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This paper proposes a novel integrated navigation filter based on a combined Long Baseline / Ul-
tra Short Baseline (LBL/USBL) acoustic positioning system with application to underwater vehicles.
With a tightly-coupled structure, the position, linear velocity, attitude, and rate gyro bias are esti-
mated, considering the full nonlinear system dynamics without resorting to any algebraic inversion or
linearization techniques. The resulting solution ensures convergence of the estimation error to zero for
all initial conditions, exponentially fast. Finally, it is shown, under simulation environment, that the
filter achieves very good performance in the presence of sensor noise.

Keywords: Navigation; marine robotics; long baseline; ultra-short baseline; observability analysis;
sensor fusion.

1. Introduction

Navigation systems are vital for the successful operation of autonomous vehicles. For aerial
and ground vehicles the much celebrated Global Positioning System (GPS) is the usual choice,
warranting aided navigation solutions such as the ones presented in Sukkarieh et al. (1999),
Vik and Fossen (2001), and Batista et al. (2009), see also the references therein. In underwater
scenarios other solutions must be devised due to the high attenuation that the electromagnetic
field suffers. In particular, Long Baseline (LBL) and Short Baseline (SBL) acoustic positioning
systems have been employed, see e.g. Whitcomb et al. (1999), Jouffroy and Opderbecke (2004),
Kinsey and Whitcomb (2003), Larsen (2000), Vaganay et al. (1998), Ricordel et al. (2001), and
references therein. Another commercially available solution is the GPS Intelligent Buoy (GIB)
system, see Thomas (1998). Further work on the GIB underwater positioning system can be found
in Alcocer et al. (2007). Position and linear velocity globally asymptotically stable (GAS) filters
based on an Ultra-Short Baseline (USBL) positioning system were presented by the authors in
Batista et al. (2010), while the Extended Kalman Filter (EKF) is the workhorse of the solution
presented in Morgado et al. (2006). For interesting surveys on underwater navigation, please see
Leonard et al. (1998) and Kinsey et al. (2006).
The GPS, LBL, SBL, USBL, or GIB positioning systems are essentially employed in the esti-

mation of linear motion quantities (position, linear velocity, acceleration) and other sensors are
usually considered for the problem of attitude estimation, which is still very active, as evidenced
by numerous recent publications, see e.g. Metni et al. (2006), Tayebi et al. (2007), Campolo
et al. (2006), Choukroun (2009). The Extended Kalman Filter (EKF) has been instrumental
to many stochastic solutions, see e.g. Sabatini (2006), while nonlinear alternatives, aiming for
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stability and convergence properties, in deterministic settings, have been proposed in Sanyal et
al. (2008), Vasconcelos et al. (2007), Rehbinder and Ghosh (2003), Mahony et al. (2008), Thienel
and Sanner (2003), Grip et al. (2012), and Martin and Salaun (2010), to mention just a few,
see Crassidis et al. (2007) for a thorough survey on attitude estimation. Recently, the authors
have proposed two alternative solutions in Batista et al. (2012a) and Batista et al. (2012b). In
the first, the Kalman filter is the workhorse, where no linearizations are carried out whatsoever,
resulting in a design which guarantees globally asymptotically stable (GAS) error dynamics. In
the later, a cascade observer is proposed that achieves globally exponentially stable (GES) error
dynamics and that requires less computational power than the Kalman filter, at the expense of
the filtering performance. Common to both solutions is the fact that the topological restrictions
of the Special Orthogonal Group SO(3) are not explicitly imposed, though they are verified
asymptotically in the absence of noise. In the presence of sensor noise, the distance of the esti-
mates provided by the cascade observer or the Kalman filter to SO(3) remains close to zero and
methods are proposed that give estimates of the attitude arbitrarily close to SO(3). In Batista
et al. (2012c) an alternative additional result gives attitude estimates explicitly on SO(3), at the
possible expense of the continuity of the solution during the initial transients, hence not violating
the topological limitations that are thoroughly discussed in Bhat and Bernstein (2000).
For underwater vehicles, the usual sensing devices employed for attitude determination are

two triads of orthogonally mounted accelerometers and magnetometers, coupled with a triad of
orthogonally mounted rate gyros, used for filtering purposes. Essentially, the magnetometers and
the accelerometers provide direct measurements, in body-fixed coordinates, of known vectors in
inertial coordinates. Hence, an attitude estimate can be readily obtained from the solution of the
Wahba’s problem. With additional angular velocity measurements, it is then possible to design
attitude filters, possibly including the estimation of rate gyro bias. The disadvantage of the use
of magnetometers is that they are subject to magnetic field anomalies, such as the ones that can
be encountered nearby objects with strong magnetic signatures, rendering the magnetic field
measurements position dependent and therefore useless. This can be particularly dangerous in
underwater intervention scenarios and as such alternatives need to be devised.
In previous work by the authors, see Batista et al. (2011), a novel complete navigation system

