motorcycle tires interacting with the
road surface. As such, the force is required to lie in the fric-
tion ellipse given by

FIGURE 6  Equivalent engine torque at the rear wheel. The effect of
the gearbox is to modify the torque transmitted to the rear wheel so
that engine power is optimized for different vehicle speeds. The red
curve, which depicts the available rear wheel torque, is the enve-
lope of the equivalent engine torque curves corresponding to first
through sixth gears for a sport motorcycle.
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(
flong

f max
long

)2

+
(

flat
f max
lat

)2

≤ 1, (8)

where f max
long and f max

lat are the maximum longitudinal and
lateral forces, respectively. Consistent with our curvature
definition, we see that flong and flat act in the forward and
right directions, respectively.

Our goal is to find the velocity profile v as a function of
the arc length s to traverse a given curve in minimum time.
Normally, we view the velocity v as a function of time, not
arc length. To indicate that arc length rather than time is
the independent variable, we use a bar to indicate that a
quantity is an explicit function of s. Thus, a curvature pro-
file is given as σ̄ (s) for s ∈ [s0, s1], whereas the corre-
sponding curvature trajectory σ as a function of t is given
by σ(t) = σ̄ (s(t)), where s(·) is an arc-length trajectory.
Restated, our goal is to find a velocity profile v̄(·) that min-
imizes the time that it takes to traverse the curve given by
a curvature profile σ̄ (·).

Note that the shape of a curve is determined by its cur-
vature profile σ̄ (·). Indeed, let (x̄(·), ȳ(·)) be a smooth arc-
length-parameterized curve, where the y-axis is oriented
90° in the clockwise direction from the x-axis, for example,
x pointing north and y pointing east. Differentiating with
respect to s (denoted by ′ ), the orientation of the unit
length tangent vector can be specified by a smoothly vary-
ing heading angle ψ̄(·). That is,

(
x̄ ′(s)
ȳ ′(s)

)
=

(
cos ψ̄(s)
sin ψ̄(s)

)
. (9)

Differentiating (9), we obtain the arc-length acceleration
vector

(
x̄ ′′(s)
ȳ ′′(s)

)
= ψ̄ ′(s)

(− sin ψ̄(s)
cos ψ̄(s)

)
,

which is perpendicular to the tangent vector. Fitting the
osculating circle to the curve, we obtain

ψ̄ ′(s) = σ̄ (s) (10)

so that the curvature is also the rate at which the curve
changes direction with respect to arc length. Integrating (9)
and (10) from an initial position (x̄(0), ȳ(0)) and heading
ψ̄(0) shows that there is a three-dimensional family of
curves with the same shape. We assume that the curvature
profile σ̄ (·) is continuously differentiable so that (x̄(·), ȳ(·))
is a C3 curve, providing a five-dimensional profile
(x̄(·), ȳ(·), ψ̄(·), σ̄ (·), σ̄ ′(·)) that prescribes a portion of the
desired vehicle behavior.

The motion of the point motorcycle can be described
using either a velocity trajectory v(·) or a velocity profile
v̄(·) since each is uniquely determined by the other when
the velocity is strictly positive. This dependence follows
from the fact that ṡ(t) = v̄(s(t)) = v(t) yields an arc-length
trajectory t �→ s(t) that is strictly monotone increasing and
hence invertible.

We find it useful to work in the spatial domain with the
arc length s as the independent variable rather than in the
time domain. To this end, using v̇(t) = v̄ ′(s(t)) v̄(s(t)) and
ā(s) = f̄long(s)/m, we write the longitudinal dynamics (6) as

v̄ ′(s) v̄(s) = ā(s)

or, suppressing the independent variable s,

v̄ ′ = ā/v̄. (11)

FIGURE 7  The wheelie
maneuver. MotoGP
contender Loris Cap-
irossi pops a short-
lived wheelie on his
Ducati Desmosedici
under maximum ac-
celeration at the exit
of a turn. Racing
pilots (riders) pos-
sess the high level of
skil l  required to
finesse the front
wheel back onto the
ground without up-
set. (Photo courtesy
of Michael Troutman,
DMT Imaging.)

FIGURE 8  The stoppie
maneuver. The 2005
MotoGP champion
Valentino Rossi pulls
a brief stoppie on his
Yamaha YZR-M1
under hard braking
during the approach
to a tight turn. Maxi-
mum deceleration is
achieved by applying
as much front brake
as possible without
lifting the rear wheel
too far off the ground.
Great skill is needed
to maintain balance
and heading under
maximal braking.
(Photo courtesy of
Michael Troutman,
DMT Imaging.)
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Combining (7) and (8), it follows that the input accelera-
tion is constrained by

āmin(s, v̄) ≤ ā(s) ≤ āmax(s, v̄) , (12)

where, in this case,

āmax(s, v̄) = +
f max
long

m

√√√√1 −
(

σ̄ (s)v̄2

f max
lat /m

)2

and

āmin(s, v̄) = −
f max
long

m

√√√√1 −
(

σ̄ (s)v̄2

f max
lat /m

)2

.

