Accelerometer Calibration and Dynamic Bias and Gravity Estimation: Analysis, Design, and Experimental Evaluation

Pedro Batista, Carlos Silvestre, Paulo Oliveira, and Bruno Cardeira

https://doi.org/10.1109/TCST.2010.2076321

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Accepted Version

Level of access, as per info available on SHERPA/ROMEO

http://www.sherpa.ac.uk/romeo/search.php

<table>
<thead>
<tr>
<th>Title</th>
<th>IEEE Transactions on Control Systems Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSN</td>
<td>1063-6536</td>
</tr>
<tr>
<td>Publishers</td>
<td>Institute of Electrical and Electronic Engineers (Society Publisher)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Accepted Version (pathway d)</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any Repository, arXiv, Institutional Website, +3</td>
<td></td>
</tr>
<tr>
<td>Embargo</td>
<td>No Embargo</td>
</tr>
<tr>
<td>Copyright Owner</td>
<td>Publishers</td>
</tr>
<tr>
<td>Location</td>
<td>Any Repository</td>
</tr>
<tr>
<td>Author’s Homepage</td>
<td></td>
</tr>
<tr>
<td>Institutional Repository</td>
<td></td>
</tr>
<tr>
<td>Institutional Website</td>
<td></td>
</tr>
<tr>
<td>Named Repository (arXiv, TechRxiv)</td>
<td></td>
</tr>
<tr>
<td>Conditions</td>
<td>When accepted for publication, set statement to accompany deposit (see policy) Must link to publisher version with DOI Publisher copyright and source must be acknowledged</td>
</tr>
<tr>
<td>Accepted Version (pathway d)</td>
<td>None</td>
</tr>
<tr>
<td>arXiv, Funded Designated Location, Institutional Website</td>
<td></td>
</tr>
<tr>
<td>Submitted Version (pathway a)</td>
<td>None</td>
</tr>
<tr>
<td>arXiv, Funded Designated Location, TechRxiv, +3</td>
<td></td>
</tr>
<tr>
<td>Submitted Version (pathway d)</td>
<td>None</td>
</tr>
<tr>
<td>Academic Social Network</td>
<td></td>
</tr>
</tbody>
</table>

For more information, please see the following links:
- IEEE Copyright Policy
- Section 8.1.9 of the P802.11b Operating Manual
- Policy: Posting Your Article
- IEEE Open
- Author Posting of IEEE Copyrighted Papers Online
- Electronic IEEE Copyright Form
Accelerometer Calibration and Dynamic Bias and Gravity Estimation: Analysis, Design, and Experimental Evaluation

Pedro Batista, Student Member, IEEE, Carlos Silvestre, Member, IEEE, Paulo Oliveira Member, IEEE, and Bruno Cardeira, Member, IEEE

Abstract—Tri-axial linear accelerometers are key components in a great variety of applications and, in particular, in navigation systems. Nonidealities such as scale factors, cross coupling, bias, and other higher-order nonlinearities affect the output of this sensor, leading, in general, to prohibitive errors. On the other hand, these coefficients are often time-varying, which renders off-line calibration less effective. One such coefficient that usually varies greatly over time and between power-ons is the bias. This paper details the calibration of an accelerometer unit and presents also a dynamic filtering solution for the bias, which also includes the estimation of the gravity in body-fixed coordinates. Simulation and experimental results obtained with a Motion Rate Table are presented and discussed to illustrate the performance of the proposed algorithms.

I. INTRODUCTION

Recent advances in materials and production processes have led to the increasingly miniaturization of a large variety of sensing devices. Among these sensors are a new generation of Micro Electro-Mechanical Systems (MEMS) accelerometers, which are nowadays used in a large variety of applications. These sensors have good dynamic specifications, considering the cost, size, and power requirements, but are often subject to large offsets, cross-coupling factors, and other nonlinearities. While in some cases these nonidealities are of no importance, e.g. in cell phones to detect the vertical direction or in computer hardware for active hard drive protection, they are prohibitive for the design of navigation systems, which justifies off-line calibration. Furthermore, the coefficients of these nonidealities are often time-varying, which renders off-line calibration less effective and substantiates the need for on-line parameter estimation. This paper presents the calibration of a low-cost triaxial accelerometer and a novel filtering solution for on-line bias and gravity estimation with application to the design of navigation systems for mobile platforms.

