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1. Introduction

The problem of finding the similarity transformation between two sets

of points in n-dimensional space appears commonly in many applications of

computer vision, robotics, statistics, and other fields of research. The study

of this family of problems is usually known as the Procrustes analysis [1],

which includes the statistical characterization of the transformation between

the shape of objects [2]. One particularly important problem in this family

is the so-called orthogonal Procrustes problem, which can be traced back to

the work presented in [3], and consists in extracting the orthogonal transfor-

mation that maps one set of points into a second set of points, with known

associations between them. It is closely related to Wahba’s problem [4] and

to the Kabsch algorithm [5]. The generalization for rotation, translation, and

scaling has been the subject of extensive research in areas such as computer

vision, and can be traced back to [6], [7], and [8]. While initially the problem

was posed without any restrictions on the transformation between the sets,

i.e., rotations and reflections were allowed, a more evolved strategy appeared

restricting the transformation to the special orthogonal group, as detailed in

[6] and [9]. Furthermore, [10] demonstrated that the previous solutions are

optimal even when both data sets are perturbed with isotropic and identical

Gaussian noise.

The statistical characterization of the Procrustes analysis has also been

the subject of study in works such as [2], [9], [11], and [12]. Using pertur-

bation theory, the nonlinear problem of characterizing the uncertainty was

addressed with some limiting options, such as the absence of weighting of the

point sets, the use of small rotations, or the same covariance for all points.
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Within the field of medical imaging, the work presented in [13] also resorts to

perturbation theory to present a statistical characterization of a target po-

sition, considering small rotations, isotropic uncertainty, and equal weights

for each point. More recently, the work presented in [14] extends these re-

sults for anisotropic uncertainty in the components of the point space. This

is achieved by considering the same covariance matrix for all points, which

may weigh each component of the point space independently. The authors of

[15] further expand this by considering different noise levels for each point,

while keeping the linearized model for the rotation matrix. An interesting

advance in the study of the uncertainty is the first order error propaga-

tion proposed in [16]. The optimization problem that is considered is not

weighted and therefore identical isotropic noise is assumed for all the points.

The author defines a first order error model that is propagated through the

solution, while assuming independent and identically distributed points (no

longer necessarily isotropic). It is noted that the findings of the aforemen-

tioned works are all restricted to three-dimensional points. In [17] a different

optimization problem is proposed that accounts for independent anisotropic

noise affecting rotated-only point sets also in three dimensions. The authors

determine the theoretical lower bound for the covariance of the rotation error

in that case, and through an iterative solution recurring to quaternion rep-

resentation reach the theoretical bound. Besides the iterative solution, some

shortcomings of this work are its limitation to the tridimensional problem

with rotation-only, and the fact that, although anisotropic, the input covari-

ances are normalized and share a common normalizing factor. Regarding the

stability of the solution, [18] addresses the study of this issue when the algo-
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rithm is exposed to perturbed data sets, concluding that the singular values

of the matrices composed with the points in each set are closely related to

the conditioning of the problem, whilst finding a bound for the perturbation

on the rotation matrix when the input perturbations are bounded. In related

directions of research that demonstrate the relevance of pattern point match-

ing, and, consequently, of point registration problems such as the Procrustes

problem, the authors of [19] and [20] propose algorithms that exploit different

approaches to registration and matching. Furthermore, the latter is an iter-

ative algorithm that, assuming a rotation-scaling-translation transformation

between two sets of points, finds the point correspondences and a variational

Bayesian approximation for the distribution of the transformation.

This paper addresses the n-dimensional (n-D) extended orthogonal Pro-

crustes problem considering a transformation composed of a rotation and a

translation (no scaling). The problem is posed with individual scalar weights

for each pair of points, and a closed-form solution is presented. Data associ-

ation is assumed to be performed a priori. Founded on perturbation theory,

a novel and general uncertainty description for the solution of the optimiza-

tion problem is proposed. Building on the results presented in [13], [14], and

[16], and assuming a stochastic perturbation model for the point sets with

individual covariance matrices for each point, as well as cross-covariances

for each pair of points, the first and second moments of the resulting trans-

lation and rotation are computed. This is achieved considering arbitrary

rotations and translations, individual weights, and full covariance matrices

for both point sets. As a by-product of this work, an application to robotics

was proposed in [21] and [22] within the scope of simultaneous localization
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and mapping [23]. In this application, if a landmark map (or set of points)

is available in a coordinate frame attached to the robot, it is possible to

compute the transformation between that frame and another frame fixed to

the initial position of the robot. Following this idea, an online Earth-fixed

trajectory and map estimation algorithm based on the Procrustes problem

was proposed and its uncertainty characterization derived, making full use of

the methodology proposed in this paper. This builds on the previous works

by the authors, where globally asymptotically stable filters for simultaneous

localization and mapping in a sensor-based or robocentric framework were

proposed for bidimensional [24] and tridimensional mission scenarios [25].

The performance and consistency of the overall algorithm are validated in a

real world environment for both dimensionalities, showing that the algorithm

provides accurate and consistent estimates, and, therefore, also providing an

experimental validation of the uncertainty characterization proposed in this

paper.

The contributions of this paper are: i) the full uncertainty characteriza-

tion of the optimization problem of obtaining the transformation between

corresponding n-dimensional point sets and its closed-form solution, while

considering point sets perturbed by anisotropic noise, and points that are

not required to be independent nor identically distributed; and ii) a thor-

ough validation of the uncertainty characterization, using extensive Monte

Carlo simulations to study the main properties of the proposed methodology.

This paper builds on the preliminary versions of this work presented in [21]

and [22], by reformulating the problem of obtaining the pose of the vehicle,

while extending the derivation therein to points of arbitrary dimensions. In
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contrast with the latter work, this paper provides new theoretical results,

generalizes the proposed uncertainty characterization to Rn, and provides

statistical validation through extensive Monte Carlo simulations for several

dimensions and a multitude of parameter combinations.