A dynamic velocity profile satisfying (11) must also satisfy

v̄(s) ≤ v̄M(s) (13)

for all s, where v̄M(·) is the maximum velocity profile cor-
responding to the curvature profile σ̄ (·). From (7) and (8),
we see that the maximum velocity at s is given by

v̄M(s) =
√

f max
lat /m

|σ̄ (s)|

with v̄M(s) = +∞ (an extended value) whenever σ̄ (s) = 0
to represent the absence of a limit on velocity.

We say that v̄(·) is a feasible velocity profile if v̄(·) satis-
fies the differential equation (11) and the constraints (12)
and (13) on the domain of definition of σ̄ (·). If v̄(·) is feasi-
ble and sc satisfies v̄(sc) = v̄M(sc), then sc must be a station-
ary point of v̄M(·) since v̄′(sc) = 0 (all available force is
used for lateral acceleration) and if v̄ ′

M(sc) is not zero then

v̄(s) > v̄M(s) for some s near sc violating (13). Note that,
since σ̄ (·) is continuously differentiable, v̄ ′

M(s) is defined at
all s such that v̄M(s) is finite. In practice, contact points nor-
mally occur at local minimizers of v̄M(·). A local minimum
of v̄M(·) corresponds to local maximum of |σ̄ (·)|, which
roughly corresponds to the apex of a turn. A contact point
sc can also occur at a local maximum of v̄M(·), especially if
vM(sc) is also a local minimum, that is, v̄M(·) is constant on
a neighborhood of sc. A curvature profile exhibiting this
possibility can be easily constructed. While the question
remains open, it appears that it may be possible to con-
struct a smooth v̄M(·), allowing a contact point sc that is an
isolated local maximizer of v̄M(·).

An optimal velocity profile maximizes the velocity at
each point along the path while remaining feasible. This
property implies, as occurs in various time optimal prob-
lems, that every value of the optimal applied longitudinal
force is either the maximum or minimum allowed by (12)
and (13), so that the point-mass motorcycle is always either
accelerating or braking as much as possible.

To this end, consider the problem of traversing, in
clockwise fashion, the curve depicted in Figure 9 whose
curvature profile is shown in Figure 10. Clearly, the opti-
mal velocity profile must touch v̄M(·) at at least one point
since otherwise it would be possible to find a faster velocity
profile. Figure 11 depicts the maximum velocity profile
v̄M(·) for the path in Figure 9 together with the optimal
velocity profile v̄opt(·). As noted above, each location sc

such that v̄opt(sc) = v̄M(sc) satisfies the necessary condition
v̄′(sc) = 0. Also, when a turn is sufficiently isolated (for
example, turns one and two), the approach involves maxi-
mum braking, while the departure involves maximum
acceleration. This observation provides a strategy for
determining the optimal velocity profile.

FIGURE 9  An example test track curve. This x-y plane curve test
track, which is followed in clockwise fashion, involves three right
turns followed by one left turn.
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Suppose that the number of connected regions of local
minimizers for v̄M(·) is finite, with each minimum region
defining a turn. For each turn, we compute a locally optimal
velocity profile as follows. Starting at a local minimizer, we
integrate forward with

v̄ ′ = āmax(s, v̄)/v̄ (14)

and backward with

v̄ ′ = āmin(s, v̄)/v̄ (15)

until the maximum velocity constraint (13) is violated. The
optimal velocity profile v̄opt(·) is then given by the mini-
mum of the local profiles (see Figure 11). Switches from
maximum acceleration to maximum braking occur at loca-
tions where the locally optimal velocity profile that is glob-
ally optimal changes.

In our example, switches from maximum acceleration to
maximum braking occur at approximately 315 and 548 m.
Despite the fact that the track has four well-defined turns,
we see in Figure 11 that only three locally optimal velocity
profiles are used to determine the optimal velocity profile.
In this example, it turns out that the locally optimal velocity
profile for turn four includes a portion of the locally optimal
velocity profile for turn three so that the turn-three profile is
not needed (or is redundant). Indeed, as we integrate (15)
backward from the turn-four minimum region of v̄M(·)
(starting at, say, 755 m), the dynamic velocity profile con-
verges to the turn-three minimum region of v̄M(·) within a
finite distance (at approximately 656 m). We then continue
until the maximum velocity constraint is violated at approx-
imately 496 m. The turn-four locally optimal velocity profile
thus covers both the turn-three and turn-four cases.