High performance accelerometers are a key element and have been extensively used in Inertial Navigation Systems (INS). With the widespread use of MEMS technology, accelerometers are nowadays a fundamental aiding sensor for attitude estimation in low-cost, middle range performance Attitude and Heading Reference Systems (AHRS), with application to autonomous air, ground, and ocean robots. These inexpensive, low power sensors, used as pendula, allow for accurate attitude estimates at very low frequency by comparing the Earth gravitational field vector measurements in body frame coordinates with the vertical, see [1], [2], and references therein for examples of such application in attitude estimation. The integration of accelerometer readings with GPS measurements are commonly employed for linear motion estimation in Integrated Navigation Systems, see [3] and references therein for examples of such application.

The topic of accelerometer calibration has been subject of intensive research. Indeed, various methods have been proposed in the literature, from precision centrifuge tests of linear accelerometers [4] to multi-position methods [5] [6] [7]. In [8], error models for inertial sensors, including a solid-state triaxial accelerometer, were explicitly included in an Extended Kalman Filter (EKF) to estimate the position and orientation of a robot, while in [9] Kalman filtering techniques were applied to the calibration and alignment of Inertial Navigation Systems, which was also studied in [10]. More recently, in [11], nonlinear Kalman filters, of first and second order, coupled with position feedback, were used to characterize accelerometers. An optimization-based calibration procedure for triaxial accelerometer-magnetometers was proposed in [12], where a robotic arm is used to generate different angular positions of the body of the sensor. In [13] a fully electrical setup was proposed to test and calibrate accelerometer MEMS sensors and a case study was presented in [14], where a 4-DOF system is proposed for fully automated accelerometer calibration. An interesting survey on the history of accelerometers, which also includes a section on calibration activities, is found in [15].

The contribution of the paper is twofold: i) an accelerometer calibration technique is proposed and applied to off-line accelerometer calibration that includes the estimation of bias, scale factors, cross coupling factors, and quadratic coefficients; ii) a time-varying Kalman filter is derived for on-line dynamic bias and gravity estimation. The calibration technique proposed in the paper resorts to attitude relative measurements as provided by a Motion Rate Table (MRT). The a priori knowledge of the gravity vector is not required.
since it is also explicitly estimated, in contrast with previous methods that assume that the vertical is known. The second part of paper is of particular importance for the design of navigation systems since it allows for online estimation of the accelerometer bias which, for low-cost units, is usually time-varying, rendering off-line calibration less effective. Moreover, the gravity is also estimated, in body-fixed coordinates. This is in contrast with previous solutions where the gravitational term is canceled resorting to the knowledge of the attitude of the body, therefore leading to cancellation problems that lead to a severe degradation in the performance of the resulting navigation systems. In addition to simulation results, the proposed algorithms were experimentally evaluated resorting to a motion rate table, which offers ground truth data.

The paper is organized as follows. The accelerometer models are presented and discussed in Section II. Section III details the off-line calibration technique proposed in the paper, while the on-line dynamic bias and gravity estimation solution is derived in Section IV. Simulation and experimental results are given in Sections V and VI, respectively, including both the off-line calibration of a low-cost MEMS accelerometer and dynamic bias and gravity estimation tests. Finally, Section VII summarizes the main conclusions and contributions of the paper.

A. Notation
Throughout the paper the symbol 0 denotes a matrix of zeros and I an identity matrix, both of appropriate dimensions, while diag(A_1, \ldots, A_n) is a block diagonal matrix. If x and y are two vectors of identical dimensions, x \times y represent the cross products. For x = [x_1 \ldots x_n]^T \in \mathbb{R}^n, the vector x^i is defined as the vector that results of the element-wise power operation, i.e., x^i := [x_1^i \ldots x_n^i]^T \in \mathbb{R}^n, while the vector x[i] is defined as

\[x[i] := \left[\begin{array}{c} \text{sign}(x_1) x_1^i \\ \vdots \\ \text{sign}(x_n) x_n^i \end{array} \right]. \]

The rotation matrix from a coordinate frame \{A\} to a coordinate frame \{B\} is denoted by \textsf{R}. Finally, the Dirac delta function is denoted by \delta(t).