was proposed based on a combined Long Baseline / Ultra-short Baseline (LBL/USBL) acoustic
positing system. With a Long Baseline acoustic positioning system, an underwater vehicle has
access to the distances to a set of known transponders, which are usually fixed in the mission
scenario. Under some mild assumptions on the LBL configuration, it is possible to determine the
inertial position of the vehicle. With an Ultra-Short Baseline acoustic position system installed
on-board the vehicle, in the so-called inverted configuration, see Morgado et al. (2011), the
vehicle has access to the distance to a fixed transponder in the mission scenario and the time
(or range) differences of arrival between each pair of receivers of the USBL array. From those
measurements, and under some mild assumptions on the USBL array configuration, the position
of the external landmark relative to the vehicle, and expressed in body-fixed coordinates, is
readily available. Using spread spectrum techniques, see Morgado et al. (2010), it is possible to
combine LBL and USBL acoustic positioning devices, which gives, in essence, both the distance
between the vehicle and each of the external landmarks and the time (or range) differences of
arrival between pairs of receivers, for each landmark. In this way, with a LBL/USBL it is not only
possible to determine the inertial position of the vehicle but also the positions of the external
LBL landmarks with respect to the vehicle, expressed in body-fixed coordinates. In Batista et al.
(2011), and for attitude determination purposes, the later were employed to obtain body-fixed
vector measurements of known constant inertial vectors, hence allowing for attitude estimation,
while the inertial position was used to the estimation of the linear motion quantities.
The actual measurements of a LBL/USBL acoustic positioning system are acoustic signals,

which when processed yield ranges and range differences of arrival between the acoustic receivers
of the USBL. In Batista et al. (2011) these were used, resorting to inversion or algebraic opti-
mization techniques, to obtain the inertial position of the vehicle and the body-fixed positions
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of the landmarks. However, it would be beneficial if the actual range and range differences of
arrival could be directly employed in the estimation solution, avoiding intermediate nonlinear
computations that can distort noise and allowing for better tuning of the estimator parame-
ters. Additional benefits would be the possibility of inclusion of outlier detection algorithms
at the range or range-difference of arrival levels and better coping with loss of some of these
measurements.
The main contribution of this paper is the design of a tightly coupled integrated navigation

solution based on a LBL/USBL acoustic positioning system. In contrast with the solution pro-
posed in Batista et al. (2011), the range and range differences of arrival are used directly in
the observers feedback loop, hence avoiding intermediate computations, and no linearizations
are carried out whatsoever. First, an attitude observer, that includes the estimation of rate
gyro bias, is proposed, which is independent of the linear motion quantities. The proposed ob-
server achieves globally exponentially stable error dynamics and it is computationally efficient.
Topological limitations are avoided by relaxation of the constraints of the Special Orthogonal
Group, which are nevertheless verified asymptotically. Additional references are provided that
yield estimates on SO(3) based directly on the output of the proposed observer with meaningless
additional computational burden. Afterwards, a position and linear velocity observer is proposed
assuming exact angular data information, which also yields globally exponentially stable error
dynamics. Finally, the cascade structure is analyzed and it is shown that the error converges
exponentially fast to zero for all initial conditions. This is, to the best of the authors’ knowl-
edge, the first contribution on the design of tightly coupled integrated LBL/USBL navigation
system. Previous work by the authors can be found in Batista et al. (2013a) and Batista et al.
(2013b), where the solutions for the estimation of the linear and angular motion quantities were
presented independently. This paper improves those results by providing detailed proofs and by
considering the complete interconnected estimation structure, including its stability analysis.
The paper is organized as follows. The problem statement and the nominal system dynamics

are introduced in Section 2. The problem of attitude estimation is considered, independently, in
Section 3, while that of estimating the linear motion quantities is addressed in Section 4. The
complete integrated navigation system is proposed and analyzed in Section 5 and simulation
results are presented in Section 6. Finally, Section 7 summarizes the main conclusions and
results of the paper.

1.1 Notation

Throughout the paper the symbol 0n×m denotes an n×m matrix of zeros, In an identity matrix
with dimension n× n, and diag(A1, . . . ,An) a block diagonal matrix. When the dimensions are
omitted the matrices are assumed of appropriate dimensions. For x ∈ R

3 and y ∈ R
3, x × y

and x · y represent the cross and inner products, respectively. Finally, the Dirac delta function
is denoted by δ(t).

2. Problem statement

Consider an underwater vehicle moving in a scenario where there is a set of fixed landmarks
installed in a Long Baseline configuration and suppose that the vehicle is equipped with an
Ultra Short Baseline acoustic positioning system, which measures not only the distance between
the vehicle and each landmark but also the range differences of arrival between the acoustic
receivers of the USBL, from each landmark, as depicted in Fig. 1. For further details on the
USBL, please refer to Morgado et al. (2011), Morgado et al. (2010), and references therein.
Further assume that the vehicle is equipped with a Doppler Velocity Log, which measures the
velocity of the vehicle relative to the water, and a triad of orthogonally mounted rate gyros,
which measures the angular velocity up to some offset. Finally, it is considered that the vehicle
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landmarks

(a) AUV and LBL array (b) AUV with USBL ar-

ray

Figure 1. Mission Scenario

moves in the presence of a constant unknown ocean current. The problem considered in the
paper is the design of a highly integrated tightly coupled estimation solution for the inertial
position of the vehicle and its attitude, the ocean current velocity, and the rate gyro bias, with
convergence guarantees.

