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Abstract

This paper proposes a solution to a new attitude determination problem for a three-vehicle formation, where there are
restrictions on the detection of other vehicles. Vision-based sensors are considered, which measure line-of-sight (LOS)
vectors between different vehicles and inertial vectors that can vary according to the vehicle. There is a constraint on
the LOS vectors which are only measured in relation to a chief vehicle. Moreover, each vehicle can measure only one
inertial vector. The solution for the different attitude relations is devised geometrically, making use of a multi-stage
process. First, two candidates for the relative attitude of each branch are determined. Then, these relative attitude
candidates are used to compute inertial attitude candidates for the chief vehicle. The comparison between these results
disambiguates the problem, which in general has a unique solution. There are some degenerate solutions, which are
also determined. Finally, simulations are carried out considering noise in the sensors. The results are coherent with
state-of-the-art approaches to similar problems.
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1. Introduction

Attitude determination consists in computing the rela-
tion between the orientation of two different frames. Every
vehicle needs some kind of knowledge of their attitude, so
that navigation is possible. Thus, there is a lot of in-
terest in this field. In contrast with attitude estimation,
where filtering techniques are used, attitude determina-
tion obtains the information available at a given moment
[1]. The problem of finding the attitude appeared with
the development of spacecraft technology. One of the first
and most recognised methods is the Tri-Axial Attitude De-
termination (TRIAD) algorithm [2], which uses two unit
vectors, represented in a body and a reference frame, to
obtain the relation between those two frames. More vector
measurements were considered in the renowned Wahba’s
problem [3], which defines a cost function related to this
optimization problem. A widely known and employed so-
lution that minimizes this function is the Quaternion Es-
timator (QUEST) algorithm [4], which makes use of the
quaternion representation of a rotation matrix. There are
more recent approaches to solve the Wahbas’s problem,
one example is the fast linear quaternion attitude esti-
mator (FLAE), which can reduce the computational time
while having the similar accuracy to other methods, as
described in [5].

Email addresses: pedro.f.cruz@tecnico.ulisboa.pt (Pedro
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This paper deals with deterministic scenarios, where
there is a minimal set of measurements, such as in the
TRIAD. These problems, usually, consider arc length and
dihedral angle measurements. Therefore, three determinis-
tic scenarios are possible: two directions as in the TRIAD,
a direction and an arc length or three arc lengths [6]. In
space it is common to rely on star trackers or sun sensors
to get these measurements, whereas in unmanned aerial
vehicles (UAVs) or other aerial platforms, the use of the
Global Positioning System (GPS) data is more common.
However, there are benefits in adopting systems that are
independent from the GPS, because of its vulnerabilities
to interferences and the precision issues or unavailability
[7] in some environments as, for example, the interplane-
tary space. Therefore, we assume vision-based navigation
sensor systems, that allow, for example, the measurement
of LOS unit vectors between vehicles [8] or the measure-
ment of inertial references from camera-based sensors [9].
Other systems that can also give an inertial reference are,
for example, magnetometers [10].

A formation is a group of vehicles that cooperate to-
wards a common overall goal. For a smooth, safe, and suc-
cessful operation, these vehicles require both relative and
inertial navigation. Vehicle formations have many appli-
cations, which include ground [11], underwater [12], aerial
[13] and space scenarios [14]. The solutions developed for
the determination of the inertial attitude can often be em-
ployed to find the relative attitude among the vehicles in
a formation. However, constraints in the vector measure-
ments require different solutions to be employed. The case
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considered in [15] proposes a two-vehicle formation, where
each vehicle detects the other while both detect the same
common object. The reference presents both the determin-
istic solution for the problem and the corresponding covari-
ance analysis. In [16], a three-vehicle formation, with LOS
vectors among all the vehicles is analysed. Again, both the
deterministic solution for the problem and the covariance
analysis are given.

This paper considers a heterogeneous formation, that
is, the sensor set can vary from vehicle to vehicle. Thus,
we can have a different quantity of sensors in each vehicle
and/or their quality can be distinct according to their im-
portance. This can impact not only cost, but also weight,
which are key drivers in the space industry. In the case
addressed in this paper, the number of vehicles detected
by the sensors varies with the vehicle, which can be a re-
sult of the environment and/or equipment constraints. As
a consequence, each vehicle plays a different role in the
attitude determination, since some vehicles get more in-
formation than others. The applications of this problem
include situations that physically constrain the visibility
between different vehicles, such as long formations or an
environment with opaque obstacles. For example, long
formations are useful for the application of interferometry
techniques in space, which benefits, in terms of resolution,
from having a wide distribution [17].

The main contributions of this work are the proposal
of an attitude determination problem in a heterogeneous
formation and the respective solution. This framework is
different from others in the literature reviewed and can-
not be solved using those methods alone. Simulations are
shown to assess the performance of the proposed attitude
determination system.