II. ACCELEROMETER MODEL

The simplest accelerometer model for single axis sensors considers only a scale factor and a constant offset, as given by

\[a_m(t) = f a(t) + b, \]

where \(a_m \) is the output of the accelerometer, \(f \) is the scale factor, \(b \) denotes the bias, and \(a(t) \) stands for the acceleration that is measured in the absence of offsets, which includes not only the acceleration of the body of the accelerometer but also a term due to the effect of the gravitational field on the mass whose acceleration is actually measured, which is not coincident with the accelerometer case. Notice that the term due to the gravitational field appears regardless of the accelerometer technology as all objects are subject to the gravitational force, which induces a force of opposite direction to the gravity on the mass whose acceleration is actually measured, see [5] and [16] for further details.

For navigation purposes, tri-axial accelerometers, composed of three, single-axis, orthogonally mounted linear accelerometers, are employed. The generalization of the simplest single-axis model for tri-axial accelerometers, which accounts for scale factors and bias, reads as

\[a_m(t) = F a(t) + b, \]

where \(F \in \mathbb{R}^{3 \times 3} \) is a diagonal matrix that includes the scale factors, \(b \in \mathbb{R}^3 \) is the bias, and

\[a(t) = \dot{v}(t) + S [\omega(t)] v(t) - g(t), \]

where \(v \) and \(\omega \) denote the linear and angular velocities of the body-fixed frame \{B\}, respectively, expressed in body-frame coordinates, \(S [\omega(t)] \in \mathbb{R}^{3 \times 3} \) is the skew symmetric matrix such that \(S [\omega(t)] v(t) = \omega(t) \times v(t) \), and \(g(t) \in \mathbb{R}^3 \) is the acceleration of gravity, expressed in body-fixed coordinates. In practice, the set of single-axis accelerometers is not orthogonally mounted, which introduces cross coupling between the acceleration felt on the different accelerometer axes. This nonideality may be simply modeled by no longer considering \(F \) as a diagonal matrix. Instead, \(F \) is just assumed to be an invertible matrix, which accounts simultaneously, in this case, for scale and cross coupling factors.

The accelerometer model (1) is still, and in spite of capturing already a different number of nonidealties, only an approximation of the real model. Indeed, the electrical devices involved in the measurement process, from transducers to amplifiers, are not linear, do not have constant coefficients, and are subject to different types of noise. A more complete (and complex) model [4], that includes higher-order terms, is given by

\[a_m(t) = F a(t) + b + FF_2 a^2(t) + F_{[2]} a_{[2]}(t) + \ldots \]

where \(F_2 \in \mathbb{R}^{3 \times 3}, F_{[2]} \in \mathbb{R}^{3 \times 3}, F_3 \in \mathbb{R}^{3 \times 3}, \) and \(F_{[3]} \in \mathbb{R}^{3 \times 3} \) are diagonal matrices.

Nonlinear time-varying models for accelerometers, with many parameters, offer better accuracies, at the expense of the complexity. From the practical point of view, it seems appealing to use simpler methods that preserve accuracy as: i) for very highly nonlinear time-varying dynamic models the complexity of the inversion of the model could be overwhelming. Closed-form solutions are obviously not available and iterative numerical solvers would be required to operate in real-time; ii) time-varying models would be likely to depend on other variables such as temperature, which would require additional sensors; and iii) the effect of higher-order nonlinearities is often very mild, particularly when compared to the magnitude of the electrical noise. Therefore, the model employed in this work, and after successful experimental validation of the model accuracy, is

\[a_m(t) = F [a(t) + F_2 a^2(t)] + b + n_a(t), \]

where \(n_a(t) \) denotes the accelerometer noise. The quadratic even term was chosen as it was evident, from experimental
evaluation, that this was the most dominant nonlinear term. Moreover, there exists a closed-form solution to obtain $a(t)$ from (2), which is a precious advantage for real-time navigation applications since no iterative solvers are required.

III. ACCELEROMETER OFF-LINE CALIBRATION

There exists a multitude of tests and calibration procedures described in the literature. In this paper it is assumed that the accelerometer is exposed to several different known rotations and a rather large number of measurements is taken at each static position. This can be achieved resorting to a tri-axial motion rate table, e.g., the Ideal Aerosmith Model 2103HT, used in this work to obtain the experimental data.

