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Abstract 

This paper investigates the formation control problem of underactuated unmanned surface vehicles with unknown 

dynamics and ocean disturbances. To tackle the leader-follower configuration, an improved fixed-time velocity controller 

is proposed for the virtual vehicle to guide the followers efficiently. For the tracking control of the follower vehicles, a 

concise controller is designed by borrowing backstepping and nonsingular sliding mode control techniques. A novel 

adaptive filter is developed to address the so-called “explosion of complexity” problem in the traditional backstepping 

framework, which could simplify the control structure and facilitate the implementation of the proposed controller in 

practical engineering. Furthermore, the radial basis function neural network is employed to identify the unknown 

dynamics of the vehicle model. A bounded-feedback adaptive law is developed to estimate the upper bound of ocean 

disturbances. That could greatly enhance the robustness and accuracy of the controller. Finally, a rigorous proof has been 

given to guarantee the practical fixed-time stability of the closed-loop system. Two examples are provided to demonstrate 

the effectiveness and superiority of the theoretical results. 

 

Keywords: Underactuated vehicle; Leader-follower formation control; Fixed-time control; Neural network; Nonlinear sliding mode 

control 

1. Introduction 

In recent years, coordinated or cooperative control of multiple surface vehicles has been drawing great 

attention in the marine control community. Due to the increasing complexity of the marine environment, a 

single unmanned surface vehicle (USV) cannot accomplish maritime tasks even with sophisticated 

equipment[1-4]. Additionally, considering the economic cost and work efficiency, it is desirable to coordinate a 
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group of USVs to perform the tasks simultaneously. Compared with a single vehicle, the cooperative 

operation of multiple vehicles has some advantages, e.g. extensive sensing coverage[5-8], high fault tolerance[9-

12], and strong robustness and adaptability[13,14]. Meanwhile, it has wide application prospects in the military 

and civil fields. Typical application scenarios include maritime patrol and surveillance, maritime search and 

rescue, naval convoy escort and marine resource exploration. To perform a cooperative operation, one 

fundamental idea is to achieve formation control of multiple vehicles whose objective is to maintain a desired 

geometric pattern such that the assigned task can be accomplished. 

Currently, several effective approaches have been proposed to obtain the desired formation for multiple 

vehicles, e.g. behaviour-based control[15], virtual structures[16,17], leader-follower architecture[18,19], and 

topology-based control[20-22]. Among these, leader-follower architecture is preferred due to its simplicity and 

reliability in practical engineering. In such architecture, one or more leaders are introduced to track a time-

varying path, then the followers are driven to their corresponding reference positions generated by the leader 

at different predefined ranges and bearings.  

So far, significant results have been made in the leader-follower formation control of multiple vehicles. In 
[23], the leader-follower formation control of multiple nonholonomic mobile robots was investigated, and the 

formation architecture was obtained by fusion of the virtual vehicle guidance and trajectory tracking approach. 

In [24], an adaptive leader-follower controller was presented for a group of networked autonomous mobile 

robots, where a specific triangle formation is achieved without the need for neighbours’ velocity. In [25], the 

authors studied the formation control problem of nonholonomic mobile robots, where the prescribed 

performance is guaranteed by the barrier Lyapunov function. In addition to the challenges in the 

aforementioned references, formation control of underactuated surface vehicles has the following inherent 

problems: (1) the dynamics of the vehicle are nonlinear and the accurate information of hydrodynamic terms 

is difficult to be determined; (2) the motion of the vehicle can be affected dramatically by the ocean 

disturbances, and (3) the underactuated model of the vehicle cannot be transformed into a driftless form and 

thus raise a unique challenge for controller design. 

To overcome the challenges, a variety of leader-follower formation strategies have been developed for 

multiple underactuated surface vehicles[26,27]. Especially, neural networks (NNs) are universal approximators 

for smooth functions and thus are adopted by nonlinear controller design[28]. Considering the unknown leader 

dynamics and local dynamics, the problem of leader-follower formation control of underactuated surface 

vehicles was addressed by the introduction of NNs [29]. Using a similar approximation, a robust adaptive 

control scheme was designed for a group of marine surface vehicles, and the radial basis function neural 

network (RBFNN) related term was embedded into the controller to enhance the robustness of the closed-loop 

system in [30].  

To cope with the adverse effect induced by the unknown plant parameters and ocean disturbances, Sun et al. 

presented a robust formation controller for USVs based on the PI sliding mode technique and parameter 

estimation approaches [31]. Lu et al. constructed an NN-based observer to estimate the ocean disturbances and 

then employ the minimum learning parameterization (MLP) technique to reduce the number of adaptive 

parameters [32]. The prescribed geometric formation with guaranteed transient performance for USVs was 

achieved via the transverse function and barrier Lyapunov function [33]. 