This paper is structured as follows: first, a section with
the problem statement, where the notation used through-
out the paper is defined and the problem is described.
Then, in the following section, the solution for the problem
is developed, considering the determination of the different
candidates and their comparison. Moreover, in the same
section, the degenerate solutions of the problem are taken
into account. Finally, the simulations that were conducted
are described, along with the noise model used, and the
results are presented.

2. Problem statement

2.1. Notation and definitions

Throughout this document scalars are represented in
regular typeface, whereas vectors and matrices are repre-
sented in bold, the latter in capital case. Reference frames
are represented in calligraphic typeface and between brack-
ets, such as {I}. Body-fixed frames are numbered and
represented by the letter B, for example, {B1}. The sym-
bol 0 represents the null vector or matrix and I represents
the identity matrix with the appropriate dimensions.

The set of unit vectors in R3 is denoted by S(2) :={
x ∈ R3 : ‖x‖ = 1

}
. The special orthogonal group of di-

mension 3, which describes proper rotations, is denoted
by

SO(3) :=
{
X ∈ R3×3 : XXT = XTX = I ∧ det (X) = 1

}
.

The skew-symmetric matrix parametrized by x ∈ R3,
which encodes the cross product between x and another
vector, is denoted by

S (x) :=

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 , x = [x1, x2, x3] .

The rotation matrix in SO(3) that transforms a given
vector expressed in the reference frame {A} to the refer-
ence frame {C} is denoted by RC

A. If any of the reference
frames is a body-fixed frame, the number that identifies
the body is used instead, i.e., the rotation from {Bi} to
{Bj}, i, j ∈ N, is denoted by Rj

i . When multiple candi-
dates exist for the same quantity a letter subscript outside
parentheses identifies the respective candidate. For exam-

ple,
(
Rj
i

)
A

and
(
Rj
i

)
B

are two candidates for Rj
i .

The rotation matrix of an angle θ ∈ R around the axis
described by the unit vector x ∈ S(2) is denoted by R(θ,x),
which can be written as [1]

R (θ,x) := cos (θ) I3×3 + (1− cos(θ))xxT − sin (θ)S (x) .
(1)

The four-quadrant inverse tangent function is denoted
by atan2 (b, a), with a, b ∈ R.

2.2. Problem definition

Consider a formation composed by three vehicles, in
which each of the vehicles has its own body-fixed frame,
{B1}, {B2}, and {B3}. Consider as well an inertial refer-
ence frame, {I}. In the proposed framework, there are two
kinds of measurements: one is a LOS vector that points to
the position of another vehicle and the other is an inertial
vector, for example, a known inertial direction. The LOS
vector is only known in the body-fixed frame of the vehi-
cle that measures it, while the inertial vector is available
both in the body-fixed frame, where it is measured, and
the inertial frame, since the sensor has knowledge about
the inertial reference that it is measuring. It is worth men-
tioning that all measurement vectors are considered as unit
vectors, so they only give information about the direction
that the sensor detects, as it is common in attitude deter-
mination problems.

In this formation, the main constraint is that only one
of the vehicles can measure LOS vectors to both the other
vehicles, whereas the other two can only measure a sin-
gle LOS vector relative to this first vehicle. Meaning, for
example, that these two are too far from each other for
the sensors to measure the LOS, or that their sensors are
not oriented in such a way that they can get both LOS.
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Furthermore, every vehicle has a sensor that measures one
inertial vector. The vehicle that can measure LOS to the
other two is identified as vehicle 1 and will sometimes be re-
ferred as chief. The other vehicles are often called deputies
and are identified as vehicles 2 and 3, respectively. The ge-
ometry of the scenario is represented in Fig. 1.

{ B1}

{ B2}

{ B3}

d2/ 1

d3/ 1

d1

d2

d3

d1/ 2

d1/ 3

2

1

Figure 1: Three-vehicle heterogeneous formation

In the figure and throughout this document, the LOS
measurements are denoted by di/j ∈ S(2), i, j = 1, 2, 3, i 6=
j, which represents the unit vector from the i -th to the j -
th vehicles expressed in the i -th vehicle body-fixed frame,
{Bi}. The inertial vector measurements are denoted by
di ∈ S(2), i = 1, 2, 3, which represents the inertial vector
measured by the i -th platform and expressed in its own
body-fixed frame.

If a vector is expressed in a different frame, a super-
script is used, for both the LOS vectors and the inertial
vectors, to specify the frame where the vector is described.
For example, jdi/j , i, j = 1, 2, 3, i 6= j, is the LOS from
the i -th to the j -th vehicle expressed in {Bj} and Idi,
i = 1, 2, 3, is the inertial vector of the i -th vehicle, ex-
pressed in the inertial frame, {I}.

The problem that is here considered is that of deter-
mining all the rotation matrices, both relative (R1

2, R1
3,

R2
3) and inertial (RI

1, RI
2, RI

3), using the measurement
vectors that were described, as well as the references Id1,
Id2, and Id3.