The motion rate table outputs the rotation from body-fixed to inertial coordinates apart from an installation error due to non-horizontal mounting of the table. If there is a precision level available, this installation error is known and it is possible to compute the rotation matrix R from body-fixed to inertial coordinates. Otherwise, it is necessary to consider the direction of the gravity must also be determined. In this System (WGS84), see [17] for further details. Therefore, if (g) is the table installation fixed reference frame, which is given by the calibration table, and (g) corresponds to the matrix that encodes the installation offset.

Since measurements are considered only at static positions, it is true that $v(t) = \dot{v}(t) = 0$. Therefore, using (2), the nominal accelerometer readings are given by

$$a_m(t) = F \left[-g(t) + F_2 g^2(t) \right] + b. \quad (3)$$

The acceleration of gravity in body-fixed coordinates may be expressed as

$$g(t) = R^T g,$$

where (g) is the acceleration of gravity expressed in inertial coordinates. Nowadays, there exist very accurate models for the acceleration of the gravity, e.g., using the 1984 World Geodetic System (WGS84), see [17] for further details. Therefore, if R is known, the computation of F, F_2, and b corresponds to the simple determination of linear coefficients. In the case considered in the paper only $\frac{\partial}{\partial t} R$ is known, which means that the direction of the gravity must also be determined. In this case, it is possible to rewrite (3) as

$$a_m(t) = F \left[-\frac{\partial}{\partial t} R^T g + F_2 \left[\frac{\partial}{\partial t} R^T t g \right]^2 \right] + b, \quad (4)$$

where

$$\frac{\partial}{\partial t} g = \frac{\partial}{\partial t} R^T g,$$

is the acceleration of gravity expressed in table-fixed coordinates. Multiplying (4) on the left by F^{-1} gives

$$F^{-1} a_m(t) + \frac{\partial}{\partial t} R^T t g - F_2 \left[\frac{\partial}{\partial t} R^T t g \right]^2 - b' = 0, \quad (5)$$

where

$$b' = F^{-1} b.$$
The acceleration of gravity is that the magnitude of the acceleration of estimate this variable. A common assumption when designing depends on the attitude of the robot, and it is used, in fact, to on the magnitude of the gravity and its direction (sign of the z-coordinate).

The bias may be estimated under some mild assumptions. While there are models for its magnitude, its direction, the bias may be estimated under some mild assumptions. Experimental results evidence that this parameter varies greatly, not only over time but also between power-ons.

In the previous section, which allows to use the model has been previously calibrated, removing the effect of scale and cross factor errors and ignoring higher-order nonlinearities, the bias may be estimated under some mild assumptions. The simplest of these is the sensor bias, and while it is only account for some of the nonidealities of the accelerometers.

The parameters are readily obtained by computing the vector associated with the minimum singular value of X_2 and normalizing it according to the known magnitude of the gravity. Finally, it is possible to reiterate this last step using as new gravity estimate the solution of each previous step. The proposed algorithm is detailed in Table I.

<table>
<thead>
<tr>
<th>Table I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithm to Calibrate the Accelerometer</td>
</tr>
</tbody>
</table>

1) Compute the SVD of X. Select the vector associated with the minimum singular value.
2) Normalize the SVD solution obtained in Step 1 according to the magnitude of the gravity and its direction (sign of the z-coordinate).
3) Use the gravity estimate obtained in Step 2 and compute the SVD of X_2. Select the vector associated with the minimum singular value.
4) Normalize the SVD solution obtained in Step 3 according to the magnitude of the gravity and its direction (sign of the z-coordinate).
5) Use the current gravity estimate in X_2 and go to Step 3. Stop once the difference between the previous gravity estimate and the most recent goes below a predefined threshold.

Finally, from (6), it is possible to write

$$\dot{\mathbf{v}}(t) = a_m(t) - \mathbf{S} [\omega(t)] \mathbf{v}(t) + \mathbf{b}(t) \mathbf{g}(t).$$

IV. Dynamic Bias and Gravity Estimation

Although theoretically possible for certain maneuvers, online estimation of the parameters of the accelerometer model (2) is not practical: the number of unknown coefficients is too large and highly aggressive maneuvers would be required to achieve only a moderate performance. However, it is important to include, in navigation systems, a simplified model to account for some of the nonidealities of the accelerometers. The simplest of these is the sensor bias, and while it is only one constant for each axis, it is well known that an offset in the acceleration measurement results in a severe degradation of the performance of navigation solutions. Furthermore, experimental results evidence that this parameter varies greatly, not only over time but also between power-ons.