The applications of Procrustes analysis are found in a wide variety of

fields, which can benefit from the proposed approach, including rigid body

motion, vibration tests of large complex structures [26], structural and sys-

tem identification, factor analysis in n-D (e.g. checking whether two matrices

are equivalent), similarity evaluation in statistical data sets [27, Chapter 20],

medical imaging [14], photogrammetry [28], shape comparison (generalized

Procrustes analysis) [29], and quantitative psychology [30] (where the prob-

lem was initially solved). In recent years several algorithms were developed in

the field of computer vision that availed themselves of the Procrustes prob-

lem, from shape matching and retrieval [31] to similarity search in image

collections [32], among others. Shape matching is in fact a more complex

problem, as the problem of finding the transformations is coupled with the

problem of finding the reference shape to which all the measured shapes

relate. In [33] the authors propose a unifying framework that has a closed-

form computation for affine, similarity or Euclidean transformations between

a set of shapes, while allowing to find the underlying shape and account-

ing for missing pairs of points. All this is performed considering noise in

the measured shapes and not in the reference-space as is customary. Other

applications include non-negative matrix factorization [34], and phase FIR

filter bank design [35], whereas the work in [36] underlines the importance

of addressing the problem in less common dimensionalities, such as four-
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dimensional shapes. Another possible application of the Procrustes problem

lies in iterative closest point algorithms such as [37], even tough most use

quaternions to parametrize the rotation of the sets. If the registration is per-

formed in each step with a constrained least squares approach, it can benefit

from the characterization here proposed. Another interesting application of

Procrustes analysis is manifold alignment [38] in the area of machine learning.

In this n-dimensional technique, it is argued that it is possible to model the

underlying structure of most datasets by manifolds, whose alignment then

allows for knowledge transfer across datasets. The authors of [38] demon-

strate the validity of this approach by applying the idea to learning transfer

in reinforcement learning with Markov Decision Processes, alignment of the

tertiary structure of proteins, cross lingual information alignment, within

others. These demonstrate the real world relevance of the n-dimensional

Procrustes problem in several fields even for dimensionalities outside of the

2-D/3-D common problems. Furthermore, given the noisy nature of these

problems, the proposed uncertainty characterization can be useful to com-

pute the reliability of the alignment resulting from the Procrustes procedure.

Paper Structure. The paper is organized as follows. Section 2 presents a brief

overview of some mathematical concepts needed in the course of this paper.

Section 3 presents the formulation and closed-form solution of the weighted

orthogonal Procrustes problem. A novel uncertainty characterization of this

problem is derived in Section 4 and validated in Section 5 through extensive

Monte Carlo simulations. Finally, Section 6 provides concluding remarks.

Further figures depicting the simulations detailed in this section are provided

in the supplementary material, along with detailed proofs to the results.
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2. Preliminary definitions

This section serves the purpose of introducing the notation used in this

paper, as well as a few definitions and properties needed for the mathematical

derivations in the sequel.

2.1. Notation

Throughout the paper, vectors and matrices are represented in small and

capital boldface letters, respectively. Scalar symbols are expressed in italic:

constants by capital letters, and scalar variables in small letters. Particularly,

the symbol 0n×m denotes an n×m matrix of zeros (if only one subscript is

present, the matrix is square), In is an identity matrix with dimension n×n,

and diag (A1, . . . ,An) is a block diagonal matrix. The determinant of a

generic square matrix is denoted by |A|, and, for a generic matrix A ∈ Rn×m,

the Frobenius norm is adopted, i.e., ‖A‖ =
√

tr
(
AAT

)
. The operator skew :

Rn×n → so(n) yields the skew-symmetric component of a square matrix,

skew(A) = 1
2

(
A−AT

)
. Finally, the expectation operator is denoted as 〈.〉,

and the covariance matrix between two generic stochastic vectors a,b ∈ Rn

is denoted by Σab = 〈(a− 〈a〉) (b− 〈b〉)T 〉 or Σa, if a = b. The Orthogo-

nal Group is denoted by O(n) :=
{
X ∈ Rn×n : XXT = XTX = I

}
, and the

Special Orthogonal Group is denoted by SO(n) := {X ∈ O(n) : |X| = 1}.

2.2. Definitions and properties

In this paper, except when explicitly stated, the dimension of the space

Rn is arbitrary, i.e., all the derivations are valid for point clouds in Rn for

all n ≥ 2, and the rotations are expressed in the special orthogonal group

SO(n). Note that the term rotation, and rotation matrix, applies to all the
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orthogonal matrices of unitary determinant. This is related to the Lie algebra

so(n) comprised of skew-symmetric matrices that can be mapped to SO(n)

through the exponential map.

Definition 1. The matrix S[ω] ∈ so(n) is a skew-symmetric matrix para-

metrized by the vector ω :=
[
ω1 · · · ωnp

]T
∈ Rnp, with np = n(n−1)

2
. One

possible parametrization is given by

S[ω] =



0 (−1)ωnp (−1)2ωnp−1 · · · (−1)n−2ω2n−3 (−1)n−1ωn−1

∗ 0 (−1)ωnp−2 · · · (−1)n−3ω2n−4 (−1)n−2ωn−2

∗ ∗ 0
...

...

∗ ∗ ∗
. . . (−1)ωn (−1)2ω2

∗ ∗ ∗ ∗ 0 (−1)ω1

∗ ∗ ∗ ∗ ∗ 0


. (1)

The elements under the diagonal are automatically defined by S[ω] = −ST[ω],

and are therefore omitted to avoid cluttering the reading. Also note that, in

general, np ≥ n, except in the bidimensional case when np = 1 and the whole

vector ω collapses to ω1. The unskew operator S−1 : so(n) → Rnp is related

to this matrix as it extracts the vector that parametrizes a skew-symmetric

matrix, i.e., S−1(S[ω]) = ω.

Notice that, given ω ∈ Rnp , other parametrizations could be used to

obtain S[ω]. This form was chosen without loss of generality, as the results

could be derived for any parametrization. For the tridimensional case (n =

3), this matrix is also known to encode the cross-product, as in S[a] b = a×b.

Due to this fact, there is a possible anti-commutation between the two vectors

given by S[a] b = −S[b] a = ST[b] a. Even though these properties are
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solely applicable to the tridimensional case, a possible extension to all the

dimensions is the matrix S̄[.] defined hereafter.

Definition 2. The generalized anti-commutation matrix S̄[a] ∈ Rnp×n pa-

rametrized by the vector a ∈ Rn, when associated to the parametrization of

S[ω] in (1), can be defined recursively by

S̄[a1:i] =



0 · · · 0 −ai
... (−1)2ai 0

0 . .
. ...

(−1)i−1ai 0 · · · 0

(−1)0ai−1

(−1)1ai−2
...

(−1)i−2a1

S̄[a1:i−1] 0 (i−1)(i−2)
2

×1


(2)

for all i = 3, . . . , n, with a1:i =
[
a1 · · · ai

]T
and S̄[a1:2] =

[
−a2 a1

]
.