Remark. In [16], the relative attitude between two vehi-
cles is determined using two LOS vectors between them
and one LOS between each of them and a third common
body or vehicle. In short, in [16] there are LOS vectors
between all three platforms. In the problem addressed in
this paper this is not, in general, the case, since there are
no LOS vectors between two of the vehicles, the so-called
deputies. Thus, the solution described in [16] does not ap-
ply to the problem at hand. Moreover, in this paper the
inertial attitude is also computed for all three platforms
using a single inertial measurement in each vehicle. In-
terestingly enough, the problem addressed in [16] can be
seen as a particular case of the relative attitude determina-
tion problem addressed in this paper, when all the relevant
vectors are co-planar.

3. Attitude determination

The proposed solution is divided into different stages.
The first stage consists in computing the candidates

(
R1

2

)
A

and
(
R1

2

)
B

, from the relation between the chief vehicle

and vehicle 2, followed by the computation of
(
R1

3

)
C

and(
R1

3

)
D

from the relation between the chief vehicle and
vehicle 3. Next, the previous candidates generate, re-
spectively,

(
RI

1

)
A

,
(
RI

1

)
B

,
(
RI

1

)
C

, and
(
RI

1

)
D

, using the
TRIAD algorithm. By construction two of the latter can-
didates are identical, because the rotation RI

1 is the same
whether we compute it using R1

2 or R1
3. Hence, we com-

pare
(
RI

1

)
A

with
(
RI

1

)
C

and
(
RI

1

)
D

, and we compare(
RI

1

)
B

with
(
RI

1

)
C

and
(
RI

1

)
D

. From the comparisons

we find two identical candidates for RI
1, which together

with the associated candidates for R1
2 and R1

3 correspond
to the solution. The disambiguation process just described
is depicted in Fig. 2. Finally, we determine R2

3, RI
2 and RI

3

resorting to the product between the rotations previously
computed, thus completing the attitude solution set.

Output 

Attitude Matrices

Compute candidates 
for the

relative solution of
branch 1-3

Get Measurements

(R1
3)D

(R1
3)C

 

(RI
1)B

(RI
1)C

(RI
1)A

(RI
1)D

R2
3

RI
2

RI
3

 

(R1
2)A

(R1
3)D

(R1
3)C
 

(R1
2)B

R1
2

R1
3

RI
1

 

Compute candidates 
for the 

inertial solution

Compare candidates 
from different branches
A=C? A=D? B=C? B=D?

Compute remaining 
rotation matrices

Compute candidates 
for the of 

relative solution of
branch 1-2

(R1
2)A

(R1
2)B

Figure 2: Algorithm flowchart

3.1. Relative attitude solution

The formation is first considered as two branches, each
corresponding to two vehicles: the chief and each of the
deputies. Each branch is used to find the corresponding
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candidates for the relative attitude between the vehicles of
the branch.

3.1.1. Solution for R1
2

In this section, the relation between vehicle 1 and ve-
hicle 2 is considered. Two constraints of the problem are
taken into account to determine the candidates for R1

2.
The first relation translates the anti-parallel association
between the LOS vectors of the two vehicles, because they
are both measuring opposing directions, as given by

−d1/2 = R1
2d2/1 . (2)

The second relation is associated with the conservation of
the angle between two vectors, regardless of the coordinate
frame, provided that it is the same for both. Consequently,

IdT1
Id2 = dT1 R

1
2d2 . (3)

The problem of finding R1
2 is addressed by decompos-

ing this rotation matrix into a product of two rotations,
each parametrized by an angle and an axis, which are de-
termined using (2) and (3). This decomposition is possible
because the product of two proper rotation matrices is still
a proper rotation matrix. This rotation decomposition is
defined as

R1
2 := R (θ2,n2)R (θ1,n1) . (4)

The proposed solution considers R (θ1,n1) as a rotation
that verifies (2). There are infinite possibilities for the
parameters of this rotation matrix, because the relation
leaves one degree of freedom undetermined. Then, R (θ2,n2)
must be such that both (2) and (3) are verified by the
product R (θ2,n2)R (θ1,n1).

Since there are infinite possibilities for θ1 and n1 that
allow the respective rotation to verify (2), a choice is made.
The following lemma addresses this choice.

Lemma 1. Suppose that d1 6= ±d1/2. Then, the trans-
formation R (θ1,n1) that verifies

R (θ1,n1)d2/1 = −d1/2 (5)

is defined as
θ1 := π (6)

and 
n1 :=

d2/1−d1/2

‖d2/1−d1/2‖
, for d2/1 6= d1/2

n1 :=
S(d1/2)d1

‖S(d1/2)d1‖
, for d2/1 = d1/2

. (7)

Proof. The proof follows by direct computation for both
cases. Firstly, suppose that d2/1 6= d1/2 and take the left
side of (5), considering the parameters from (6) and (7),
as given by

R (θ1,n1)d2/1 = R

(
π,

d2/1 − d1/2

‖d2/1 − d1/2‖

)
d2/1 .