 However, most of the aforementioned results focus on the asymptotic convergence or uniform ultimate 

bounds of the system performance. This means that all the states in the closed-loop system can reach the 

equilibrium point or its neighbourhood in infinite time, which is not able to meet the requirement of practical 

engineering. Despite some finite-time results that have been reported in [34, 35], the convergence time strictly 
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depends on the initial states of the system. Therefore, how to develop an effective control scheme for 

formation control of multiple underactuated USVs, such that the desired geometric formation can be achieved, 

and the fast convergence performance can be ensured, is a challenging topic that has not been addressed 

properly in the literature.  

In this work, a novel fixed-time sliding mode controller is proposed for the formation control of 

underactuated USVs with unknown dynamics and ocean disturbances. To facilitate the leader-follower 

configuration, a virtual vehicle is introduced to guide the follower USVs to track the reference position. The 

RBFNNs are employed to address the unknown model uncertainty. The bounded-feedback adaptive law is 

developed to estimate the lumped disturbances which contain the upper bound of the approximation error of 

NNs and ocean disturbances. With the proposed algorithm, the formation tracking errors converge to a small 

residual set around the origin in a fixed time, the settling time is independent of the initial states of the system. 

The main contribution of the paper can be summarized as follows:  

(1) An improved fixed-time velocity controller is presented for virtual vehicles to implement the tracking 

control of followers. In comparison with the conventional guidance principle[27] the presented 

algorithm possesses faster and more accurate guidance. 

(2) A robust adaptive sliding mode control law is developed for the follower USVs. By fusing the 

RBFNNs and the bounded-feedback techniques, both the unknown high-order hydrodynamic terms of 

the USV and the lumped disturbances are identified and compensated. That could greatly enhance the 

robustness and improve the accuracy of the control strategy. 

(3) A novel adaptive fixed-time filter is constructed to avoid the repeated derivative of the virtual 

controller, which could dramatically simplify the structure of the control strategy and thus facilitate the 

implementation of the controller in practical engineering. 

The rest of this paper is organized as follows. In Section 2, some preliminaries and lemmas are provided. 

Then, the problem formulation of leader-follower formation control is presented. In Section 3, the adaptive 

velocity controller is designated for the virtual vehicle. Moreover, the fixed-time sliding mode controller is 

presented for the follower USV. Practical fixed-time stability of the closed-loop signals is proved based on 

Lyapunov theory. Section 4 shows the numerical simulation result of the proposed algorithm. Finally, Section 

5 concludes the paper. 

2. Background and problem formulation 

2.1. Mathematical model of the underactuated USV 

In this paper, the kinematic model of the USV can be described as  

  R    (1) 

where  
T 3, ,x y    denotes the position vector in the inertial frame, , ,x y  denote the position and yaw 

angle of the USV respectively,  
T

, ,u v r  denotes the velocity vector in the body-fixed frame, , ,u v r denote 

the surge velocity, sway velocity and yaw angle velocity, respectively.  R   is the rotation matrix with the 

form of 
  

  

cos sin 0

sin cos 0

0 0 1

R

 

  

 
 


 
  

  



4 C. Huang, H. Xu, P. Batista, X. Zhang, C. Guedes Soares/ European Journal of Control 00 (2022) 000–000 

The kinetics of the underactuated USV can be described as follows 
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 

 
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1

1 1
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u vr f u d

m m m

m
v ur f v d

m m

m m
r uv f r d

m m m






   




   

 

   


 (2) 

with 

 

 

 

 

2 3

2 3

2 3

3

3

3

u u u u

v v v v

r r r r

f u d u d u u d u

f v d v d v v d v

f r d r d r r d r

  

  

  

  

where , ,u v rm m m are inertia parameters, ,u r  are control inputs in surge and yaw directions respectively, 

, ,wu wv wrd d d are ocean disturbances induced by the wind, wave, and water currents, and 

     , ,u v rf u f v f r are nonlinear functions with hydrodynamic damping terms and nonlinear damping terms 

2 3 2 3 2 3
, , , , , , , ,u u u v v v r r rd d d d d d d d d  . 

For the leader-follower configuration, the leader is introduced to generate the reference position of the 

follower. The position vector of the leader USV is defined as  
T

, ,L L Lx y L , the velocity vector is defined 

as  
T

, ,L L Lu v rL , the bearing angle between the leader and the follower is denoted as  , and the distance 

between the leader and the follower is denoted as    
2 2

L Lx x y y     . 

Assumption 1. [36] The sway velocity of the underactuated USV is passive-bounded. Meanwhile, the velocity 

vector 
L

 of the leader is bounded by the unknown constant 
M . 

Assumption 2. The ocean disturbances , ,wu wv wrd d d  are bounded by positive unknown constants , ,wu wv wrd d d , 

such that , ,wu wu wv wv wr wrd d d d d d   .  

Remark 1. Since the USV motion in the sway direction is dominated and damped out by the hydrodynamics 

damping force, the sway dynamics is passively bounded. This assumption is consistent with marine practice 

and has been systematically analyzed by considering different cases [36]. 

2.2. Neural networks approximation 

Function approximation is a technique for estimating unknown underlying functions using historical or 

available observations from the domain. Due to the excellent approximation ability and simple structure, the 

RBFNN is recognized as one of the best solutions for nonlinear approximation. In this paper, the RBFNN is 

employed to approximate the unknown part of the USV model. The detailed mathematical model of the 

RBFNN is illustrated as Lemma 1. 