This last feature points to an interesting technical
detail. The fact that there is a finite-distance convergence
to the turn-three minimum region implies that the vector
field at the point of convergence cannot be Lipschitz, and
indeed it is not. Furthermore, at that point we do not
have the uniqueness properties that are ensured for a
locally  Lipschitz vector field. Nonuniqueness is reflected
by the fact that the trajectory can reach the constraint
curve at many different points depending on where the
trajectory starts off of the constraint curve. The impor-
tant point for our purposes is that the curve obtained by
integrating (15) backward is the unique curve satisfying
the given initial condition. Nonuniqueness would be an
issue if we needed to begin at a local minimizer of v̄M(·)
and integrate (15) forward. Similar remarks apply to (14)
with reversed directions.

Suppose now that the point motorcycle is subjected to
accelerations of a more general nature, for example, vari-
able aerodynamic drag. In this case, the form of the con-
strained dynamic system is unchanged, satisfying (11),
(12), and (13). That is, a feasible velocity profile satisfies

v̄ ′ = ā/v̄ ,

where the available acceleration is constrained according to

āmin(s, v̄) ≤ ā(s) ≤ āmax(s, v̄) ,

and the velocity state must satisfy the maximum velocity
constraint

v̄(s) ≤ v̄M(s) .

As noted above, the maximum velocity profile v̄M(·) is con-
tinuously differentiable at all points of finite value. The accel-
eration constraints are continuous in s and v̄, v̄ �→ āmin(s, v̄)
is nondecreasing, v̄ �→ āmax(s, v̄) is nonincreasing, and
v̄ < v̄M(s) implies that āmax(s, v̄) > āmin(s, v̄). We are inter-
ested in minimizing

J(v̄(·)) =
∫ s1

s0

ds
v̄(s)

(16)

subject to the dynamics (11) and the constraints (12) and
(13). The cost J(v̄(·)), defined in (16), is simply the time that
it takes to go from s0 to s1 using the velocity profile v̄(·).

Now, it is possible to ride the velocity constraint in
regions where

āmin(s, v̄M(s)) ≤ v̄ ′
M(s)v̄M(s) ≤ āmax(s, v̄M(s))

FIGURE 11  Optimal velocity profile. The optimal velocity v̄opt(·)
(solid) is shown together with the maximum velocity constraint v̄M (·)
(dashed). The optimal solution touches the maximum velocity profile
only at points that locally minimize the maximum velocity profile
v̄M (·). Different colors are used to depict different locally optimal
velocity profiles. Switches from maximum acceleration to maximum
deceleration occur at approximately 315 m and 548 m. The transi-
tions from maximum deceleration to maximum acceleration are, in
contrast, smooth.
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by choosing ā(s) = v̄ ′
M(s)v̄M(s) . The condition v̄ ′

M(s) = 0
above is a special case. To obtain the set of locally optimal
velocity profiles, we begin in each constraint-riding region
and integrate backward using ā = āmin(s, v̄) and forward
using ā = āmax(s, v̄) until the maximum velocity constraint
is violated. The optimal velocity profile v̄opt(·) is then
given by the minimum of the local profiles.

To be concrete, with aerodynamic drag, the acceleration
constraints are offset according to

āmax(s, v̄) = +
f max
long

m

√√√√1 −
(

σ̄ (s)v̄2

f max
lat /m

)2

− bminv̄2

and

āmin(s, v̄) = −
f max
long

m

√√√√1 −
(

σ̄ (s)v̄2

f max
lat /m

)2

− bmaxv̄2 ,

where bmin and bmax model the minimum and maximum
available drag (for example, bmin = ρcDA/2, see below).
The variable drag coefficient b ∈ [bmin, bmax] models the
extent to which the rider can modulate the drag force
through body posture. We thus see that bmin corresponds
to the streamlined stance used during acceleration and on
high-speed straights, whereas bmax corresponds to a higher
drag upright stance used when braking during the
approach to a turn. Note that, in this case, a local mini-
mum of v̄M(·) is no longer a possible contact point for
v̄opt(·) and v̄M(·).

Figure 12 shows the optimal velocity profile when vari-
able aerodynamic drag is included. Note the loss of the
symmetry that is present when there is no aerodynamic
drag. Also, since the presence of aerodynamic drag allows
for greater deceleration, the switching points occur further
down the track at approximately 327, 553, and 676 m. In
this case, all four locally optimal velocity profiles are used
to determine the optimal velocity profile. Surprisingly, for
the drag parameters we use, the time to traverse the 900-m
course is slightly shorter than in the no-drag case. Figure 13
compares the optimal velocity and acceleration trajectories
resulting with and without aerodynamic drag.

When the number of contact regions is finite, the number
of acceleration switches is also finite so that v̄ ′

opt(·), hence
v̇opt(·), is piecewise continuous. In the above examples, the
no-drag case possesses two points of discontinuity, whereas
the case with aero drag possesses three, as can be seen in
figures 11 and 12.