Then, expand it using (1), which, considering the value of
the trigonometric functions, gives

R (θ1,n1)d2/1 =[
−I + 2

(
d2/1 − d1/2

) (
d2/1 − d1/2

)T
‖d2/1 − d1/2‖2

]
d2/1 .

Using the distributive property and rearranging, it follows
that

R (θ1,n1)d2/1 =

− d2/1 + 2

(
dT2/1d2/1 − dT1/2d2/1

)
‖d2/1 − d1/2‖2

(
d2/1 − d1/2

)
. (8)

Afterwards, (8) is rewritten as

R (θ1,n1)d2/1 =

− d2/1 +
2
(

1− dT1/2d2/1

)
‖d2/1 − d1/2‖2

(
d2/1 − d1/2

)
.

Notice that

‖d2/1 − d1/2‖2 = 2
(

1− dT1/2d2/1

)
,

hence,
R (θ1,n1)d2/1 = −d1/2 .

Thus, the first part of the proof is concluded. Now, sup-
pose instead that d2/1 = d1/2, which means that

R (θ1,n1)d2/1 = R

(
π,

S
(
d1/2

)
d1

‖S
(
d1/2

)
d1‖

)
d2/1 . (9)

Then, using (1) on the right side of (9) gives

R (θ1,n1)d2/1 =(
−I + 2

(
S
(
d1/2

)
d1

) (
S
(
d1/2

)
d1

)T
‖S
(
d1/2

)
d1‖2

)
d2/1 . (10)

Next, from the condition d2/1 = d1/2 and after some re-
arrangements, it follows that (10) is rewritten as

R (θ1,n1)d2/1 = −d1/2 − 2
S
(
d1/2

)
d1d

T
1 S
(
d1/2

)
d1/2

‖S
(
d1/2

)
d1‖2

.

(11)
Finally, noticing that S

(
d1/2

)
d1/2 = 0, (11) is given as

R (θ1,n1)d2/1 = −d1/2 ,

thus concluding the proof.

The choice for θ1 and n1, which is expressed in Lemma
1, influences the parameters of R (θ2,n2). Firstly, the axis
n2 must be one that ensures that R (θ2,n2)R (θ1,n1) ver-
ifies (2). Furthermore, the angle θ2 must be such that (3)
is verified by R (θ2,n2)R (θ1,n1). Thus, both (2) and (3)
are verified by this product. The next lemma gives the
parameters of R (θ2,n2).
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Lemma 2. Consider R (θ1,n1) parametrized by (6) and
(7). Assume also that

d1 6= ±d1/2

and
d2 6= ±d2/1 .

Then, the transformation R (θ2,n2) that verifies

R (θ2,n2)R (θ1,n1)d2/1 = −d1/2

and
IdT1

Id2 = dT1 R (θ2,n2)R (θ1,n1)d2 ,

is described by

θ2 := atan2 (as12 , ac12)± arccos

(
ap12√

a2s12 + a2c12

)
(12)

and
n2 := −d1/2 , (13)

with 
ap12 := dT1 (d1/2)(d1/2)Td∗2 −IdT1 Id2

ac12 := dT1 S
(
d1/2

)2
d∗2

as12 := dT1 S
(
−d1/2

)
d∗2

,

where
d∗2 := R (θ1,n1)d2 . (14)

Proof. For any rotation angle, the rotation of a vector
around that very same vector does not change this vector,
and therefore n2 is limited to

(
±d1/2

)
, since (2) and (5)

are both verified. The sign choice of the axis only affects
the signal of θ2, so the negative sign, i.e., n2 = −d1/2, was
chosen for coherence with the sign of (2). Now, the proof
for the value of θ2 is made by direct computation. Firstly,
consider the alternative rotation representation obtained
from substituting S (x)

2
= −I + xxT in (1), which gives

R (θ,x) = xxT − cos(θ)S (x)
2 − sin(θ)S (x) . (15)

Then, considering that R (θ1,n1) is as given in Lemma
1, substitute R1

2 = R
(
θ2,−d1/2

)
R (θ1,n1) in (3), which

yields

dT1 R
(
θ2,−d1/2

)
R (θ1,n1)d2 = IdT1

Id2 ,

which, applying the alternative definition from (15) and
also the notation from (14), is given as

dT1

[
(−d1/2)(−d1/2)T − cos(θ2)S

(
−d1/2

)2
− sin(θ2)S

(
−d1/2

)]
d∗2 = IdT1

Id2 . (16)

Making use of the coefficients defined in (2), it follows that
(16) is a trigonometric equation, which is expressed as

ap12 = ac12cos(θ2) + as12sin(θ2) .

The solution of this equation is given in Lemma 6 (see
Appendix A) and results in (12).

The combination of Lemmas 1 and 2 concludes the par-
tial solution, as stated in the following corollary.

Corollary 1. Assume that

d1 6= ±d1/2

and
d2 6= ±d2/1 .

Then, R1
2 is given by

R1
2 = R (θ2,n2)R (θ1,n1) , (17)

with θ1, n1, θ2, and n2 respectively given by (6), (7), (12),
and (13).