 Lemma 1. [37, 38] Consider a continuous function  f x  with   0f 0 , where x is defined in a compact 

set x . The RBFNN can be utilized to approximate the nonlinear function  f x  as follows 

    T ,    xf     x W x x  (3) 
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where 
1W  denotes the weight of the RBFNN,  denotes the unknown constant approximation error with 

  ,   denotes the supremum of the approximation error,        
T

1 2, ,      x x x x  denotes the 

RBF vector with the form of Gaussian function 

  (4) 

where 
i  denotes the width of the Gaussian function, 

i  denotes the centre of the receptive field, and 

1,2, ,i   denotes the number of neurons. 

2.3. Other important definitions and lemmas 

To facilitate the controller design in subsequent steps, some important definitions and lemmas are 

introduced as follows. 

Definition 1. Consider the dynamical system with the following form 

      , ,   0t f t 
0

x x x x  (5) 

where nx denotes the state of the system, 
0

x  denotes the origin (equilibrium point) of the system, 

  0: nf U  denotes a continuous function in an open neighbourhood 
0U  of the origin 

0
x . If the origin 

0
x  

of the system (5) is stable based on the Lyapunov function, then the fixed-time stability is defined as follows. 

Lemma 2.[39] Consider the dynamical system (5), and suppose that there exists a positive definite Lyapunov 

function  V x  such that 

      
p q

V aV bV    x x x  (6) 

where      , , 0, , 0,1 , 1,a b p q      . Then the origin 
0

x  of the system is practical fixed-time stable. 

Furthermore, the residual set of the solution of system (5) can be determined by 

     

1 1
1 1

lim | min ,
1 1

p q
p q

t T
t V t a b

 

 

 



  
     

     
      

  

x x  (7) 

where  0,1 . The convergence time satisfies 

  
   

max

1 1
:

1 1
T T

a p b q 
  

 
 (8) 

Lemma 3.[40] For any 0   and , the following inequality holds 

 0 tanh sk


  


 
   

 
 (9) 

where sk  is a constant and satisfies 
 1sk

sk e
 

 , i.e. 0.2758sk  . 

Lemma 3.[41] For ,  and any real numbers 0, 0, 0     , the following inequality holds 

 
p

q      
     

   


 

 
 

 (10) 

Lemma 4.[42] For 0  and 1 20, 0   , the following inequality holds 

    1 1

1 2 1 2 1

1

1
        


 (11) 
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Lemma 5.[43] For 0  and 
1 2 10,     and

2  , the following inequality holds 

  1 2 2 1       (12) 

Lemma 6.[44] For any constants 
1 2 30, 0, 0s s s    and ,x y  , the following inequality holds 

 
1

1 2 1 2 21 2

3 3

1 2 1 2

s

s s s s ss s
x y s x s

s s s s




 
 

 (13) 

2.4. Problem statement 

Consider a group of underactuated USVs, numbered from 1  to N , where each USV is subject to 

kinematic (1) and kinetics (2). Among these USVs, one of them is defined as a leader, and the rest are 

followers. By coordinating the range and bearings between the leader and followers, the desired formation of 

the USVs can be achieved. The objective of this paper is to design a sliding mode controller for followers 

with the consideration of model uncertainty and ocean disturbances, such that followers are capable to form 

and maintain the desired formation with the leader in a fixed-time. 

 

3. Leader-follower formation control 

To facilitate the formation configuration, the leader-follower structure is divided into leader USV-virtual 

vehicle structure and virtual vehicle-follower USV structure. As shown in Fig.1, the leader-follower formation 

control of multiple USVs can be achieved in 2 subsections: first, a fixed-time velocity controller is presented 

for virtual vessels to track reference positions generated by the leader USV. Second, a novel practical fixed-

time sliding mode controller is designated for the follower USVs to track virtual vehicles.  

 

Fig.1 Schematic diagram of leader-follower configuration 
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3.1. Formation setup 

In this subsection, to make the virtual vehicle track the reference position quickly, a kind of controller is 

presented to regulate the velocity of virtual vehicles based on [32]. For the formation configuration, the 

reference position is determined by the leader USV with desired distance 
d  and bearing angle 

d . Both the 

leader USV and virtual vehicles are subject to the ship's kinematic system and their motion can be described 

by 

    ,     R R  
L L L v v v

     (14) 

where  
T

, ,x y v v v v  and T[ , , ]v v vu v r
v

 denote the position vector and velocity vector of the virtual 

vehicle respectively. Then, the kinematic of the reference position can be derived as 

  R  
r L L

l   (15) 

where    
T

cos , sin ,0d d d d     l = denotes the desired offset vector. 