Note that for vectors in three dimensions, this matrix degenerates in the

skew-symmetric matrix, i.e., S̄[a1:3] = S[a1:3]. Besides this fact, the matrix

(2) exhibits a series of properties that are used in this paper. These are

summarized in the following lemma.

Lemma 1. The generalized anti-commutation matrix has the following prop-

erties for every a,b ∈ Rn, ω ∈ Rnp, constants α, β ∈ R and integer n ≥ 2.

1. Linearity: S̄[αa + βb] = αS̄[a] + βS̄[b]

2. Anti-commutativity: S̄[a] b = −S̄[b] a

3. Anti-commutation with a skew-symmetric matrix: S[ω] a = S̄
T
[a]ω

4. Relation to the unskew operator: S−1
(
baT − abT

)
= S̄[a] b.
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Proof. Due to the recursive nature of S̄[a] and S[ω], it is possible to express

all the sides of these identities recursively and thus these properties can be

proven using mathematical induction. The proof is presented in Appendix

A in the supplementary material.

3. Procrustes optimization problem and closed-form solution

This section presents the formulation and closed-form solution of the

weighted extended orthogonal Procrustes problem, featuring individual weights

for each pair of points, related by a translation and rotation.

Consider the existence of two point sets in Rn, SA and SB, which contain,

respectively, the points expressed in an arbitrary frame {A} and the same

points expressed in some other frame {B}. Each point ai ∈ SA nominally

corresponds to a point bi ∈ SB, with i ∈ S := {1, . . . ,m} and m ≥ n, and

that correspondence is expressed by ai = Rbi + t, where the pair (R, t) ∈

SO(n)× Rn fully defines the transformation from frame {B} to frame {A},

as it represents the rotation and translation from {B} to {A}. Given the

relation between the two sets, it is possible to define the error function ei =

ai−Rbi− t, that represents the error between the i-th point estimate in SA
and its homologous in SB, rotated and translated into frame {A}. Obtaining

the pair (R, t) is the purpose of the optimization problem

(R∗, t∗) = arg min
R ∈ SO(n)

t ∈ Rn

G (R, t) , (3)

where the function G (R, t) is defined as

G (R, t) :=
1

m

m∑
i=1

σ−2i ‖ai −Rbi − t‖2 =
1

m

∥∥∥(Y −RX− t1T
)
Σ−1/2e

∥∥∥2 ,
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where σ2
i > 0, i ∈ S, accounts for the intrinsic uncertainty of each point pair,

Y =
[
a1 · · · am

]
∈ Rn×m and X =

[
b1 · · · bm

]
∈ Rn×m are, respec-

tively, the concatenation of the point vectors expressed in frames {A} and

{B}, 1 =
[
1 · · · 1

]T
∈ Rm is a vector of ones, and the weight matrix Σe is a

diagonal matrix whose entries are the weights σ2
1, . . . , σ

2
m that model the point

uncertainty. If, for example, one of the points in a pair is missing, the corre-

sponding σ−2i can be set to zero, thus allowing the cost function to account

for missing data. Given that the true Σe is not known, these can be con-

servatively defined as σ2
i = λmax (Σai) +λmax (Σbi) ≥ λmax

(
Σai + RΣbiR

T
)
,

denoting λmax(.) as the maximum eigenvalue. This weight matrix allows the

use of the information regarding the different degrees of uncertainty of each

point pair.

The optimization problem (3) has a closed-form, numerically robust, and

computationally efficient solution based on the work presented in [6] and [2].

The weighted statistical properties of the point sets SA and SB, in the form

of their weighted centroids and covariances, can be expressed in matrix form

using the symmetric weight matrix W := Σ−1e − 1
NW

Σ−1e 11TΣ−1e ∈ Rm×m,

where NW :=
m∑
i=1

σ−2i = 1TΣ−1e 1. The resulting expressions for the weighted

centroids of the sets SA and SB, respectively µA,µB ∈ Rn, are

µA :=
1

NW

m∑
i=1

σ−2i ai =
1

NW

YΣ−1e 1, and µB :=
1

NW

XΣ−1e 1,

whereas the weighted covariance ΣAB ∈ Rn×n is given by

ΣAB :=
1

NW

m∑
i=1

σ−2i (ai − µA) (bi − µB)T =
1

NW

YWXT :=
1

NW

BT .
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Consider now the singular value decomposition of BT

UDVT = svd(BT ). (4)

The optimal rotation matrix, from the optimization problem (3), is given by

R∗ = U diag (1, . . . , 1, |U| |V|) VT , (5)

which in fact is the optimal rotation between the two sets when their weighted

centroids coincide. This solution is valid as long as the covariance matrix ΣAB

has rank n− 1, as reported in [6]. The optimal translation vector is

t∗ =
1

NW

(Y −R∗X) Σ−1e 1 = µA −R∗µB. (6)

Notice that the optimal translation is the vector that translates the weighted

centroid of the points in SB rotated to frame {A} to the weighted centroid

of the points in SA.

Some remarks on applications. The derivation here presented and followed

in the next section is detailed for the matching of two point clouds. Neverthe-

less, the problem is completely equivalent to the general problem of matching

two different matrices, considering that each point is a column of the cor-

responding matrix. When dealing with generalized Procrustes analysis, for

shape matching/registration, the problem at hand is extended to include the

estimation of a reference shape. This is not the objective of the optimiza-

tion problem (3). However, once a reference shape is chosen or found (for

example using the the classical alternation approach [1, Chapter 9] or the

more evolved approaches proposed in [33] and [29]), the problem of finding

the Euclidean transformation is exactly expressed by (3) and therefore all

the derivations in this and the following sections holds.
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4. Uncertainty characterization

The goal of this section is to compute accurate approximations of the un-

certainty associated with the extended Procrustes problem solution obtained

above. The study of the statistical properties of the orthogonal Procrustes

problem can be traced back to [11] and [2], which used perturbation theory

to find the approximate distribution of the cost functional G(R, t), assuming

Σ−1e = I, small rotations, and the same covariance matrix for each land-

mark. These results have been extensively applied to the field of point-based

medical image registration problems, as detailed in [13], [14], and [15]. The

work in [16] eliminates the assumptions on the rotation, but still addresses

the optimization problem without weights and considers that the points are

independent and identically distributed, albeit with anisotropic uncertainty.

The analysis presented hereafter is based on the aforementioned works and

aims at providing approximate uncertainty descriptions for the transforma-

tion parameters, R∗ and t∗. This uncertainty characterization is achieved

while considering arbitrary rotations and translations and using individual

weights as well as individual covariance matrices for each landmark and cross

covariance terms.