Proof. This result follows directly from Lemmas 1 and 2.

Remark. Notice that there are, in general, two solutions
for R (θ2,n2), which result in two candidates,

(
R1

2

)
A

and(
R1

2

)
B

, that satisfy both (2) and (3), when d1 6= ±d1/2

and d2 6= ±d2/1.

Interestingly enough, both possible solutions are re-
lated to each other. This relation is addressed in the next
corollary.

Corollary 2. In the conditions of Corollary 1, recall the
angle θ2 defined by (12) and, without loss of generality,
consider that (θ2)A is the angle associated with

(
R1

2

)
A

and

(θ2)B is the angle associated with
(
R1

2

)
B

, given by

(θ2)A := atan2 (as12 , ac12) + arccos

(
ap12√

a2s12 + a2c12

)
(18)

and

(θ2)B := atan2 (as12 , ac12)− arccos

(
ap12√

a2s12 + a2c12

)
.

(19)
Then, the relation between

(
R1

2

)
A

and
(
R1

2

)
B

is expressed
as

(
R1

2

)
A

= R

(
2 arccos

(
ap12√

a2s12 + a2c12

)
,−d1/2

)(
R1

2

)
B
.

(20)

Proof. First, for visual ease, define

θ12 := 2 arccos

(
ap12√

a2s12 + a2c12

)
.

Therefore, comparing (18) and (19) allows to write

(θ2)A = (θ2)B + θ12 . (21)
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Taking into consideration the decomposition (4) and the
solution (17), then

(
R1

2

)
A

and
(
R1

2

)
B

are, respectively,
expressed as(

R1
2

)
A

= R
(
(θ2)A ,−d1/2

)
R (θ1,n1) (22)

and (
R1

2

)
B

= R
(
(θ2)B ,−d1/2

)
R (θ1,n1) . (23)

Substituting (21) in (22) gives(
R1

2

)
A

= R
(
(θ2)B + θ12,−d1/2

)
R (θ1,n1) . (24)

Then, (24) can be rewritten as(
R1

2

)
A

= R
(
θ12,−d1/2

)
R
(
(θ2)B ,−d1/2

)
R (θ1,n1) .

(25)
Substituting (23) in (25) readily yields (20).

Conveniently, the two cases where the solution in Corol-
lary 1 does not work are degeneracies of the problem.
These degenerate cases have infinite solutions, as it is shown
in the next lemma.

Lemma 3. If
d1 = ±d1/2 (26a)

or
d2 = ±d2/1 , (26b)

then there are infinite solutions for R1
2.

Proof. Fix R1
2, such that both (2) and (3) are verified, and

define
A (θ) := R

(
θ,−d1/2

)
R1

2 ,

where θ ∈ R is arbitrary. It will be shown by direct com-
putation that this arbitrary rotation satisfies both (2) and
(3), if either (26a) or (26b) hold. Indeed,

A (θ)d2/1 = R
(
θ,−d1/2

)
R1

2d2/1 ,

which, using (2), simplifies to

A (θ)d2/1 = −R
(
θ,−d1/2

)
d1/2 ,

or, equivalently,

A (θ)d2/1 = −d1/2 . (27)

Thus, there is a rotation with an arbitrary angle that keeps
the result of (2) unchanged. Up until this point, none of
the assumptions of this lemma were used, which means
that (2) can be satisfied by an infinite number of rotations,
regardless of the situation. Next, compute

dT1A (θ)d2 = dT1 R
(
θ,−d1/2

)
R1

2d2 . (28)

Without loss of generality, the first assumption is used
with the positive sign, i.e., d1 = d1/2, which applied to
(28) yields

dT1A (θ)d2 = dT1/2R
(
θ,−d1/2

)
R1

2d2 ,

which simplifies to

dT1A (θ)d2 = dT1/2R
1
2d2 . (29)

Next, recalling that d1 = d1/2, then (3) can be substituted
in (29) yielding

dT1A (θ)d2 = IdT1
Id2 . (30)

This concludes the first part of the proof. Indeed, (27) and
(30) are verified for all θ, as long as d1 = d1/2. Taking,
instead, the assumption that d2 = d2/1, assuming the
positive sign without loss of generality, and substituting
in (28) gives

dT1A (θ)d2 = dT1 R
(
θ,−d1/2

)
R1

2d2/1 . (31)

Using (2) in (31) allows to write

dT1A (θ)d2 = −dT1 R
(
θ,−d1/2

)
d1/2 ,

which, recalling that a rotation of a vector around an axis
parallel to that vector results in that same vector, gives

dT1A (θ)d2 = dT1 R
1
2d2/1 .

Finally, using d2 = d2/1 and then applying (3) yields

dT1A (θ)d2 = IdT1
Id2 .

Hence, there are infinite solutions for A (θ) that satisfy
both (2) and (3) when d2 = ±d2/1.