Define the error vector  
T

1 2 3, ,e e ee  between the reference position and its corresponding virtual 

vehicle, i.e.,  

  
e r v

    (16) 

To guarantee the virtual vehicle is capable of tracking the reference position in a fixed-time, an adaptive 

controller is presented as  

      T

1 2
ˆsig sig tanhp q

v MR K K


 


  
      

  

e

v e e


    (17) 

 T

1 3 4
ˆ ˆ ˆtanh q

M M Mk k


  


  
       

  

e

e


  (18) 

where 
3 3

1 2,K K   are positive define design matrices, 
3 4 1, , 0k k    are design parameters, 

   sig sign
kk     . ˆ

M denotes the estimation value of 
M , and ˆ

M M M    , where 
M 

L
  based on 

Assumption 1. 

Consider the following Lyapunov candidate function  T 2

1 11 2 1 2 MV   
e e

  , taking the time derivative 

yields 

 T

1

1

1
ˆ

M MV  


 
e e

   (19) 

Substituting (14), (16), (17) into T

e e
 

 
gives 

 

    

         

   

T T

T T

1 2

1 1T T

min 1 min 2

ˆ        sig sig tanh

ˆ        tanh

p q

v M

p q

M M

R R

R R R K K

K K





 

   


   


 

 

   
         

   

 
      

 

e e e L L v v

e

e L L v e e

e

e e e e

    


   


   

 (20) 

Substituting (18) into 
1

ˆ
M M   , leads to 
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T

3 4

1

T

3 4

1
ˆ ˆ ˆtanh

ˆ ˆ         tanh

q

M M M M M

q

M M M M M

k k

k k





    
 

    


  
      

  

 
    

 

e

e

e

e







 (21) 

According to (20), (21) and Lemma 3, the following inequality can be derived 

 

   

   

1 1T T

1 min 1 min 2

T

3 4

1 1

min 1 min 2 3 4

ˆ tanh

ˆ ˆ  tanh

ˆ ˆ   

p q

M M

q

M M M M M

p q q

M M M M s M

V K K

k k

K K k k k







   

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

       

 

 

 
      

 

 
    

 

     

e

e e e e

e

e

e e


   




 

 (22) 

Based on Lemma 4 and Lemma 5, then  

 

 

 

  

 

1 1

11

1 1

ˆ ˆ ˆ

1
ˆ         

1

1
         

1

1
         2

1

q q

M M M M M

q q

M M

qq

M M M

q q

M M

q

q

q

    

 

  

 

 



 

 

 


  


 


 (23) 

Therefore, by adding and subtracting the term  
 1 2

2

3 2
p

Mk 


, (22) can be rewritten as 

 

   
1 1 1 14 4

1 min 1 min 2

1 1
2 22 2

2 23 3

3 3

2

1 1

   
2 2 2 2

p q q q

M M

p p

M M

M M s M

k k
V K K

q q

k k
k k k

   

 
   

   

 

    
 

   
       

   

e e
 

 (24) 

Using Lemma 6, let      2

1 2 32, 1, 1 2, 1 2, 2 1Mx y s p s p s p        , and the term 

 
 1 2

2

3 2
p

Mk 


can be transformed into 

 

1 1
2 22 1

3 3 3

1 1

2 2 2 2

p p

p
M M p p

k k k
 

 

    
    

  
 (25) 

Then, one has 

    

1
2 2

1 1 14

1 min 1 min 2 3 1
2 1

p

p q qM

M

k
V K K k

q


   



   
      

 
e e

   (26) 

where           
   1 11 2

1 4 3 32 1 2 1 2 1 2
p pq

M M s Mk q k k p k p    
        . 

Remark 2. Actually, for a certain follower, only the leader information is required to complete the formation 

configuration. No information from neighbouring followers is needed to develop the formation control 

strategy. Besides, the information of the leader is obtained by the followers indirectly: the virtual vehicle is 
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introduced to transfer the information from leader to followers and facilitate the path tracking of followers. 

 

3.2. Formation tracking control 

This subsection proposes a novel fixed-time sliding mode controller for the follower USVs. The design 

process consists of two steps (see Fig.2). In the first step, the virtual controller is designed for the kinematic 

system of the follower USV. Meanwhile, to avoid the problem of “explosion of complexity” occurring in 

conventional backstepping frameworks, an adaptive fixed-time filter is constructed to estimate the derivative 

of the virtual controller. In the second step, the RBFNN is employed to estimate the model uncertainty. An 

adaptive fixed-time sliding mode controller is developed for the kinetic system of the follower USV. The 

detailed process of the controller design is illustrated as follows. 

Step 1. Define the tracking errors between the virtual vehicle and the follower USV as  

  
T

e v

e v

e v

x x x

y R y y

  

   
   

 
   
      

 (27) 

The time derivative of (27) is 

 

cos

sin

e v e e

e v e e

e v

x u u ry

y v u rx

r r







   

   

  

 (28) 

 

Fig.2 Block diagram of the fixed-time leader-follower control 

For , eu  , select the corresponding virtual controllers ,
eu   as 
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   

   

1 2

1 2

sig sig cos ,

sig sig
atan

e

p q

u x e x e v e

p q

y e y e

v

k x k x u

k y k y v

u


 



  

   
  

 
 

 (29) 

where 
1 2 1 2
, , , 0x x y yk k k k  are the design parameters. Then ,e ex y  in (28) can be written as  

 
cos

sin
e

e u v e e

e v e

x u ry

y v u rx

 