Within the scope of perturbation theory, the error models of the known

variables are defined as

ai = a
(0)
i + ε a

(1)
i +O(ε2) (7a)

bi = b
(0)
i + ε b

(1)
i +O(ε2) (7b)

for all i ∈ S, where ε is the smallness parameter, the notation O(εm) stands

for the remaining terms of order m or higher, the zero order terms are the
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true values, hence 〈a(0)
i 〉 = a

(0)
i and 〈b(0)

i 〉 = b
(0)
i , whereas the first order

terms, (.)(1), are assumed to follow a known distribution with zero mean and

covariance matrices defined by Σaij := 〈a(1)
i a

(1)
j

T
〉 and Σbij := 〈b(1)

i b
(1)
j

T
〉,

respectively, for all i, j ∈ S. Note that each of these clouds has cross co-

variance terms between their points, as suggested in the above covariance

matrices expressions. The optimal translation vector is assumed to have an

error model with a similar structure to that of (7),

t∗ = t(0) + ε t(1) +O(ε2). (8)

4.1. Rotation uncertainty

The rotation matrix obtained through the optimization process described

before is restricted to the special orthogonal group SO(n). However, nothing

is known about the components of its error model. The following lemma is

introduced to address these quantities.

Lemma 2. Consider the generic error model

M = M(0) + εM(1) +O(ε2). (9)

If the matrix M belongs to the orthogonal group O(n) then M(0) belongs

to the same matrix space, its determinant is equal to the determinant of

M, and M(1) has the special structure M(1) = S[ω] M(0) = M(0)S[$], with

S[ω] ,S[$] ∈ so(n) and ω,$ ∈ R
n(n−1)

2 . Furthermore, if M ∈ SO(n), then

M(0) ∈ SO(n).

Proof. The proof is made by exploring the algebraic constraints imposed by

the matrix spaces O(n) and SO(n) and using error model (9). The identity
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MTM = I is expanded, resulting in a unperturbed part that yields M(0) ∈

O(n) and a perturbed part that implies that M(1) = S[ω] M(0) = M(0)S[$].

Finally, the determinant of M noting the structure of S[ω] is expanded. The

proof is presented in Appendix B in the supplementary material.

From the solution to the optimization problem in [6, Lemma], it is known

that R∗ ∈ SO(n). If (9) is applied to R∗, the following error model results

R∗ =
[
I + ε S[ω] +O(ε2)

]
R(0). (10)

To ascertain whether R(0) ∈ SO(n) corresponds to the true rotation, consider

that matrix B, used to compute the estimated rotation, can be described

in terms of its error model, using that of matrices X and Y, which are a

generalization of (7b) and (7a), respectively. This results in

B = B(0) + ε B(1) +O(ε2), (11)

with B(0) = X(0)WY(0)T and B(1) = X(1)WY(0)T + X(0)WY(1)T . Fur-

thermore, the singular value decomposition (4) of B can itself be expanded

defining similar models for each of its components [39], i.e., U = U(0) +

εU(1) + O(ε2), D = D(0) + εD(1) + O(ε2), and V = V(0) + εV(1) + O(ε2),

which yields

B = U(0)D(0)V(0)T +O(ε).

Comparison with the error model (11) yields X(0)WY(0)T = U(0)D(0)V(0)T ,

thus confirming that these terms are composed of true quantities only. Com-

bining the error model of the optimal rotation matrix with its solution (5)

yields

R(0) +O(ε) = U(0) diag
(

1, . . . , 1,
∣∣∣U(0)

∣∣∣ ∣∣∣V(0)
∣∣∣)V(0)T +O(ε).
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Note that, as U and V are orthogonal matrices, Lemma 2 applies, and, there-

fore, not only U(0) and V(0) are orthogonal matrices, but their determinants

correspond to the determinants of the perturbed versions, a fact that was

used in the last expression. From this, it follows that R(0) is the true ro-

tation as it is obtained from the singular value decomposition of B(0), itself

computed using the true terms a
(0)
i and b

(0)
i , for all i ∈ {1, . . . ,m}. As R(0)

is the true rotation and given the structure of (10), the vector ω can be seen

as a rotation error around the true rotation matrix.

From the proof of [6, Lemma], it is known that the matrix BR∗ is sym-

metric, and thus, using the error models (10) and (11) one can write,

skew (BR∗) = skew
(
B(0)R(0)

)
+ ε skew

(
B(1)R(0) + B(0)S[ω] R(0)

)
= 0.

This implies that each skew operator is null, meaning that B(0)R(0) is also

symmetric and that, after left multiplication by R(0), right multiplication by

R(0)T , and using the identity S[ω] = −ST[ω],

skew
(
R(0)B(0)ST[ω]

)
= skew

(
R(0)B(1)

)
. (12)

Further manipulation of this formula is needed in order to obtain a tractable

expression for ω. Consider the matrix R(0)B(0)ST[ω] expressed as a summa-

tion of point terms, noting that a
(0)
i = r

(0)
i + t(0) with r

(.)
i := R(0)b

(.)
i for all

i ∈ S,

R(0)B(0)ST[ω] =
m∑
i=1

σ−2i

[
r
(0)
i r

(0)
i

T
ST[ω]− 1

NW

m∑
j=1

σ−2j r
(0)
i r

(0)
j

T
ST[ω]

]
, (13)

The same can be done with R(0)B(1), yielding

R(0)B(1) =
m∑
i=1

σ−2i

[
r
(0)
i ā

(1)
i

T
+ r

(1)
i ā

(0)
i

T
]
, (14)

17



where ā
(.)
i := a

(.)
i − µ

(.)
A .

Due to the skew-symmetric nature of (12), it is possible to apply the

unskew operator to both sides. This enables to apply Properties (4) and (2)

of Lemma 1 combined with (13) and (14), yielding

S−1
(

2 skew
(
R(0)B(0)ST[ω]

))
=

1

NW

m∑
i,j=1

σ−2i σ−2j S̄
[
r
(0)
i

]
S[ω] r

(0)
j

−
m∑
i=1

σ−2i S̄
[
r
(0)
i

]
S[ω] r

(0)
i ,

(15)

whereas the right-hand side becomes

c := S−1
(

2 skew
(
R(0)B(1)

))
=

m∑
i=1

σ−2i

(
S̄
[
ā
(0)
i

]
r
(1)
i − S̄

[
r
(0)
i

]
ā
(1)
i

)
. (16)

Using Property (3) of Lemma 1 in (15), one obtains a linear matrix equation

after applying the unskew operator to both sides of (12), given by Aω = c,

where the matrix A ∈ Rnp×np is defined as

A := −
m∑
i=1

σ−2i S̄
[
r
(0)
i

]
S̄
T
[
r
(0)
i

]
+

1

NW

m∑
i,j=1

σ−2i σ−2j S̄
[
r
(0)
i

]
S̄
T
[
r
(0)
j

]
.