3.1.2. Partial solution for R1
3

The other branch of the problem includes vehicle 1 and
vehicle 3. The solution for R1

3 is analogous to the one of
R1

2, since both branches have equivalent structures, and
therefore it is omitted. Moreover, the degenerate cases and
the relation between the two candidates for R1

3 are also
analogous, being omitted as well. Thus, we find

(
R1

3

)
C

and
(
R1

3

)
D

using the previous lemmas with the appropri-
ate measurements of the branch with vehicles 1 and 3.

3.2. Inertial attitude solution

The problem of finding RI
1 is addressed using the rela-

tions between the inertial measurements and the respective
reference, which are given by

Id1 = RI
1 d1 , (32)

Id2 = RI
1 R1

2 d2 , (33)

and
Id3 = RI

1 R1
3 d3 . (34)
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3.2.1. Solution for RI
1

This new problem has only one solution for each candi-
date, assuming that there are no degeneracies. Moreover,
it corresponds to the TRIAD framework, because there
are two pairs of non-collinear vectors represented in two
different coordinate frames [4]. Therefore,

(
RI

1

)
A

,
(
RI

1

)
B

,(
RI

1

)
C

, and
(
RI

1

)
D

are obtained using this algorithm.

Assuming that both Id1 6= Id2 and Id1 6= Id3, then the
direct application of this algorithm gives the candidates for
RI

1 using either R1
2 or R1

3. Indeed, from the first branch

RI
1 = Id1d

T
1 +

Id1 ×Id2

‖Id1 ×Id2‖

(
d1 ×R1

2d2

‖d1 ×R1
2d2‖

)T
+

(
Id1 ×

Id1 ×Id2

‖Id1 ×Id2‖

)(
d1 ×

d1 ×R1
2d2

‖d1 ×R1
2d2‖

)T
,

where
(
RI

1

)
A

and
(
RI

1

)
B

are obtained by replacing R1
2

with
(
R1

2

)
A

and
(
R1

2

)
B

, respectively. For the other branch
the TRIAD gives

RI
1 = Id1d

T
1 +

Id1 ×Id3

‖Id1 ×Id3‖

(
d1 ×R1

3d3

‖d1 ×R1
3d3‖

)T
+

(
Id1 ×

Id1 ×Id3

‖Id1 ×Id3‖

)(
d1 ×

d1 ×R1
3d3

‖d1 ×R1
3d3‖

)T
,

where
(
RI

1

)
C

and
(
RI

1

)
D

are obtained by replacing R1
3

with
(
R1

3

)
C

and
(
R1

3

)
D

, respectively.
The TRIAD assumes that the two vectors used are not

collinear, because that corresponds to a degeneracy, which
has infinite solutions. For this situation the degenerate
cases are shown in the next two lemmas. Although this is
well known, it is presented here for the sake of complete-
ness, applied to the problem at hand.

Lemma 4. Let RI
1 be the rotation matrix that satisfies

both (32) and (33). If

Id1 = ±Id2 , (35)

then RI
1 has an infinite number of solutions.

Proof. Fix RI
1 such that both (32) and (33) are verified

and consider a new candidate defined by

A(θ) := R
(
θ,Id1

)
RI

1 ,

where θ ∈ R is an arbitrary angle. It will be shown by
direct computation that this arbitrary rotation satisfies
both (32) and (33), assuming (35). To that end, compute

A(θ)d1 = R
(
θ,Id1

)
RI

1d1 ,

which, using (32), becomes

A(θ)d1 = R
(
θ,Id1

)
Id1 ,

or, equivalently,
A(θ)d1 = Id1 .

Next, compute

A(θ)R1
2d2 = R

(
θ,Id1

)
RI

1R
1
2d2 . (36)

Applying (33) in (36) results in

A(θ)R1
2d2 = R

(
θ,Id1

)
Id2 .

Without loss of generality, the assumption with positive
sign, i.e., Id1 = Id2, is now used, which gives

A(θ)R1
2d2 = R

(
θ,Id1

)
Id1 ,

or, equivalently,

A(θ)R1
2d2 = Id1 .

Finally, using Id1 = Id2 again, gives

A(θ)R1
2d2 = Id2 .

This concludes the proof, since there are infinite possibil-
ities for RI

1 that satisfy both (32) and (33) when Id1 =
±Id2.

Lemma 5. Let RI
1 be the rotation matrix that satisfies

both (32) and (34). If

Id1 = ±Id3

then RI
1 has an infinite number of solutions.

Proof. This proof is analogous to Lemma 4 and thus it is
omitted.

3.3. Comparison

Considering that the problem is not degenerate, then,
from the four candidates for RI

1, there is a pair of identical
matrices emerging from the two different branches. That
means that one of the following equations must be verified:(
RI

1

)
A

=
(
RI

1

)
C

,
(
RI

1

)
A

=
(
RI

1

)
D

,
(
RI

1

)
B

=
(
RI

1

)
C

, or(
RI

1

)
B

=
(
RI

1

)
D

. This comparison is made resorting to
the rotation defined by

R̃I
1 (θ,x) :=

(
RI

1

)
X

(
RI

1

)T
Y
, (37)

where
(
RI

1

)
X

and
(
RI

1

)
Y

represent different candidates.