   

   
 (30) 

Furthermore, to avoid repeated differentiation of virtual control laws ,
eu   in the subsequent design, a 

fixed-time filter is constructed as 

 
 

1 2

ˆ
ˆsig tanh

ˆ ˆ ˆ ,    ,
i i

p q i i
i i i i i i

i

q

i i i i e

t t

k k i u 

 
   



    

 
     

 

    

 (31) 

where 
1 2

, , 0
i ii k k    are all design parameters, it denotes the time constant, i denotes the filtered signal of 

i , i i i     denotes the filtered error, and    0 0i i  . i i   denotes an unknown constant, 
ˆ
i denotes the estimation of i , and ˆ

i i i    . 

Since 
e cannot be directly involved in the controller design of step 2. We further introduce r to 

stabilize e . For subsystem e  in (28), the corresponding virtual controller r is designated as 

    
1 2
sig sigp q

r e e vk k r       (32) 

where 
1 2
, 0k k   are the design parameters. Meanwhile, the filter (31) is also utilized, with r r r    and 

r r  , where r is the filtered signal of r , and    0 0r r  . 

Select the Lyapunov candidate function 2 2 2

2 2 2 2e e eV x y    . Its time derivative is given by 

 2 e e e e e eV x x y y      (33) 

In light of (29), (31), (32), one obtains 

    

 

    
1 2

1 2

1 1

cos

       sig sig

       

e e e u v e e

p q

e x e x e e

p q

x e x e e e

x x x u ry

x k x k x ry

k x k x rx y

 

 

   

   

   

 (34) 

    

 

    
1 2

1 2

1 1

sin

       sig sig

       

ee e e v e

p q

e y e y e e

p q

y e y e e e

y y y v u rx

y k y k y rx

k y k y rx y



 

   

   

   

 (35) 

 

 

    
1 2

1 2

1 1

        sig sig

        

e e e v

p q

e e e

p q

e e

r r

k k

k k

 

 

  

  

 
 

 

  

  

 (36) 
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Substituting (34), (35), (36) into (33) gives 

        
1 2 1 2 1 2

1 1 1 1 1 1

2

p q p q p q

x e x e y e y e e eV k x k x k y k y k k  
     

        (37) 

Consider the Lyapunov candidate function 2 2

3 2 2,  , ,i i i eV i u r     , taking the time derivative of 3iV , 

the following inequality can be obtained based on (31), 

        

 

1 2

1 2

3

1 1

1 1

ˆ   

ˆ1 1 ˆ ˆ ˆ   tanh

1 1 ˆ ˆ   

   

i i

i i

i i i i i

i i i i i

p q qi i
i i i i i i i i i i i i

i i i

p q q

i i i i i i s i

i i

V

k k
t t

k k k
t t

 

 

   

    

 
           



      

 

 

 

  

 
        

 

     

 (38) 

Similarly to the derivation of (24), (25), (26), by adding and subtracting the term  
 

1

1 2
2 2

i

p

ik 


, it can be 

readily shown that 

        

2 2

1 1

2

1

1 1 2 2 1 1

3

1
2 2

1 1 1

3

21 1 1 1

2 2 1 1

1 1
   

2 1

   

i i

i i

i

i

p q q q

i i i s i i i i i

i i

p

p q qi
i i i i

i i

k k
V k k k

t t q q

k
k

t t q

 

 





      


   

   



  

       
 

 
      

 
 (39) 

where           
   

1 2 1

1 12 1

3 2 2 1 1 2 1 2
i i i

p pq

i i i s ik k q k p k p     
        . 

Step 2. Define the kinetic error as ,  e u e ru u r r     . Taking the time derivative of ,e eu r  based on (2), it 

is possible to derive 

        

 

 

1

1

   

e u u wu u

u

e r r wr r

r

u F d
m

r F d
m

 

 

    

      (40) 

where          ,u v u u u r u v v r rF m vr m f u m F m m uv m f r m       . By Lemma l, the RBFNN is 

utilized to estimate the model uncertainty    ,u rF F  , and (40) can be rewritten as 

        
 T 1

,  ,

   

e i i i wi i

i

i W d i u r
m

        
 (41) 

Next, following the design of [41], a fixed-time terminal sliding mode (FTTSM) is constructed based on 

function  ,  ,i ei i u r  . 

         ,  ,i e i eS i i i u r     (42) 

where      sig sig
p q

i e e ei i i    and 0i  is a design parameter. 

To stabilize the kinetic error, a fixed-time sliding mode controller is developed as 
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                1 2
ˆ ˆsig sig sign ,  ,

p q T

i i i i i i i i i i i im k S k S W S i u r              (43) 

where 1 2, 0i ik k  are design parameters, ˆ
iW denotes the estimation value of iW , and ˆ

i i iW W W  . Moreover, 

i i wid    denotes the lumped disturbance, ˆ
i denotes the estimation value of i , and ˆ

i i i    . The 

adaptive law is selected as 

        
 1

2

ˆ

ˆ ,  ,

i i i

i i i

W S

S i u r





 

  


 (44) 

where 1 2, 0i i    are the design parameters. 