From the linear equation now derived it is possible to obtain ω, as long

as A is invertible. It can be shown that this result degenerates into the

main result of [16] when assuming independent and identically distributed

points in R3. However, the existence and uniqueness of the solution is not

addressed there. That is the focus of the forthcoming theorem, addressing the

conditions under which the invertibility of A in n-dimensional space holds.

Theorem 1. The matrix A is invertible if and only if there are at least n

points in the set SB whose connecting vectors span Rn−1.

18



Proof. The proof is made by manipulating uTAu = 0 so that a clear relation

between the landmarks and u appears, allowing to explore the nature of S[.]

to analyse the solutions of uTAu = 0 for ‖u‖ = 1 when A is singular. It can

be found in Appendix C in the supplementary material.

By observation of (16), it can be seen that 〈c〉 = 0, as its uncertain

elements are only r
(0)
i and ā

(0)
i , which have zero mean. Therefore 〈ω〉 =

A−1〈c〉 is also zero, and the corresponding covariance matrix is given by

Σω = 〈ωωT 〉 =A−1

[
m∑

i,j=1

σ−2i σ−2j S̄
[
ā
(0)
i

]
R(0)ΣbijR

(0)T S̄
T
[
ā
(0)
j

]
+

m∑
i,j=1

σ−2i σ−2j S̄
[
r
(0)
i

]
〈ā(1)

i ā
(1)
j

T
〉S̄
[
r
(0)
j

]
−

m∑
i,j=1

σ−2i σ−2j S̄
[
ā
(0)
i

]
〈r(1)i ā

(1)
j

T
〉S̄
[
r
(0)
j

]
−

m∑
i,j=1

σ−2i σ−2j S̄
[
r
(0)
i

]
〈ā(1)

i r
(1)
j

T
〉S̄
[
ā
(0)
j

]]
A−1

T
.

The individual covariances between points of the two sets are detailed in

Appendix D of the supplementary material.

4.2. Translation uncertainty

The optimal translation between frames is given by (6) and the associated

error model is assumed to be (8). Using this information along with the error

models for the points in both sets, defined in (7), it is possible to expand (6)

to obtain expressions for the error model components, the true translation

t(0) = 1
NW

m∑
i=1

σ−2i

[
a
(0)
i −R(0)b

(0)
i

]
, and the first order perturbed part

t(1) =
1

NW

m∑
i=1

σ−2i

(
a
(1)
i − S[ω] r

(0)
i − r

(1)
i

)
. (17)
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It is confirmed that t(1) has zero mean, noting that all the perturbation

quantities involved have zero mean. Therefore, the covariance matrix of

the position estimate Σt is simply given by Σt = 〈t(1)t(1)T 〉, and it can be

computed by expanding t(1) according to (17), using Property (3) of Lemma

1 to extract ω from the skew-symmetric matrix. This yields

Σt =
m∑

i,j=1

σ−2i σ−2j
N2
W

(
Σaij + R(0)ΣbijR

(0)T + S̄
T
[
r
(0)
i

]
ΣωS̄

[
r
(0)
j

]
− S̄

T
[
r
(0)
i

]
〈ωa

(1)
j

T
〉 − 〈a(1)

i ω
T 〉S̄
[
r
(0)
j

]
−R(0)Σbiaj

+S̄
T
[
r
(0)
i

]
〈ωr

(1)
j

T
〉+ 〈r(1)i ωT 〉S̄

[
r
(0)
j

]
−ΣaibjR

(0)T
)
,

4.3. Cross translation-rotation uncertainty

The optimal translation estimate is obtained using the optimal rotation,

and for that reason there is a correlation between the two. The corresponding

cross covariance is given by

Σωt = A−1
m∑

i,j=1

σ−2i σ−2j
NW

S̄
[
ā
(0)
i

](
R(0)Σbiaj−〈r

(1)
i ω

T 〉S̄
[
r
(0)
j

]
−R(0)ΣbijR

(0)T
)

+ A−1
m∑

i,j=1

σ−2i σ−2j
NW

S̄
[
r
(0)
i

](
ΣaibjR

(0)T +〈ā(1)
i ω

T 〉S̄
[
r
(0)
j

]
−〈ā(1)

i a
(1)
j

T
〉
)
,

where the cross covariances between points in either sets and the rotation

error are computed in the same manner, and are detailed in Appendix D in

the supplementary material. Note that Σaibj may in most cases be zero due

to the possible independence of the sets.

Remark 1. As the true quantities R(0), a
(0)
i , and b

(0)
i are unknown for all

i ∈ S, a possible approximation is to use the optimal values for the rotation

and translation and the original perturbed points ai and bj instead. This

applies to all the covariance expressions derived in this section.
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5. Algorithm validation

In this section, the proposed uncertainty characterization is validated

through extensive Monte Carlo simulations. Despite the general derivation

presented above, the numerical validation requires the particularization for

one or several dimensions. Although bidimensional and tridimensional prob-

lems are the most common in the literature, as in [24] and [25], the study

of rotations and other quantities in seven-dimensional space has also been

addressed in [40]. For these reasons and to represent meaningful examples,

this section will focus on those dimensionalities.

As the optimization and uncertainty description presented in this pa-

per are intended to work for any rotation and translation, and taking into

account that some approximations were introduced, a Monte Carlo simu-

lation with N = 1000 samples was performed for each of M = 500 ran-

dom configurations, to validate the proposed technique. In each of these

configurations, the transformation is uniformly distributed, with each com-

ponent of the translation vector ranging from -10 to 10 m, the locations

of the points from 0 and 10 m in each component, and the rotation ma-

trix is built using the exponential map R = eS[θu], where θ is uniformly

distributed between −π and π radians and u is an uniformly distributed

random unit vector. In order to comprehensively test the properties of the

proposed method, the covariance matrices used to generate the normally

distributed location errors of the points in each set are complete covari-

ances with cross-correlations between all the points and different individ-

ual covariances. In the two-dimensional case, the eigenvalues of the co-

variance matrices are (0.012, 0.052). For the three-dimensional case, the
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eigenvalues are (0.012, 0.032, 0.052), and the seven-dimensional eigenvalues

are (0.012, 0.0172, 0.0232, 0.032, 0.0372, 0.0432, 0.052). In each of these cases,

all the permutations of eigenvalues are used an equal number of times. The

full covariance for each point cloud is then Σnom = U diag (λ1, . . . , λnm) UT ,

where the eigenvector matrix U is an nm×nm rotation matrix built following

the same reasoning used to build R.