It was shown in [18] that, assuming that the accelerometer has been previously calibrated, removing the effect of scale and cross factor errors and ignoring higher-order nonlinearities, the bias may be estimated under some mild assumptions. Therefore, it is assumed in this section that the accelerometer has been previously calibrated using the technique proposed in the previous section, which allows to use the model

$$a_m(t) = \mathbf{v}(t) + \mathbf{S} [\omega(t)] \mathbf{v}(t) - \mathbf{g}(t) + \mathbf{b} + \mathbf{n}_0(t).$$

The acceleration of gravity \mathbf{g} is not known in robotic applications. While there are models for its magnitude, its direction depends on the attitude of the robot, and it is used, in fact, to estimate this variable. A common assumption when designing attitude filters is that the magnitude of the acceleration of gravity dominates, for sufficiently low frequencies, the other terms, see [1] for an example of such application. The direction of the gravity is approximated, in that case, by

$$d_g = \frac{a_m(t)}{||a_m(t)||},$$

which induces errors in the attitude estimates. While these errors are in general negligible, they may prove to be prohibitive for highly maneuvering vehicles, e.g. aerial robots, vehicles executing trajectories with approximately constant accelerations, or applications where high-accuracy requirements are in place, such as space applications. Therefore, the gravity acceleration in body-coordinates is also considered as an unknown in this framework.

The direction of the acceleration of gravity is locally constant in inertial coordinates. Therefore, the time derivative of \mathbf{g} is simply given by

$$\dot{\mathbf{g}}(t) = -\mathbf{S} [\omega(t)] \mathbf{g}(t).$$

The bias is assumed to be constant, which means that

$$\dot{\mathbf{b}}(t) = 0.$$
The Kalman gain matrix is given by
\[K(t) = P(t) C^T \Theta^{-1}(t). \]

Remark 1: Notice that, even though the nominal system considers \(b(t) = 0 \), in the filter design the bias is assumed to be driven by zero mean, white Gaussian noise. This allows the filter to track slowly time-varying bias, in addition to variations between power-ons. The intensity of the white noise that is assumed to drive the bias is a parameters that can be selected according to the change rate of the bias.

V. Simulation Results

This section presents simulation results that were carried out prior to the experimental tests in order to assess the performance of the proposed solutions. The simulations attempt to replicate the experimental trials so that the results are comparable. The multi-position accelerometer calibration algorithm is evaluated in Section V-A, while simulation results with the proposed filtering solution for dynamic bias and gravity estimation are presented in Section V-B.

A. Accelerometer Calibration

In order to assess the effectiveness of the proposed calibration method, Monte Carlo simulations were first carried out considering an accelerometer with
\[
F^{-1} = \begin{bmatrix}
0.990 & 0.001 & -0.002 \\
0.020 & 1.005 & 0.003 \\
-0.010 & -0.004 & 1.010
\end{bmatrix},
\]
\[
b' = \begin{bmatrix}
0.05 \\
-0.01 \\
0.04
\end{bmatrix} \text{ (m/s}^2\text{)},
\]
and
\[
F_2 = 10^{-4} \text{diag} (2.5, 1.5, -0.75).
\]

In addition to that, sensor noise was considered. In particular, zero-mean additive white Gaussian noise was added to the acceleration measurements, with standard deviation of 0.0013 m/s\(^2\). In each simulation the attitude of the accelerometer varies according to Fig. 1, where the evolution of the roll, pitch, and yaw Euler angles is depicted. The corresponding evolution of the resulting gravity vector is shown in Fig. 2. As it is possible to observe, the attitude trajectory evolves in steps and covers many different configurations, not only to have the calibration problem well-posed (sufficient data) but also to achieve better results. A transition time of 2 s is used between steps and each step lasts 22 s. The data is sampled, at a sampling rate of 100 Hz, during a period of 4 s on each step, in which the accelerometer is static, for calibration purposes. The first and last periods of 180 s of the simulation are presented solely because they will be required for hardware synchronization purposes.

The resulting mean of the errors of the estimated parameters is below \(10^{-9} \) for all variables, which evidences that the estimates are unbiased. On the other hand, the standard deviation of the error stays below \(10^{-7} \), which corresponds to very accurate estimates of the accelerometer parameters. These values show that the proposed calibration procedure should yield good results in practice.