COMPUTING THE OPTIMAL VELOCITY PROFILE 
FOR A NONHOLONOMIC MOTORCYCLE 
WITH CONSTRAINTS
The algorithm for computing the optimal velocity profile
for a point-mass motorcycle provides a framework for esti-
mating optimal velocity profiles for more comprehensive
motorcycle models. More comprehensive models possess
additional states (including roll angle and rate) and are
subject to more complicated constraints than the simple
point-mass motorcycle above. We thus need to manage
this additional complexity to evaluate the pointwise (in
space s) maximum velocity as well as the minimum and
maximum acceleration functions. The basic strategy is to
use a quasi-steady-state approach where the basic idea is
to compute quantities as if some of the system states were
in steady state.

We now proceed to develop a constrained nonholo-
nomic motorcycle model that can be used to estimate the
performance of more realistic motorcycle models, which
include, for instance, suspension and tire models. Our non-
holonomic motorcycle model is based on the bicycle model
developed in [7] and [8]; see also [19].

The nonholonomic model can be viewed as a planar
body that moves along the ground with leaning. The
generalized coordinates describing the position and atti-
tude of the vehicle (see Figure 14) are the coordinates
(x, y) of the point of contact of the rear wheel, the roll (or
lean) angle ϕ, and the yaw (or heading) angle ψ , while δ
represents the effective steer angle of the front wheel as
measured in the x-y plane. For the sake of consistency,
the inertial x-y-z coordinate system is taken as north-
east-down with angles oriented by the right-hand rule so
that, for example, the heading angle ψ is measured from
the north (around the inertial z-axis) with east being
+π/2 rad. The roll angle ϕ is positive when the motorcy-
cle is leaned right (right-hand rule around the body-

FIGURE 12  Optimal velocity profile with variable aerodynamic
drag. The optimal velocity v̄opt(·) (solid), when aerodynamic drag
is present, is shown together with the velocity constraint v̄M (·)
(dashed). The loss of symmetry is due to the presence of the
aerodynamic drag force. Also, points of contact between the opti-
mal velocity profile and the maximum velocity profile no longer
occur at local minimizers of v̄M (·). As before, different colors are
used to depict different locally optimal velocity profiles. Switches
from maximum acceleration to maximum deceleration occur at
approximately 327 m, 553 m, and 676 m.
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fixed x-axis). This nomenclature is consistent with that
used in aerospace applications and adopted for ground
vehicle dynamics [20]. As in [7] and [8], we use simpli-
fied kinematics in which the wheel contact points are
located within a fixed body plane without changing the
wheelbase (as if the steering axis is perpendicular to the
body-fixed x-axis and the wheels have zero radius). All
mass (with magnitude m) is assumed to be concentrated
at the center of mass, located at height h (when the vehi-
cle is vertical) and distance b forward of the rear-wheel
contact point. The acceleration of gravity is denoted by g,
and p is the wheelbase.

The motion of the motorcycle is constrained in a nonho-
lonomic fashion so that the motion of each wheel contact
point is allowed only in the direction that the wheel is
pointing. Thus, for a constant effective steer angle δ, the
motorcycle follows a circle of curvature σ = tan δ/p and
signed radius R = 1/σ ; see Figure 14. This relation
between δ and σ also holds instantaneously and maps
δ ∈ (−π/2, π/2) to σ ∈ (−∞,∞) in an invertible fashion.
We can thus use σ in place of δ in the dynamics. Note that
the effective steer angle δ is not the angle of rotation of the
steering shaft of the motorcycle.

The kinematics of planar motion are given by

ẋ = vx cos ψ, ẏ = vx sin ψ ,

v̇x = u1, ψ̇ = vx σ, σ̇ = u2, (17)

where u1 = v̇x and u2 = σ̇ are the longitudinal and lateral
controls, respectively. These kinematics are the same as
those of a nonholonomic car. The roll dynamics of the non-
holonomic motorcycle

hϕ̈ = gsin ϕ − (σ v2
x + bψ̈ − hψ̇2 sin ϕ) cos ϕ (18)

are nearly those of an inverted pendulum with a lateral
acceleration applied at the pivot point. Indeed, the coeffi-
cient of cos ϕ contains the lateral acceleration σ v2

x + bψ̈
seen at the pivot as well as a centripetal acceleration term
hψ̇2 sin ϕ resulting from the rotation about the pivot with
angular velocity ψ̇ and offset h sin ϕ.

FIGURE 13  Changes in the optimal velocity profile due to aerodynamic drag: (a) the longitudinal velocity (upper) and the corresponding
acceleration trajectory (lower) for the point-mass vehicle when no aerodynamic drag is present and (b) the longitudinal velocity (upper) and
acceleration (lower) for the point-mass vehicle subject to the aerodynamic drag. Periods of acceleration and braking are shown in green and
red, respectively.
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Equation (18) can also be derived by considering the
motion of a system consisting of a point-mass inverted
pendulum attached to a fictitious planar rigid body. The
rigid body is fully actuated so that it can be made to follow
any position-orientation trajectory despite dynamic inter-
actions with the unactuated pendulum. Let (xc, yc) and ψ
be the position and orientation of the center of mass of the
rigid body. Attach the pendulum at the center of mass
with the axis of rotation aligned with the body x-axis (the
heading reference) and let ϕ be the roll angle of the pendu-
lum with respect to the inverted position, positive around
the body x-axis. Let mc and Ic denote the mass and inertia
of the rigid body, respectively, let mp denote the mass of
the point pendulum, and let T, V , and L denote the kinetic
and potential energies and the associated Lagrangian