The meaningful comparison between two different models, usually de-

noted as the null model and the alternate model, is a difficult problem which

is frequently performed using likelihood ratio tests. In short, the likelihood

ratio expresses how many times more likely the data is explained under one

model than the other, by obtaining the probability distribution of the test,

assuming the null model to be true (null hypothesis). Thus, the null hypothe-

sis is rejected if its probability is below a desired significance value, typically

0.01 or 0.05. However, a central limitation for the usage of these tests is

the assumption that the stochastic variable follows a specific distribution,

usually Gaussian. Indeed, and as a consequence of the considered arbitrary

rotations, the translation tends to be Gaussian distributed as the number of

points increases, but may fail to be so for a reduced number of landmarks,

which is in accordance with the central limit theorem.

Figure 1 and Tables 1 and 2 summarize the likelihood ratio tests for

the comparison between the sample covariance matrices resulting from the

Monte Carlo simulations, Σsim
ω , Σsim

t , and the joint error covariance Σsim
ξ

where ξ =
[
ωT tT

]T
, and the covariance matrices resulting from the proposed

methodology and respective uncertainty approximation, Σopt
ω , Σopt

t , and Σopt
ξ .

The definition of each ratio depends on whether the quantity is a scalar or a
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Table 1: Worst-case covariance likelihood ratio tests for n = 2 (left) and n = 3 (right)

m Hω

[%]
Ht

[%]
Hξ

[%]
H100
ω

[%]
H100
t

[%]
H100
ξ

[%]
2 77.2 27.8 29.2 100 71.4 73.2
3 94.4 51.8 55.4 100 90.2 90.4
4 96.6 65.4 70.8 100 96.2 95.4
5 96.8 79.4 82.8 100 97.6 97.8
7 96.4 87.6 89.2 100 97.0 97.0
10 98.8 93.2 94.8 100 98.2 98.4
20 97.4 95.8 96.6 100 99.0 98.8
50 98.2 98.6 98.4 100 99.6 99.2
100 99.0 98.4 98.6 100 99.0 99.6

Hω

[%]
Ht

[%]
Hξ

[%]
H100
ω

[%]
H100
t

[%]
H100
ξ

[%]

67.6 13.4 9.8 95.4 60.0 60.2
88.4 32.8 27.8 98.0 84.8 85.8
93.8 50.0 47.4 98.8 93.8 93.6
96.0 76.6 75.2 99.0 97.8 98.8
98.2 92.0 91.2 97.8 96.8 97.2
97.8 96.6 96.0 99.0 97.8 97.6
98.8 98.0 97.8 99.2 99.0 98.2
98.4 98.0 97.6 98.6 99.4 99.4

Table 2: Worst-case covariance likelihood ratio tests for n = 7
m Hω [%] Ht [%] Hξ [%] H100

ω [%] H100
t [%] H100

ξ [%]

7 61.4 1.6 0.0 84.4 32.2 7.4
10 95.2 28.6 9.0 89.0 89.8 56.4
15 98.0 74.6 65.2 93.0 97.2 70.2
20 98.2 90.2 86.0 90.8 98.2 73.4
30 98.4 96.6 94.0 93.0 98.6 75.8
50 98.6 97.6 97.4 93.4 98.4 76.0
100 98.4 97.8 98.2 93.0 99.0 79.6

matrix. For n = 2, the rotation error is a scalar, and therefore its covariance

will be too. Then, the ratio for the null hypothesis Hn=2
ω : Σsim

ω = Σopt
ω is

defined as

λ∗ω := N∗
Σsim
ω

Σopt
ω

∼ χ2
N∗

which is asymptotically χ2 distributed with N∗ := N − 1 degrees of freedom

and, thus, can be compared with a predefined significance level, which in

the presented results is considered to be 0.01. For the multivariable cases of

the null hypothesis of the general case for rotation Hn≥3
ω : Σsim

ω = Σopt
ω , the

translation Ht : Σsim
t = Σopt

t and the joint error covariance Hξ : Σsim
ξ = Σopt

ξ ,

the specific likelihood ratio test can be found in [41, Section 10.8]. The
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likelihood ratio for these cases is defined as

λ∗1 =
( e

N∗

) 1
2
pN∗ ∣∣∣BsimΣopt−1

∣∣∣ 12N∗

e−
1
2
tr(BsimΣopt−1),

where Bsim := N∗Σsim, and the comparison with the significance level is

achieved by noting that−2 log λ∗1 is asymptotically χ2 distributed with 1
2
p(p+

1) degrees of freedom where p is the dimension of the vector (n for the

translation, np for the rotation error, and n+np for the joint error vector ξ).

Hence, for the likelihood ratio tests, λ∗ω is compared with a threshold tn=2
ω :=

F−1
χ2
N∗

(1−α) in the bidimensional case, and the remaining likelihood tests are

made by comparing −2 log λ∗1 with similar thresholds tn≥3ω := F−1χ2
np

(1 − α),

tt := F−1χ2
n

(1− α) and tξ := F−1
χ2
np+n

(1− α), all with α = 0.01.

As the true values of the coordinates of the points and of the rotation

matrix are not available in real-world scenarios, the covariances resulting

from the uncertainty description of the previous section must be computed

using the perturbed quantities instead, therefore depending on the actual

values of the simulation. The covariances and respective likelihood ratios are

computed for each sample of the Monte Carlo simulations, that is, for each

configuration, one Σsim and N instances of Σopt are computed, resulting in

N ×M covariances, and consequently, the same quantity of ratios and tests.