B. Dynamic Bias and Gravity Estimation

In order to evaluate the performance of the proposed bias and gravity estimation solution, simulations were carried out considering a setup very similar to the experimental one, which will be presented in the following section. In particular, the rotation of the accelerometer is parameterized by roll, pitch, and yaw Euler angles, whose evolution is depicted in Fig. 3.

Additive zero-mean white Gaussian noise was considered for all sensors, which were sampled at 100 Hz. The standard deviations were chosen as 0.0013 m/s\(^2\) for the acceleration measurements, 0.05 °/s for the angular velocity readings, and 0.01 m/s for the linear velocity measurements. In addition, the bias of the accelerometer was set to
\[
b' = \begin{bmatrix}
0.1 \\
-0.05 \\
0.025
\end{bmatrix} \text{ (m/s}^2\text{)}.
\]

The filter parameters were chosen as
\[
\Xi = \text{diag} (10^{-3} \mathbf{I}, 10^{-4} \mathbf{I}, 10^{-5} \mathbf{I})
\]
and
\[
\Theta = 0.1 \mathbf{I}.
\]
Finally, the initial velocity and gravity estimates were set close to the true values, as the velocity is measured and the acceleration of gravity is known up to some error (the acceleration measurement is dominated by the gravity). The initial bias estimate was set to zero.

The evolution of the gravity and bias estimates are depicted in Figs. 4 and 5, respectively. As it is possible to observe, the bias converges quickly to the true values. In order to better evaluate the performance of the filter, the evolution of the errors of the linear velocity, gravity, and bias are depicted in Figs. 6, 7, and 8, respectively. Clearly, the mean errors converge to zero. Moreover, the errors on the bias and gravity estimates stay well below the noise of the accelerometer, which evidences good filtering performance of the proposed solutions.

VI. EXPERIMENTAL EVALUATION

Experimental results were carried out in order to evaluate the performance of the proposed solutions. The experimental setup is detailed in Section VI-A, while the accelerometer calibration procedure and results are presented in Section VI-B. Finally, the proposed filtering solution for dynamic bias and gravity estimation is analyzed in Section VI-C.

A. Experimental Setup

To obtain high quality results, a calibration procedure requires the execution of specific maneuvers, involving the acquisition of high accuracy ground truth data to evaluate the estimated quantities produced by processing accelerometer data. The Model 2103HT from Ideal Aerosmith [21] is a three-axis MRT that provides precise angular position, rate and acceleration for development and testing of inertial components.
Fig. 7. Evolution of the gravity error

Fig. 8. Evolution of the bias error

and systems. This table, presented in Fig. 9, was used to generate the desired calibration trajectories and provide the required ground truth signals. The angular resolution of the MRT is 0.000025°. The accelerometer that was employed is presented in Fig. 10. It is a Silicon Design Inc. triaxial analog accelerometer [22], sampled at 100 Hz using three Texas Instruments ADS1210, which are directly connected to a microcontroller board built around the Philips XAS3 16-bit microcontroller with CAN (Controller Area Network) Bus interface [23]. The ADS1210 is a high precision, wide dynamic range, delta-sigma analog-to-digital converter (ADC), with 24-bit resolution, and operates from a single +5V supply. The ADS1210 differential inputs are ideal for direct connection to transducers, guaranteeing 20-bits of effective resolution, which is a suitable accuracy for the inertial sensor used in the present application. Finally, a PCI104 board, connected to the CAN Bus, logs the data in a solid state disk for post-testing analysis.

The table top is autonomous in terms of power and logging capabilities.

![Experimental setup mounted on the Ideal Aerosmith calibration table](image)

Fig. 9. Experimental setup mounted on the Ideal Aerosmith calibration table

![Accelerometer](image)

Fig. 10. Accelerometer

B. Dynamic Accelerometer Calibration

The accelerometer unit previously introduced was subject to several tests, taken on different days and in different conditions. The calibration results show that the scale and cross factors, as well as the quadratic coefficient, do not change significantly between tests, which validates the calibration of the accelerometer prior to its usage in navigation systems. However, the bias estimates resulting from the calibration test proposed in Section III change greatly between tests, including tests where the accelerometer power was never turned off. This evidences that dynamic bias estimation is essential for this type of sensor.