Consider the Lyapunov candidate function 2

4 1 2 ,  ,i iV S i u r  . Taking the time derivative of 4iV , one 

obtains 

        
4i i iV S S  (45) 

According to (41), (42), (43) 

        

  

   

          
 

T

T

1 2

1 1 T

1 2

1
     

ˆ ˆ     sig sig sign

     

i i i e i e

i i i i wi i i e

i

p q T

i i i i i i i i i i

p q

i i i i i i i i

S S S i i

S W d i
m

S W k S k S W S

k S k S S W S

 

     

   

 
 

 

 
      

 

     

    



 



 (46) 

Then,  

         
1 1 T

4 1 2

p q

i i i i i i i i iV k S k S S W S 
 

      (47) 

Select the Lyapunov candidate function 
T 1 1 2

1 21 2Tr 1 2 ,  ,pi i i i i iV W W i u r        , taking the time 

derivative of piV , leads to 

        T 1 1

1 2
ˆ ˆ

pi i i i i i iV W W        (48) 

Based on (44), (48) 

        
 T 1 T

1

1

2

ˆ

ˆ

i i i i i

i i i i i

W W W S

S



  





   

  


 (49) 

Substituting (49) into (48) and simplifying it yields 

         T

pi i i i i iV W S S     (50) 

Remark 3. Except for the fixed-time convergence, small computational burdern is another merit of the 

proposed controller. Benefiting from the constructed adaptive filter, the complexity of the controller structure 

is greatly reduced, which leads to smaller computational burden and thus facilitates the implementation of the 

algorithm in practical engineering. 

3.3. Main result 

Theorem 1. Consider the leader-follower formation control of follower USVs (1), (2) with Assumptions 1 and 

2. Consider the velocity controller (17) of the virtual vehicle and the velocity estimation law (18), the virtual 
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control law (29), (32), the fixed-time filter (31) and the fixed-time sliding mode control law (43), the adaptive 

law (44). Then, the signals , , , , , , , , , , , ,
e eM e e e u r u r u rx y S S        e  in the closed-loop system are 

satisfied as practical fixed-time stability. 

Proof: The overall Lyapunov candidate function is given as 1 2 3 4, , , ,e
o i i pii u r i u r i u r

V V V V V V
  

       . 

It follows that 

         

   

1 2 1 2 1 2

2

1

1
2 2

1 1 14
min 1 min 2 3

1 1 1 1 1 1

1
2 2

1 1 1

, ,

1

2 1

     

1 1
    

2 1

    

i

i

e

p

p q qM
o M

p q p q p q

x e x e y e y e e e

p

p q qi
i i i

i u r i i

i

k
V K K k

q

k x k x k y k y k k

k
k

t t q

k

 







  

 


  



  

     



  



 
     

 

     

 
  

       
 





e e 

1 1

2

p q

i i iS k S 
 
 

 (51) 

where 
1 3, , e

ii u r 
  


  . (51) implies that for any initial conditions        0 , 0 , 0 , 0 ,M e ex y

e
  

                         0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
e ee u r u r u r u r u rS S W W          , we can adjust 

the design parameters 
1 2 1 2 1 2 1 21 2 3 4 1 2, , , , , , , , , , , , ,

i ix x y y i iK K k k k k k k k k k k k k     such that all signals in the closed-

loop system are uniform and ultimately bounded.  

Based on the above conclusion, assume that there exist positive constants 
0 1,  ,  i Si i i i i

F
S W      . 

Since  0 1  holds for all neurons 1,2 ,i  , then  i   as 

       
T

1 2, ,           . Then, the following inequality can be obtained 

           T T

0i i i
F F

W W      (52) 

Define 
2 0i i  and 3 1 2i i i    . It follows from (47) that  

        

1 1

4 1 2 0 1

1 1

1 2 3

1 1 1
1 1 1

2 2 2
2 2 22 2 2

1 2 3

1 1 1

2 2 2
1 4 2 4 3 4

    

1 1 1
    2 2 2

2 2 2

    

p q

i i i i i i i i i

p q

i i i i i i

p q
p q

i i i i i i

p q

i i i i i i

V k S k S S S

k S k S S

k S k S S

V V V

 





  

 

 

 
 

 

    

   

     
        

     

   

 (53) 

where 
   1 2 1 2 1 2

1 1 2 2 3 32 ,  2 ,  2
p q

i i i i i ik k   
 

   . To eliminate the third term in (53), one considers 

1 1 1

a b

i i i     such that 

        

1

3

1

2
p

i
i Si b

i

S





 
   

 
 (54) 

Then, (53) can be transformed into  

        
1 1

2 2
4 1 4 2 4

p q

a

i i i i iV V V 
 

    (55) 
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Consider the Lyapunov candidate function 1 2 3 4, , ,e
i ii u r i u r

V V V V V
 

     . From (51) and (55), one 

obtains 

        

   