The highest ratio in each configuration is used for the hypothesis tests pre-

sented in Tables 1 and 2, thus representing the worst-case scenarios (in terms

of likelihood ratios) for each configurations and number of landmarks. The

values shown in the tables for these tests denote the percentage of successful

tests among the M different configurations for n = 2, n = 3, and n = 7, re-

spectively. As mentioned before, the Gaussian assumption may not be valid

when dealing with an arbitrary rotation R, which, together with the fact
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that the ratio expressions and the degrees of freedom of their approximation

depend on the number of Monte Carlo samples, the tests are expected to fail

more pronouncedly when the number of Monte Carlo samples increases. For

this reason, an additional set of likelihood ratio tests are presented using a

smaller number of samples, N = 100, and denoted as H100. From the values

shown in these tables, it can be concluded that, for more than 5 points in

2-D, 7 points in 3-D, and 15 points in 7-D, the obtained covariance matri-

ces pass more than 70% of the tests in the worst-case, and can therefore be

considered a good approximation.

The cumulative distributions of the ratios depicted in Figure 1, however,

show that the worst-case scenario in terms of likelihood ratio is not rep-

resentative of the majority of the computed covariance matrices. The left

side of this figure presents the cumulative distribution of the total N ×M

likelihood ratios, normalized by the respective thresholds, and therefore de-

pict the quantity of samples that is explained by the model according to

the null hypothesis (area to the left of the vertical dashed line) as well as

its variation with the number of available points for 2-D. Comparing with

the worst cases provided in the previous tables, it can be seen that when

using the covariances built with every sample in each configuration the re-

sults are significantly better even when a low ratio of points per dimension is

present. In particular, even with the minimum amount of points (m/n = 1),

it is possible to achieve more than 70% of positive rotation and translation

tests for all the dimensions except for n = 7, where 10 points are needed to

surpass that threshold. In fact, in most cases the growth of the cumulative

function is quite fast, reaching high values of cumulative percentage for rel-
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Figure 1: The cumulative distribution of the likelihood ratios for the 2-D case including
all the covariances built with each particular simulation values and different input noise
covariance profiles (profile 1 in the left, 3 in the center, and 4 in the right columns).
Rotation error ω (top row), translation error (center row) and joint error vector (bottom
row).

atively low values of the ratio. It is also confirmed that adding a few points

to the m/n = 1 case leads to a relevant improvement of the test results for

all the three n, noting that even the joint error ratio displays success values

above 90% for each dimensionality, respectively with m = 3, m = 5, and

m = 10. Nonetheless, the m/n = 1 test results are degraded with the in-

crease of n (from 79% in 2-D to 64% in 3-D and 22% in 7-D for the joint

error), a tendency less apparent for the tests with m/n ≥ 2. To better

explore the various aspects of the uncertainty characterization, and achieve

a broader validation, additional simulations for n = 2 were performed with

several noise scales, namely: 1) nominal noise; 2) SB noise scaled by 102;

3) SA noise scaled by 102; and 4) both multiplied by 102 which are depicted

in Figure 1. Profiles 2 and 3 are very similar and only one is shown. One im-
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portant fact to note prior to this analysis is that, as the covariances are built

with the noise-perturbed point sets and the estimated rotation, increasing the

noise will inevitably lead to worse test results in general. Notwithstanding

this fact, for a reasonable number of points (m = 10) more than 70% of the

samples pass the test for all the quantities tested in all 4 profiles. Regardless

of the noise profile, the rotation error covariances perform much better than

the translation in these tests, as 3 points are enough to have more than 70%

of positive tests for the rotation, while for the translation 7 points are needed

for profiles 2 and 3, and 10 points for the last profile. Furthermore, with 2

points the performance may be below 20% in the translation for profile 4,

while the rotation is never below 60% in any profile. Even though the left

and center columns of Figure 1 are very similar, the translation tests are

worse in the former (around 1.4% less for each m), when the higher noise

is on SB, while the rotation tests are better (around 0.7% higher for each

m). This may be explained by the fact that, in the mathematical expressions

derived in Section 4.2, the actual values of the points in that set are always

multiplied by the rotation, hence amplifying the influence of the noise in

that set. When both input covariances are scaled, the results worsen as ev-

ery distribution crosses the threshold with around 10% less samples than in

profiles 2 and 3. Note however that in realistic situations, these noise levels

would imply that 99% of the noisy points could be in a ellipse with a major

axis of 1.5 meters around the true value (3σ) which is not a usual situation.

Nevertheless, to further assess the influence of the noise in the tests, new

simulations were made where both nominal input covariances are multiplied

by 1002. In these tests, the rotation still performs adequately (60% for 20
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points, 80% for 50 points), but the translation is far from that level (with 100

points only 3.37% of the samples pass the test). Nevertheless, when the true

values are used to compute the covariances in these harsh noise conditions

the performance is much better (55% for rotation, 44% for translation, and

12% for the joint error vector, all for m = 2), confirming that it is also the

fact that the covariances must be built with the perturbed values that leads

to the worsening of the results. This is intrinsic to the nonlinear problem at

hand, and not specific to the proposed characterization.

To provide a better understanding of the underlying problem, Figure 2 is

provided, depicting the spatial distribution of the translation error (red dots)

with the corresponding 99% bound in dashed black, along with 3σ bounds

given by the median ratio covariance matrix in solid blue, and the simulation

covariance in dashed green. Here a difficult case is presented, where all the

points in SB are evenly distributed along the x-axis, there is a translation of

2 units in each axis and a 180◦ rotation between sets, with narrow input co-

variances on both sets, Σb = Σa = diag (10−5, 9× 10−3, 4× 10−5, 16× 10−3)

for each two points. The baseline (∆), i.e., the maximum distance between

points in SB, increases from the leftmost figure to the rightmost. When

moving downwards, the number of equidistant points increases, maintaining

the baseline. A careful analysis of the information contained in Figure 2

indicates that the baseline is the dominant factor that can lead to highly

nonlinear uncertainty distributions. As these nonlinearities are not captured

by the proposed uncertainty computation, its performance will be degraded

in difficult cases. Although a short baseline leads to highly nonlinear error

distributions, as the number of points increases these distributions become
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more conventional, although not as notorious as with the increase of the base-

line. In fact, even with only 2 points, a baseline of 4 meters leads to a median

covariance quite similar to the experimental covariance, and conservative to

the actual shape of the 99% simulation bound.