This rotation is an identity matrix when
(
RI

1

)
X and

(
RI

1

)
Y

are identical, which means that θ = 0. Therefore, the ab-
solute value of θ is used as the comparison parameter that
gives the proximity between each pair of RI

1 candidates.
The trace of (37) is used to find θ, since the trace of a

square matrix is the sum of its eigenvalues [18], which in
the case of a rotation matrix is given as

trace
(
R̃I

1 (θ,x)
)

= 1 + eiθ + e−iθ

= 1 + 2 cos (θ) .

Then, defining φ = |θ| and rearranging it, the comparison
parameter is expressed as

φ =

∣∣∣∣∣∣arccos

 trace
(
R̃I

1 (θ,x)
)
− 1

2

∣∣∣∣∣∣ . (38)
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3.4. Solution completion

The remaining attitude matrices are computed using
the rotation matrices previously determined, as given by

R2
3 =

(
R1

2

)T
R1

3 ,

RI
2 = RI

1R
1
2 ,

and
RI

3 = RI
1R

1
3 .

3.5. Solution in the presence of noise

In practice, the measurements will be corrupted by
noise and hence the attitude rotation matrices that are
determined will deviate from the actual attitude rotation
matrices. This deviation creates a new problem for the
solution described before.

In the comparison of the RI
1 candidates, it was as-

sumed that the correct candidates would be exactly iden-
tical. Therefore, the comparison criteria must be changed
in order to work in the presence of noise. The comparison
parameter, φ, determined in (38), gets closer to zero as the
two rotations get closer. So, with noise, instead of looking
for φ = 0, the correct solution is defined by the smaller φ,
noticing that φ ≥ 0.

Furthermore, to improve the accuracy of RI
1, the av-

erage between the candidates with the smallest φ of each
branch is used as the solution, whereas the correspondent
candidates for R1

2 and R1
3 are used as firstly calculated.

The average used is matrix-based and is rooted on the
Singular Value Decomposition (SVD) of the sum of both
candidates [19]. Hence, considering the SVD given by(

RI
1

)
X

+
(
RI

1

)
Y

2
= XDY,

the average RI
1 is given by

(
RI

1

)
avg

= XY.

4. Simulations

The solution for the problem proposed is now tested in
a simulated environment, where noise is added to repro-
duce an approximation of a realistic scenario.

4.1. Sensor model

The sensor measurement model used in the simulations
is based on a focal plane detector [15], thus it is assumed
that the sensors used are vision-based, even for the inertial
measurements. Denoting the image-space observation by
the vector m ≡ [χ ψ]

T
, then the measurement model is

given by1

m̃ = m + n , (39)

1The image-space frame is the 2D coordinate system of the sen-
sor, whereas the object-space frame is the vehicle body coordinate
system.

where m̃ is the measurement and n is the random noise.
The noise model describing the uncertainty of the image-
space observations is supposed to follow a zero mean Gaus-
sian distribution,

n ∼ N (0, RFOCAL) ,

with the covariance of the focal plane given by [20]

RFOCAL =
σ2

1 + d (χ2 + ψ2)

[ (
1 + dχ2

)2
(dχψ)2

(dχψ)2
(
1 + dψ2

)2
]
,

(40)

where σ2 is the variance of the measurement errors asso-
ciated with χ and ψ, and d is a parameter on the order of
1.

The focal length is assumed to be unitary and the sen-
sor boresight is assumed to be the z-axis. Hence the mea-
surement vector in the object space and sensor frame is
given as

sd =
1√

1 + χ2 + ψ2

 χ
ψ
1

 . (41)

4.2. Simulation setup

The setup that is here proposed considers a fixed for-
mation chosen a priori, which is used in 1000 runs of a
Monte Carlo simulation. The estimates for the rotation
matrices of the problem are found in each trial.

The true LOS vectors are given by

Id1/2 =

 0
− sin (30◦)
− cos (30◦)

 , Id1/3 =

 0
sin (30◦)
− cos (30◦)

 , (42a)

whereas the inertial vectors are given by

Id1 =

 1
0
0

 ,Id2 =

 0
cos (60◦)
− sin (60◦)

 ,

Id3 =

 cos (60◦) sin (30◦)
cos (60◦) cos (30◦)
− sin (60◦)

 . (42b)

The true rotation matrices were chosen as

R1
I =

 0 1 0
−1 0 0

0 0 1

 ,R2
I =

 0 0 −1
0 1 0
1 0 0

 ,R3
I =

 1 0 0
0 0 1
0 −1 0

 . (42c)

The remaining matrices are a combination of those shown
in (42c) and the remaining vectors of the problems are
generated from (42a), (42b), and (42c).