L = T −V . The system motion satisfies

0 = d
dt

∂L
∂ϕ̇

− ∂L
∂ϕ

= − mph[(hψ̇2 sin ϕ − (ÿc cos ψ − ẍc sin ψ)) cos ϕ

+ gsin ϕ − hϕ̈], (19)

where ÿc cos ψ − ẍc sin ψ is the lateral acceleration at the
pivot. Expressing the lateral acceleration in terms of vx, σ ,
and ψ̈ as above yields (18). Note that (19) is independent of
the inertial properties chosen for the fictitious planar rigid
body and, furthermore, the dynamic constraint (19) is also
independent of the mass mp of the point-mass pendulum.

Equations (17) and (18) together with

ψ̈ = v̇x σ + vxσ̇ = u1σ + vxu2

constitute the nonholonomic motorcycle dynamics. This
set of equations provides an idealized motorcycle with
direct control over the longitudinal dynamics through
v̇x = u1 and the lateral dynamics through σ̇ = u2.

The algorithm for computing the optimal velocity pro-
file described in the previous section can be viewed as pro-
viding a quasi-steady-state trajectory for the nonholonomic
motorcycle (17), (18) subject to acceleration constraints that
are independent of the roll angle ϕ. At each point along the
desired path, the algorithm provides the optimal vopt and
v̇opt with corresponding σopt and σ̇opt, defining the control
and a portion of the state. The remainder of the quasi-
steady-state state is found by trimming the system so that
the derivatives of some of the states are instantaneously
fixed at desired values. In this case, we require that
v̇x = v̇opt, σ̇ = σ̇opt, and ϕ̈ = 0 with vx = vopt and σ = σopt.

Due to the decoupled nature of the nonholonomic motor-
cycle, the first two conditions are already satisfied; to satisfy
the third, we compute the angle ϕqs such that ϕ̈ = 0 in (18). It
is clear that the quasi-steady-state roll trajectory ϕqs(·)
obtained in this fashion is not a dynamic trajectory since it
does not satisfy (18) unless it is constant. Nevertheless, ϕqs(·)
provides a reasonable estimate of the dynamic trajectory ϕ(·)
satisfying (18) as the example presented in Figure 15 sug-
gests. The roll trajectory ϕ(·) and its quasi-steady-state
approximation ϕqs(·) correspond to the optimal velocity pro-
file with aerodynamic drag presented above. Upon further
examination, the dynamic roll trajectory appears to be a fil-
tered version of the quasi-steady-state roll trajectory. This
relationship can, in fact, be made precise [21], [22]. Indeed,
it can be shown that the dynamic roll trajectory is approxi-
mated by A[ϕqs(·)], where A is a noncausal lowpass filter
that depends on the required lateral acceleration trajectory.
The linear time-varying filter A[ · ] approximates a non-
causal linear time-invariant (LTI) filter with impulse
response h(t) = (α/2) e−α|t| and frequency response
ĥ(ω) = α2/(α2 + ω2), where the characteristic value (or nat-
ural frequency) α is of the form 

√
geff/h with an effective

FIGURE 15  Approximation of the roll trajectory. The quasi-steady-
state roll trajectory (dashed) approximates the dynamic roll trajec-
tory (solid) satisfying the equation of motion (18).
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gravity geff that is stronger in turns. In particular, the
dynamic roll trajectory is close to the quasi-steady-state roll
trajectory when the variation of the quasi-steady-state roll
trajectory is slow relative to this lowpass filtering.

To determine whether more realistic constraints involving
tire forces, wheelie, and so on are satisfied when a maneuver
is performed by the nonholonomic motorcycle, we develop a
method for evaluating the interaction forces between the
vehicle and the ground. To this end, note that the nonholo-
nomic motorcycle is a planar rigid body whose motion is con-
strained by forces at the front- and rear-wheel contact points
(see Figure 16). One approach is thus to write the dynamics of
the full six-degree-of-freedom (6DOF) rigid body subject to
the forces shown in Figure 16 so that the forces Fr

z and F f
z are

forces of constraint determined by constraining the contact
points to be in the x-y plane while Fr

y and F f
y are the forces

needed to enforce the nonholonomic constraints.
Another approach for determining the interaction forces is

to derive the dynamics of a four-degree-of-freedom (4DOF)
rigid body with contact points constrained to the horizontal
plane (holonomic constraints). The lateral tire forces are then
determined by enforcing the nonholonomic constraints,
whereas the normal forces are estimated using a force-
moment balance. We will describe this strategy in more detail.