In a further simulation, the rotation, translation and the shape of the

input noise covariance (narrow versus round) were varied for only 2 points

with a fixed baseline. It was observed that the influence of the rotation and

translation is not evidently visible in the results, further supporting that the

baseline, the number of points, and the shape and size of the input noise

distributions are the most significant parameters in both the results of the

optimization problem and the validity of the uncertainty characterization. In

fact, these two aspects of the whole problem are closely related: the uncer-

tainty characterization here proposed is not adequate when the distribution of

the error cannot be sufficiently characterized by its first two moments, mean

and covariance, even though it demonstrates great accuracy when the error

distribution is more conventional. In sum, narrow shapes of input noise, low

baselines, and low number of points lead to non-conventional shapes of error

distributions, and bettering any of these three parameters leads to more nat-

ural error distributions, especially for the case of the baseline. Even though

this places restrictions on the baseline and number of points available for the

optimization, it is by no means a very harsh limitation, as in the vast ma-

jority of applications it is common practice to use a relatively large number

of points and reasonable baselines when compared to noise levels.
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Figure 2: Translation error and uncertainty for a series of combinations of baseline-number
of points. Translation error Monte Carlo samples in red, 99% bound in dashed black,
3σ simulation covariance ellipse in dashed green, and the 3σ covariance ellipse resulting
from the uncertainty characterization with the median likelihood ratio. The baseline
(∆ = max ‖bi − bj‖ for all i 6= j, i, j ∈ S) increases in each figure from left to right,
whereas the number of points used in the optimization increases from top to down. Note
that the scaling changes from line to line as the number of points increases (ellipses in the
bottom are smaller than those at the top). 30



6. Conclusion

In this paper, the uncertainty involved in the weighted orthogonal Pro-

crustes problem for stochastically perturbed n-dimensional point clouds was

studied thoroughly and analytical expressions were derived for the first and

second moments of the stochastic outputs, the translation and rotation, as

well as cross terms that characterize the anisotropic uncertainty of the prob-

lem, not imposing assumptions on the actual rotation and translation. These

were obtained after assuming an error model based on perturbation theory

for each point in the point clouds, and advancing similar error models both

for the translation and the rotation matrix. This novel uncertainty charac-

terization for the Procrustes problem was validated through extensive Monte

Carlo simulations exploring the general framework of the algorithm, using ar-

bitrary rotations and translations, as well as full covariance matrices for each

point. For a relatively low number of points, and reasonable noise conditions,

the proposed uncertainty characterization performed very well in likelihood

ratio tests that encompass a wide variety of configurations varying in transla-

tion, rotation, and spatial distribution of points. A thorough analysis of the

influence of several parameters on the error distribution and the validity of

the results was performed, resulting in the conclusion that with a reasonable

baseline the uncertainty characterization performs accurately. These results

are consistent with the assumptions, and further validate this approach.

Possible directions of future work include applying this methodology to

similar optimization problems (e.g. LiDAR calibration from 3-D point clouds

[42]), and research on the use of the uncertainty characterization in iterative

Procrustes or ICP algorithms.

31



Acknowledgments

This work was supported by the Fundação para a Ciência e a Tecnologia (FCT)

through ISR under LARSyS UID/EEA/50009/2013, and through IDMEC, under

LAETA UID/EMS/50022/2013 contracts, by the University of Macau Project

MYRG2015-00126-FST, and by the Macao Science and Technology Development

Fund under Grant FDCT/048/2014/A1. The work of P. Lourenço and B. Guer-

reiro was supported, respectively, by the PhD. Grant SFRH/BD/89337/2012 and

by the Post-Doc grant SFRH/BPD/110416/2015 from FCT.

[1] J. C. Gower, G. B. Dijksterhuis, Procrustes Problems, Oxford Statistical

Science Series, Oxford University Press, 2004.

[2] C. Goodall, Procrustes Methods in the Statistical Analysis of Shape,

Journal of the Royal Statistical Society. Series B (Methodological) 53 (2)

(1991) 285–339.

[3] P. H. Schönemann, A generalized solution of the orthogonal procrustes

problem, Psychometrika 31 (1) (1966) 1–10.

[4] G. Wahba, Problem 65-1: A least squares estimate of satellite attitude,

SIAM Review 7 (3) (1965) 409.

[5] W. Kabsch, A solution for the best rotation to relate two sets of vectors,

Acta Crystallographica Section A 32 (5) (1976) 922–923.

[6] S. Umeyama, Least-squares estimation of transformation parameters be-

tween two point patterns, IEEE Transactions On Pattern Analysis and

Machine Intelligence 13 (4) (1991) 376–380.

[7] B. K. P. Horn, H. Hilden, S. Negahdaripour, Closed-form solution of

absolute orientation using orthonormal matrices, Journal of the Optical

Society America 5 (7) (1988) 1127–1135.

[8] K. Arun, T. S. Huang, S. D. Blostein, Least-Squares Fitting of Two

3-D Point Sets, IEEE Transactions on Pattern Analysis and Machine

Intelligence 9 (5) (1987) 698–700.

[9] K. Kanatani, Analysis of 3-D rotation fitting, IEEE Transactions on

Pattern Analysis and Machine Intelligence 16 (5) (1994) 543–549.

[10] D. Goryn, S. Hein, On the estimation of rigid body rotation from noisy

32



data, IEEE Transactions on Pattern Analysis and Machine Intelligence

17 (12) (1995) 1219–1220.

[11] R. Sibson, Studies in the robustness of multidimensional scaling: Per-

turbational analysis of classical scaling, Journal of the Royal Statistical

Society. Series B (Methodological) 41 (2) (1979) 217–229.

[12] R. Sibson, Studies in the robustness of multidimensional scaling: Pro-

crustes statistics, Journal of the Royal Statistical Society. Series B

(Methodological) 40 (2) (1978) 234–238.

[13] J. Fitzpatrick, J. West, The Distribution of Target Registration Error

in Rigid-body Point-based Registration, IEEE Transactions on Medical

Imaging 20 (9) (2001) 917–927.

[14] A. D. Wiles, A. Likholyot, D. D. Frantz, T. M. Peters, A Statisti-

cal Model for Point-Based Target Registration Error With Anisotropic

Fiducial Localizer Error, IEEE Transactions on Medical Imaging 27 (3)

(2008) 378–390.

[15] M. H. Moghari, P. Abolmaesumi, Distribution of target registration er-

ror for anisotropic and inhomogeneous fiducial localization error, IEEE

Transactions on Medical Imaging 28 (6) (2009) 799–813.

[16] L. Dorst, First order error propagation of the procrustes method for

3D attitude estimation, IEEE Transactions on Pattern Analysis and

Machine Intelligence 27 (2) (2005) 221–229.

[17] N. Ohta, K. Kanatani, Optimal estimation of three-dimensional rota-

tion and reliability evaluation, IEICE Transactions on Information and

Systems E81-D (11) (1998) 1247–1252.
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