1 2 1 2

11 1
11 1 12 22 22 2 242 2 2

min 1 min 2 3

1 1
1 11 1 1 1

2 22 2 2 2
2 2 2 2

1 1 1
2 2 2

2 2 2 1 2

1 1 1 1
  2 2 2 2

2 2 2 2

  

pp q
qp q q

M
M

p q
p qp q p q

x e x e y e y e

k
V K K k

q

k x k x k y k y


  

 
  

 
    

      
          

      

       
          

       



e e 

1 2

2

1

1 1 1 1
1 1 1 1

2 2 2 22 2 2 2
2 2 2 2

, ,

1 1
12 2 2

2 22
1

, ,

1 1 1 1 1 1
2 2 2 2

2 2 2 2

1 1
  2

2 1 2 2

e

i

i

e

p q p q
p q p q

e e i i
i u r i i

p q p
q

ai
i i i

i u r

k k
t t

k
k S

q

 







   


 

   
   



  




 
                         

 

 
      

              
 





1 1

2 2
2

2
,

1

2

q

i i
i u r

S 





 
      

 



 (56) 

To prove the practical fixed-time stability of the signals , , , , , , , , , , , ,
e eM e e e u r u r u rx y S S        e , the 

design parameters should be adjusted appropriately such that 

        

   

1 2 1 2 1

2 1

1 1 1

42 2 2
1 min 1 2 min 2 1 3 2

1 1 1 1 1

2 2 2 2 2
1 2 1 2 1

1 1 1

2 2 2
2 1 2 1 2

2 ,   2 ,   ,   2 ,  
1

2 ,   2 ,   2 ,   2 ,   2 ,

1 1
2 ,   2 ,   2 ,   ,   2

i

p q q

p q p q p

x x x x y y y y

q p q q

i i i i

i i

k
K K k

q

k k k k k

k k
t t

   

 

      

     

    

    

  

    

  

   


    

     2

1

2 .
1

i
k

q






  

Therefore 

         
1 1

2 2
1 2

p q

V V V  
 

     (57) 

where    1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2min , , , , , , , , min , , ,  ,  ,  ,  ,i i a i i

x y i x y y i                           . 

According to Lemma 2, it can be inferred that the signals , , , , , , , , , , , ,
e eM e e e u r u r u rx y S S        e in 

the leader-follower formation closed-loop system are practical fixed-time stable. Moreover, all the 

aforementioned signals will converge into a small residual set        1 11 1

1 1 2min 1 , 1
p qp qD V V             

around the origin, the convergence time can be estimated by      max 1 21 1 1 1sT T p q        . 

Remark 4. It is noticed that although it seems there are many control parameters to be determined to satisfy 

(57), only a few of them have a dominant influence on the closed-loop performance, e.g., 

1 2 1 21 2, , , , ,x x y yK K k k k k . Most of the remaining parameters have little impact on the system performance. For 

the dominant control parameters, we can determine them by tuning the value while observing the response of 

the simulation result. Too much or too small control parameters will lead to undesired performance, e.g., 

overshot, or slow divergence. Then, it is not difficult to narrow down the selection range of potential value 

and achieve the optimal control parameters. 
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4. Numerical simulation 

In this section, numerical simulations are performed to demonstrate the effectiveness and superiority of the 

proposed control law. Model uncertainty and ocean disturbances are considered to verify the closed-loop 

performance of the pentagon formation control in Section 4.1. Then, a comparison simulation with the 

existing result in [32] is performed to further verify the proposed controller by a single pair leader-follower in 

Section 4.2. For the simulation, the identical follower USV with a length of 32 m  and mass of 3118 10  kg is 

selected as the control plant. The detailed parameters include added mass and damping matrices of the 

follower USVs, as given by 
3 3 3 2 2 1 3 1120 10 kg, 177.9 10 kg, 636 10 kg m , 215 10 kg s , 117 10 kg s ,  u v r u vm m m d d               

4 2 1802 10 kg m srd     . As for the leader, the initial states are set as T T[0m,0m,π 12rad] , [0m s,0m s,0rad s]  L L
. 

The surge velocity is set as 6m sLu   and the yaw angle is set as  

        

 exp 0.005 300 rad s, 30s

0 rad s ,  30s< 70s

0.05rad s ,  70s

L

t t

r t

t




 
 

 (58) 

The ocean disturbances are established by  
T

, ,wu wv wrd d d  w w wD d  , where 

        

  
    

    

110 1 0.35sin 0.2

260 1 0.3cos 0.4 0.2sin 0.1

950 1 0.3cos 0.3 0.1sin 0.5

t

t t

t t

  


   


 

wd  (59) 

and w is generated by the first-order Markov process   w w  , where  denotes the zero-

mean Gaussian white noise. 