The configuration of the planar rigid body system can
be parameterized by the set of generalized coordinates
q = (x, y, ϕ, ψ)T , where (x, y) is the position of the ideal-
ized rear contact point and ϕ and ψ are once again the roll
and yaw (or heading) angles for the vehicle. The kinetic
and potential energies of the system have the form
T̃(q, q̇) = q̇TM̃(q)q̇/2 and Ṽ(q), respectively. Applying the
Lagrangian formalism, the system dynamics have the form

M̃(q)q̈ + C̃(q, q̇) + G̃(q) = f̃ ,

where f̃ is a vector of generalized forces [23]. Exploiting
symmetry and adding the influence of the external forces
F f

x , Fr
y, Fr

x, F f
y , and FA, we write the equations of motion

with the translational velocity (ẋ, ẏ) expressed as (vx, xy) in
the vehicle body frame as

M(ϕ)




v̇x

v̇y

ϕ̈

ψ̈


 + C(ϕ, vx, vy, ϕ̇, ψ̇) + G(ϕ)

=




F f
x cδ − F f

y sδ + Fr
x − FA

F f
x sδ + F f

y cδ + Fr
y

0
p(F f

x sδ + F f
y cδ)


 , (20)

where M(ϕ) is a roll-dependent mass matrix (or inertia ten-
sor) and C(·) and G(·) are vectors of Coriolis and gravity
terms, respectively. The effective steering angle δ affects
the direction of application of the front-wheel forces F f

x
and F f

y with the necessary rotation indicated using

cδ = cos δ and sδ = sin δ. The term FA is the aerodynamic
drag, commonly expressed as FA = (1/2)ρcDAv2

x , where ρ
is the air density, cD is the drag coefficient, and A is a refer-
ence drag area. Imposing the nonholonomic conditions

ψ̇ = vxσ, vy = 0, δ = arctan pσ, (21)

the third equation of (20), representing the roll dynamics,
reduces to (18) as expected.

To complete the model, we compute (or, rather, esti-
mate) the normal forces F f

z and Fr
z by a vertical force bal-

ance and a pitch-axis moment balance given by

0 = Fr
z + F f

z + mg, (22)

0 =
(

F f
x cδ − F f

y sδ + Fr
x

)
hcϕ

+ FAhcp cϕ + Fr
zb − F f

z a, (23)

where a = p − b is the horizontal distance from the center of
mass to the front contact point. This expression is not exact
since it neglects some inertial contributions (which can be
computed using the 6DOF approach) but is sufficient for the
sake of presentation, providing a reasonable approximation
and indicating the general structure. Equations (22) and (23)
show the influence of the longitudinal forces on the balance of
the vehicle. A large acceleration due to large Fr

x increases the
load on the rear wheel while reducing the load on the front.
Similarly, the effect of hard braking corresponding to F f

x large
but negative is to increase the front normal force while reduc-
ing the normal force on the rear. This phenomenon is known
as load transfer. Due to load transfer, under high-performance
race conditions, the longitudinal force redundancy is resolved
using Fr

x ≥ 0 and F f
x ≤ 0. We neglect the usual rolling resis-

tance as being negligible compared with acceleration and
braking forces. Furthermore, modern racing motorcycles pos-
sess a clutch mechanism that greatly reduces the transmission
of engine braking torque to the rear wheel. 

The steady-state trajectories of the nonholonomic motor-
cycle with forces modeled by (20)–(23) consist of constant-
speed circles parameterized by (vx, σ ) over a range of
longitudinal velocity vx ≥ vmin > 0 and curvature σ . To trim
the motorcycle at a constant operating condition, we proceed
as follows. First, note that since the 4DOF model (20) is
equivalent to the nonholonomic motorcycle model (17), (18)
under the nonholonomic constraints (21), we obtain the
steady-state roll angle ϕss by solving (18) for ϕ with the spec-
ified (vx, σ ) and ϕ̈ = 0 = ψ̈ . For hσ � 1, ϕss ≈ tan−1 σ v2

x/g.
Now, with nonzero aerodynamic drag, the system is dissipa-
tive so that, driving from the rear wheel, we set F f

x = 0 and
look for Fr

x > 0. The first, second, and fourth equations of
(20) with v̇x = v̇y = ψ̈ = 0 and vx, σ, ϕ, ψ̇, δ set to trim val-
ues can now be solved for Fr

x, Fr
y, and F f

y . Finally, we obtain
Fr

z and F f
z from (22) and (23). Ranging over vx and σ , we can

thus build up the equilibrium manifold of constant operating
conditions for the nonholonomic motorcycle.
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For nonzero fixed curvature σ , the overall required lat-
eral tire force increases as the velocity vx increases, roughly
as the square of the velocity. It follows that the friction
ellipse tire-force constraint shown in Figure 17 limits the
achievable longitudinal velocity vx whenever σ �= 0. Thus,

as shown above for the point-mass motorcycle, the maxi-
mum velocity is a function of |σ | and can be easily com-
puted numerically. This computation is somewhat more
complicated since the size of each friction ellipse depends
on the normal forces. In this fashion, we can compute the
maximum velocity profile v̄M(·) corresponding to the
desired path curvature profile σ̄ (·).