The estimated parameters, which were used to correct the acceleration measurements afterwards during dynamic bias and gravity estimation, were

\[\mathbf{F}^{-1} = \begin{bmatrix} 0.9946 & 0.0037 & -0.0061 \\ -0.0091 & 0.9998 & 0.0079 \\ -0.0071 & -0.0186 & 1.0047 \end{bmatrix} \]
\[b' = \begin{bmatrix} -0.7368 \\ -0.2803 \\ 0.3995 \end{bmatrix} \, (m/s^2) , \]
and
\[F_2 = 10^{-4} \text{diag} \left(-2.362, 1.055, 3.666 \right) . \]
These are all within the specifications provided by the manufacturer.

Figure 11 presents the error between the corrected accelerometer measurements at static positions and the expected measurements, which are due only to the acceleration of gravity. It is possible to observe that, even after accelerometer calibration, the mean of the error at each position is not always zero. This is due not only to higher-order nonlinearities but also to the time-varying nature of the parameters. There exist some positions at which the standard deviation of the error is much higher. This is not due to the accelerometer but to the calibration table, which exhibited some oscillations at some positions. Finally, a vibration was detected in the outer axis of the calibration table around 11Hz, which is most likely a natural resonance frequency of the body. That also contributes to the increased standard deviation of the error, and that is not present in real applications. Interestingly enough, both the oscillations and the vibrations of the table are so small that a slightly lower grade accelerometer is unable to detect them.

C. Dynamic Bias and Gravity Estimation

The experimental results relative to dynamic bias and gravity estimation are presented in this section. The evolution of the attitude is the same as the one presented in Section V-B, so that the results are comparable. The filter parameters, sampling rate, and initial estimates are also the same. Notice that, with this trajectory, the system dynamics for on-line dynamic bias and gravity estimation are uniformly completely observable, so that the Kalman filter error dynamics are globally asymptotically stable.

The evolution of the gravity and bias estimates are depicted in Figs. 12 and 13, respectively. The similarities between

Fig. 12. Evolution of the gravity estimate (in body-fixed coordinates)

Fig. 13. Evolution of the bias estimate

Fig. 11. Error of the accelerometer measurements after calibration correction
relates acceleration and position quantities. Moreover, it is important to stress that the bias estimate is only small in this case because the accelerometer unit had been calibrated and therefore the bias was partially compensated for, as shown in Section VI-B. Had this not been the case and the bias estimate would be very large when compared to the accelerometer noise.

In order to better assess the performance of the filter, the evolution of the errors of the linear velocity and gravity acceleration are depicted in Figs. 14 and 15, respectively. Clearly, the mean errors converge to zero. Moreover, the error on the gravity stays well below the noise of the accelerometer, which evidences very good filtering performance.

![Fig. 14. Evolution of the linear velocity error](image)

![Fig. 15. Evolution of the gravity error](image)

VII. CONCLUSIONS

Tri-axial accelerometers are key elements in a great variety of applications and, in particular, in navigation systems. Nonidealities such as scale factors, cross coupling, and bias, affect the output of this sensor, leading, in general, to prohibitive errors, particularly for sensitive and high-performance navigation systems. This justifies off-line calibration as a method to overcome these nonidealities. On the other hand, these coefficients are often time-varying, which renders off-line calibration less effective and calls for dynamic parameter estimation. This paper presented a calibration technique for a triaxial accelerometer and a novel dynamic filtering solution for the bias, which also accounts explicitly for the estimation of the gravity in body-fixed coordinates. Simulation results were shown that evidenced the expectable performance of the proposed algorithms. Finally, a low-cost accelerometer unit was calibrated and the dynamic bias and gravity estimation evaluated experimentally. In the tests a Motion Rate Table was employed that provided ground truth signals for performance evaluation purposes, both for off-line calibration and dynamic bias and gravity estimation, and that allowed to conclude the excellent performance of the proposed solutions. Future work will consist in the inclusion of the proposed dynamic estimation solution in future navigation systems, previously adjusted with the calibration algorithm presented in the paper.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the expertise and contributions of Luís Sebastião during the mounting process of the Ideal Aerosmith Calibration Table and the help with the delogging software provided by André Oliveira.

REFERENCES