4.1. Closed-loop performance 

Consider one leader and four followers underactuated USVs. The objective of this task is to constitute a 

pentagon formation with model uncertainty and ocean disturbances. The leader-follower configuration 

constants are selected as: 1 1 2 2 3 340m, 7π 10rad,  40m, 7π 10rad,   45m, 9π 10rad,  d d d d d d             

4 445m, 9π 10rad.d d    The initial states of the 4 virtual vessels are set as 
T T T T[ 23m,32m,0rad] , [0m s,0m s,0rad s] , [ 23m, 32m,0rad] , [0m s,0m s,0rad s] ,      1 1 2 2   v v v v

T T T T[ 42m,3m,0rad] , [0m s,0m s,0rad s] , [ 42m, 25m,0rad] , [0m s,0m s,0rad s]      3 3 4 4   v v v v
. 

As for the follower USVs, the initial states are set as T T[ 23m,32m,0rad] , [0m s,0m s,0rad s] ,  1 1   
T T T T

2 2 3 3[ 23m, 32m,0rad] , [0m s,0m s,0rad s] , [ 42m,3m,0rad] , [0m s,0m s,0rad s] ,           
T T

4 4[ 42m, 20m,0rad] , [0m s,0m s,0rad s] .     The main control parameters are set 

as    
1 2 1 2 1 2

7 4

1 2 1 2diag 5,1,6 , diag 1,1,6 , 2, 1, 1.5 10 , 4, 82, 4, 9 10 , 30x x y y i iK K k k k k k k k k             . 
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Fig.3 Forces and moments induced by ocean disturbances 

 

 

Fig.4 Trajectory of the leader-follower formation in the horizontal plane 
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Fig.5 Position and orientation errors between the virtual vehicles and reference positions 

 

Fig.5 Surge, sway and yaw velocities of the 4 virtual vehicles 
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Fig.6 Adaptive parameters of the velocity controllers 

 

 

Fig.7 Position error between the 4 follower USVs and virtual vehicles 
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Fig.8 Surge, sway and yaw velocities of the 4 follower USVs 

 

Fig.9 Control inputs of the 4 follower USVs in surge and yaw directions 
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Fig. 3~9 shows the simulation results of the proposed algorithm. Fig. 3 shows the forces and moment of the 

ocean disturbances acting on the follower USVs. From Fig. 4, it can be seen that the 4 follower USVs from 

random initial positions converge to their desired positions and finally constitute a pentagon formation with 

the leader USV, meanwhile, the formation remains undeformed despite moving on a curve path. Fig. 5 shows 

that the virtual vehicles (VVs) converge to their corresponding reference positions quickly and the tracking 

errors remain convergent after the leader USV turns at 70s. Fig. 6 shows that the surge, sway and yaw 

velocities of the virtual vehicles converge quickly. Fig. 6 shows the parameter adaptation result of the adaptive 

velocity control law. From Fig. 7, it can be seen that the position and yaw angle errors between the follower 

USVs and their corresponding virtual vehicles converge to a small residual set of origin in fixed time. Fig. 8 

shows that the surge, sway and yaw velocities of the 4 follower USVs converge after a short period of 

adjustment. Fig. 9 shows the control inputs of the follower USVs in the surge direction and yaw direction. 

4.2. Comparison example 

In this task, the proposed controller is compared with the disturbance observer (DOB) based controller [32]. 

To compare the guidance principle and the control law more reasonably, only one single pair leader-follower 

is employed in the simulation. Select the desired distance and bearing angle between the leader and the 

reference position as 40m, 7π 10radd d    . Select the initial condition T[ 23m,32m,0rad] , 1v
 

T[0m s,0m s,0rad s]1v
for the virtual vehicle and T T[ 23m,32m,0rad] , [0m s,0m s,0rad s]    for 

the follower. The main control parameters of the proposed controller remain unchanged. 

 

Fig.10 Comparison result of the USV trajectory  

Fig.10~12 shows the comparison result of the proposed controller and the DOB-based controller in [32]. 

From Fig.10, we can learn that the follower is capable of tracking the reference position under both controllers. 

However, the proposed controller has a faster convergence rate and higher tracking accuracy. From Fig.11, it 

can be seen that the position errors between the virtual vehicle and the reference position can be stabilized 

quicker under the proposed leader-follower guidance principle. Fig.12 shows that the proposed controller is 

more robust with respect to ocean disturbances than the DOB-based controller. 
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Fig.11 Comparison result of the errors between the virtual vehicle and the reference position 

 

Fig.12 Comparison result of position error between the virtual vehicle and the follower USV  
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5. Conclusions 

In this paper, a novel fixed-time sliding mode controller is presented for the formation control of 

underactuated USVs with unknown dynamics and ocean disturbances. To facilitate the leader-follower 

configuration, an adaptive fixed-time velocity controller is proposed for the virtual vehicles to enhance the 

guidance performance. For the tracking control of the follower USVs, the fraction power technique is 

introduced to modify the error signals of the controller to guarantee fixed-time convergence. An adaptive 

fixed-time filter is constructed to filter the virtual law to simplify the structure and reduce the computation 

burden of the proposed controller. By fusion of the RBFNN and bounded-feedback techniques, both the model 

uncertainty and the lumped disturbances of the USV are addressed effectively. Finally, numerical simulation 

is conducted to further verify the effectiveness of the presented algorithms. In the future, the problem of 

collision avoidance to dynamic and static obstacles by multi-USV will be investigated. 
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