To define the maximum and minimum acceleration
functions āmax(s, v̄x) and āmin(s, v̄x) ,  we take a quasi-
steady-state approach. For a specific location s with cur-
vature σ = σ̄ (s) and velocity vx < v̄M(s) , consider the
maximum acceleration case. We begin with the steady-
state condition for (vx, σ ). Then we increase the rear lon-
gitudinal force Fr

x while freezing the roll angle at its
steady-state value. The second and fourth equations of
(20) together with (22) and (23) allow us to solve for the
forces Fr

y, F f
y , Fr

z , and F f
z as affine functions of Fr

x . The
maximum acceleration is obtained when the friction
ellipse constraint is reached or when the longitudinal

force corresponding to the maximum engine torque is
reached. Note that the wheelie constraint −F f

z ≥ 0 is also
easily accommodated.

The minimum acceleration function is computed in a
similar fashion, first reducing Fr

x to zero and then
increasing the braking force −F f

x while
checking the tire and stoppie constraints. As
previously mentioned, the maximum brak-
ing force is not a real limitation for modern
racing motorcycles, since the rider can
always apply enough braking torque to lock
the front wheel.

The computation of the optimal velocity
profile is accomplished in much the same way
as for the point mass. Since the various func-
tions are implemented numerically rather

than with closed-form expressions, we use for-
ward Euler integration. As before, the integration is per-
formed with respect to the arc length s rather than time. A
finite number of points s1, . . . , sN on the track are chosen.
The algorithm then has the following form:

1) At the current position sk, the velocity is v̄ = v̄(sk)

and the curvature is σ̄ = σ̄ (sk).
2) Trim the vehicle at constant velocity v̄ and curvature σ̄

obtaining the steady-state roll angle ϕ̄ss together with
the interaction forces between the tires and ground.

3) Holding ϕ at ϕ̄ss, let F̄r
x(sk) be the largest longitudi-

nal rear force Fr
x satisfying the 

a) tire constraints: the longitudinal and lateral forces
of the front and rear wheels remain within the
respective friction ellipses;

b) engine constraint: the longitudinal force to be pro-
duced by the rear tire can be generated by the
engine; and

c) wheelie constraint: normal load on the front tire has
to be greater than or equal to zero.

4) Define āmax(sk, v̄) := v̇T , where v̇T is the longitudinal
acceleration corresponding to the maximum lateral
force F̄r

x(sk). Propagate the velocity profile using

v̄(sk+1) = v̄(sk) + (
sk+1 − sk

) · āmax(sk, v̄(sk))/v̄(sk) .

5) If the maximum velocity curve is reached (or
exceeded), proceed to Step 6. Otherwise, set
k = k + 1 and go to Step 1.

6) Find the next local minimum of the maximum veloc-
ity curve, occurring at the location sj . Set
v̄(sj) = v̄max(sj). Also, set k = j for future use.

7) At the current position sj, the velocity is v̄ = v̄(sj),
and the curvature is σ̄ = σ̄ (sj).

8) Trim the vehicle at constant velocity v̄ and curvature
σ̄ , obtaining the steady-state roll angle ϕ̄ss together
with the interaction forces between tires and ground.

9) Holding ϕ at ϕ̄ss, let −F̄ f
x (sj) be the largest decelerat-

ing longitudinal front force −F f
x satisfying the

FIGURE 17  Top view of the motorcycle model with a graphical repre-
sentation of the tire force limits. Longitudinal and lateral tire forces
acting on the front and rear wheels (light blue) are constrained to
remain within the corresponding friction ellipses (red).
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a) tire constraints: the longitudinal and lateral forces
of the front and rear wheels remain within their
respective friction ellipses

b) stoppie constraint: normal load on the rear tire
must be nonnegative.

10) Define āmin(sj, v̄) := v̇T , where v̇T is the longitudinal
acceleration corresponding to the decelerating lateral
force F̄ f

x (sj). Propagate the velocity profile backwards
using v̄(sj−1) = v̄(sj) − (sj − sj−1) · āmin(sj, v̄(sj))/v̄(sj) ,
saving for comparison all previously computed val-
ues of v̄(sj−1).

11) If the presently determined velocity v̄(sj−1) exceeds
a previously computed velocity (signifying intersec-
tion), take v̄(sj−1) to be the minimum of the two and
proceed to Step 1 (using the k set in Step 6). Other-
wise, set j = j− 1 and go to Step 7.

Note that we have omitted the obvious exits or jumps that
would be taken whenever we run off the end of the track in

the forward or reverse directions. As for the point-mass
motorcycle, the optimal velocity profile (estimate) is given
by the minimum of the local optimal velocity profiles.