The measurement vectors are computed in the focal
plane, which contains noise as described by the sensor
model. Therefore, the true vectors have to be transformed
into the focal plane frame and then noise is added to each
of them using (40), with σ = 17 × 10−6 rad. The chief is
assumed to have three sensors, whereas deputies have only

8



two. The orthogonal transformations, from the respective
body frame to the sensor frame, were chosen as

R
sd1/2

1 =

 0 1 0
0 0 1
1 0 0

 , R
sd1/3

1 =

 0 1 0
0 0 −1

−1 0 0

 , (43a)

R
sd2/1

2 =

 0 0 −1
−1 0 0

0 1 0

 , R
sd3/1

3 =

 1 0 0
0 1 0
0 0 1

 , (43b)

R
sd1
1 =

 0 0 −1
−1 0 0

0 1 0

 , R
sd2
2 =

 0 0 −1
0 1 0
1 0 0

 , (43c)

R
sd3
3 =

 1 0 0
0 0 1
0 −1 0

 , (43d)

with the superscript representing each sensor, and the sub-
script identifying the vehicle body frame. Note that the
inertial vectors in the inertial frame are assumed to be
known exactly, since these are the references for the iner-
tial sensors, hence no noise is added to these vectors.

The process of adding noise to the measurements fol-
lows these steps. First, the true measurement vectors are
transformed using (43) into the form of (41). Then, the
respective image-space variables χ and ψ are computed.
Next, n is sampled, recalling (40). Finally, the object-
space measurements are obtained after applying (39), to
add the noise component, and reusing (41) with the com-
ponents of m̃.

The standard deviations in the focal plane are given
for both coordinates of each measurement in Table 1.

d1/2 d2/1 d1/3 d3/1 d1 d2 d3

σχ [µrad] 8.50 8.50 8.50 8.50 17.0 14.7 15.9
σψ [µrad] 34.0 34.0 34.0 34.0 17.0 19.6 18.4

Table 1: Focal plane standard deviations.

4.3. Results

The simulation results consider the error between esti-
mates and true attitudes. The errors of each trial, for R1

2,
R1

3 and RI
1, are given as Euler angles and are shown in

Fig. 3. The respective root mean squared errors (RMSE)
are given in Table 2.

Yaw [µrad] Pitch [µrad] Roll [µrad]
R1

2 21.8319 12.4453 12.5491
R1

3 23.0114 11.5056 13.2582
RI

1 16.5815 16.7665 13.8375

Table 2: Simulation RMSE.

5. Conclusion

In this paper a new attitude determination problem
is defined, considering three vehicles capable of measuring
LOS and inertial vectors. The LOS vectors are constrained
and, as a consequence, two of the vehicles cannot measure
LOS relative to one another. The solution for this prob-
lem is devised based in the geometric relations between
the measurements and resorting to a comparison between
candidates for the same rotation matrix. The problem
has, in general, a unique solution. However, degenerate

configurations are possible, which were shown to have infi-
nite solutions. Finally, simulations were conducted, which
show the behavior of our solution in the presence of noise.

Future work will consist in the analysis of the solution
in terms of the existence of a unique solution, both for the
relative and the inertial attitudes. Indeed, in some specific
cases, the relative attitude for each branch will be unique.
On the other hand, there exist specific degenerate cases in
which the inertial attitude cannot be determined uniquely,
with two possible solutions. The covariance analysis of
the solution is also interesting for the assessment of the
performance of the proposed system in the presence of
noise.
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Appendix A. Trigonometric Function Solution

In this appendix, the solution is shown for the trigono-
metric equation given by

ap = accos(θ) + assin(θ) , (A.1)

where ap, as and ac are known scalars. The method to
solve (A.1) is found by simplifying the right side of (A.1)
into a wave equation, as given in the next lemma.

Lemma 6. Consider the trigonometric equation (A.1) and

assume that a2s + a2c 6= 0 and that

∣∣∣∣ ap√
a2s+a

2
c

∣∣∣∣ ≤ 1. Then

θ = atan2(as, ac)± arccos

(
ap√
a2s + a2c

)
.

Proof. Let λ := atan2 (as, ac), which means that

sin(λ) =
as√
a2s + a2c

, (A.2a)

cos(λ) =
ac√
a2s + a2c

. (A.2b)

Next, rewrite (A.1) as given by

ap√
a2s + a2c

=
ac√
a2s + a2c

cos(θ) +
as√
a2s + a2c

sin(θ) . (A.3)

It becomes clear from (A.2) that (A.3) can be expressed
as

ap√
a2s+a

2
c

= cos(λ) cos(θ) + sin(λ) sin(θ), which from the

trigonometric identity of the cosine of the difference is
given as

cos(θ − λ) =
ap√
a2s + a2c

. (A.4)

Finally, applying the inverse cosine to (A.4) leads to the
solution for the angle, given by

θ = λ± arccos

(
ap√
a2s+a

2
c

)
= atan2 (as, ac)± arccos

(
ap√
a2s+a

2
c

)
.
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Figure 3: Relative and inertial attitude estimation error.
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