APPLICATION TO A REALISTIC 
MOTORCYCLE MODEL
We now show how the above techniques can be used as
part of a strategy for producing more realistic, high-
performance motorcycle trajectories. We have at hand a
high-fidelity motorcycle model that includes suspension
components, sophisticated tire models, and detailed dri-
vetrain models. Furthermore, we have a virtual rider in
the form of a feedback control system capable of driving
the motorcycle model along approximate trajectories that
are sufficiently close to being feasible. Given a desired
path, we are interested in finding trajectories of the high-
fidelity motorcycle model that are high performance,
operating close to the performance limits.

FIGURE 18  Comparison between quasi-steady-state and dynamic simulation along a chicane maneuver. Part (a) shows the velocity pro-
file computed with the quasi-steady-state method (red) as well as by dynamic simulation with the virtual rider (dashed blue), (b) shows
the acceleration profiles obtained with the quasi-steady-state method (red) and simulation (dashed blue), where the spikes in the simu-
lated acceleration at around 130 m and elsewhere are due to gear shifting, (c) is the roll angle profile obtained with the quasi-steady-
state method (red) and simulation (dashed blue), where the roll angle reaches approximately 45° providing a lateral acceleration of
approximately 1 g, and (d) is the required curvature profile given as  the input to the quasi-steady-state method and as produced by the
simulated multibody motorcycle (dashed blue).
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The overall strategy is as follows. First we build up a
corresponding nonholonomic motorcycle model together
with appropriate constraints. To this end, we select geo-
metric and inertia parameters for the nonholonomic
motorcycle model to provide a nominal match of the cor-
responding properties of the high-fidelity motorcycle
model. For instance, the height h can be chosen to corre-
spond to an approximate average position of the center of
mass under the expected maneuvering. Details of the
drive train and engine are examined to produce a maxi-
mum wheel-torque curve such as that depicted in Figure
6. The tire model parameters are examined and abstracted
to produce friction ellipse limits.

With a constrained nonholonomic motorcycle model in
hand, we are now ready to construct approximate trajec-
tories that can be evaluated with the high-fidelity motor-

cycle model. Given a desired path and an initial velocity,
we use the algorithm presented in the previous section to
construct a velocity profile that is feasible for the noholo-
nomic motorcycle and that makes use of the maximum
and minimum acceleration functions developed using the
quasi-steady-state approach. This velocity profile is then
used to obtain a dynamic trajectory for the nonholonomic
motorcycle, checking that the corresponding constraints
are satisfied. Finally, this simplified trajectory is used as a
reference trajectory for the high-fidelity model driven by
the virtual rider.

For the sake of illustration, consider a track composed
of a simple chicane, which is a quick succession of sharp
opposite-direction turns (usually two turns) that must be
negotiated at relatively slow speed. The curvature of the
chicane used in our example is shown in Figure 18, where

FIGURE 19  Quasi-steady-state and dynamic tire forces. Parts (a) and (b) are the longitudinal tire forces computed with the quasi-steady-
state method (red) and those obtained by simulation with the virtual rider (dashed blue), (c) and (d) show the quasi-steady-state (red) and
dynamic (dashed blue) lateral tire forces; and (e) and (f), for the same maneuver, show the normal forces computed with the quasi-steady-
state method (red) and obtained by dynamic simulation (dashed blue).
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a change of sign in σ can be seen. In the same figure, we
report the velocity profile computed with the quasi-
steady-state method as well as the velocity profile fol-
lowed by a multibody motorcycle model driven by the
virtual rider (dashed blue line). The lateral acceleration
reaches 1 g at the apex of the turns with a corresponding
roll angle of 45°. Despite the simplicity of the model used
for the quasi-steady-state computation, there is good
agreement between the roll angles obtained during
dynamic simulation and the quasi-steady-state method.
The roll angles are shown in Figure 18 together with the
longitudinal acceleration profiles.

When using the nonholonomic motorcycle model, and
especially when using the quasi-steady-state method, it is pos-
sible to transition instantaneously from acceleration to braking.
In contrast, when working with a model that includes a sus-
pension, it takes time to transition from an acceleration posture
in which the rear suspension is more compressed to a decelera-
tion posture in which the front suspension is more com-
pressed. During this load-transfer transient, the normal force at
the front tire may be such that the available braking force is
temporarily less than the ideal force predicted by the quasi-
steady-state method. Race pilots use a combination of suspen-
sion setup and rider skill to manage such load-transfer effects.

The interaction forces between tires and ground predict-
ed by the quasi-steady-state method and obtained through
a dynamic simulation are shown in Figure 19. As in the
case of Figure 18, despite the simplicity of the model, there
is a good agreement between predicted and simulated
forces. Observable differences occur during the transition
from acceleration to braking due to suspension dynamics
that are neglected in the quasi-steady-state computation.
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