2.1 System dynamics

In order to set the problem framework, let {I} denote a local inertial reference coordinate frame
and {B} a coordinate frame attached to the vehicle, usually called the body-fixed reference
frame. The kinematics of the vehicle are described by

{

ṗ(t) = R(t)v(t)

Ṙ(t) = R(t)S (ω(t))
, (1)

where p(t) ∈ R
3 denotes the inertial position of the vehicle, v(t) ∈ R

3 is the velocity of the
vehicle relative to {I} and expressed in body-fixed coordinates, R(t) ∈ SO(3) is the rotation
matrix from {B} to {I}, ω(t) ∈ R

3 is the angular velocity of {B}, expressed in body-fixed
coordinates, and S (ω) is the skew-symmetric matrix such that S (ω)x is the cross product
ω × x.
The DVL provides the velocity of the vehicle relative to the water, expressed in body-fixed

coordinates, denoted by vr(t) ∈ R
3, such that

v(t) = vr(t) + vc(t), (2)

where vc(t) ∈ R
3 is the ocean current velocity expressed in body-fixed coordinates, while the

triad of rate gyros gives

ωm(t) = ω(t) + bω(t), (3)

where bω(t) ∈ R
3 denotes the rate gyro bias, which is assumed constant, i.e.,

ḃω(t) = 0. (4)

Let si ∈ R
3, i = 1, . . . , N , denote the inertial positions of the landmarks, and ai ∈ R

3, i =
1, . . . , M , the positions of the array of receivers of the USBL relative to the origin of {B},
expressed in body-fixed coordinates. Then, the range measurement between the i-th landmark
and the j-th acoustic receiver of the USBL is given by

ri,j(t) = ‖si − p(t)−R(t)aj‖ ∈ R. (5)

Define u(t) := R(t)vr(t) and let Ivc(t) := R(t)vc(t) denote the ocean current velocity ex-
pressed in inertial coordinates. Assuming it is constant, and combining (1)-(5), yields the non-

4



January 13, 2014 International Journal of Systems Science LBL-USBL

linear system











































ṗ(t) = Ivc(t) + u(t)

Ṙ(t) = R(t)S (ωm(t)− bω(t))
I v̇c(t) = 0(t)

ḃω(t) = 0
r1,1(t) = ‖s1 − p(t)−R(t)a1‖
...
rN,M(t) = ‖sN − p(t)−R(t)aM‖

. (6)

The problem considered in the paper is the design of an estimator for (6) with global convergence
guarantees.

2.2 Long Baseline / Ultra Short Baseline configuration

Long Baseline acoustic configurations are one of the earliest methods employed for underwater
navigation. These are characterized by the property that the distance between the transponders
is long or similar to the distance between the vehicle and the transponders. This is in contrast
with Ultra Short Baseline systems, where the that between the transponder and the vehicle is
much larger than the distance between receivers of the USBL system. In common is the fact
that, under standard assumptions, both the inertial position of the vehicle (for the LBL) and
the position of the landmarks with respect to the vehicle, expressed in body-fixed coordinates,
(for the USBL, in the so-called inverted configuration) are uniquely determined. This happens
with the following standard assumptions, which are considered in the remainder of the paper.

Assumption 1. The LBL acoustic positioning system includes at least 4 noncoplanar landmarks
and the distance between the landmarks of the LBL is much larger than the distance between
the receivers of the USBL acoustic positioning system.

Assumption 2. The USBL acoustic positioning system includes at least 4 noncoplanar receivers
and the distance between the landmarks of the LBL is much larger than the distance between
the receivers of the USBL acoustic positioning system.

Remark 1. When there exist at least 4 noncoplanar landmarks (receivers), it is always possible
to determine the inertial position of the vehicle (the position of the landmark with respect to the
vehicle, expressed in body-fixed coordinates) from the range measurements from each landmark
to the vehicle (from the range and range differences of arrival between the landmark and the
receivers of the array of the USBL). When there are fewer measurements that is not always
possible and certain observability conditions must be met, see e.g. Batista et al. (2011) for the
case of single range measurements. The scope of this paper is on the combination of the USBL
and the LBL measurements, taking full advantage of the large data set to improve performance
and robustness to temporary sensor failure, while still guaranteeing convergence of the error to
zero. As such, particular cases that do not satisfy Assumptions 1 and 2 are not treated, though
it is rather straightforward to extrapolate the results presented herein to other cases considering
the analysis that is detailed in Batista et al. (2011).

3. Attitude and rate gyro bias estimation

This section details the design of an attitude observer that uses directly the ranges and range dif-
ferences of arrival and that achieves globally exponentially stable error dynamics. The proposed
approach builds vaguely on two different methodologies previously proposed by the authors.
First, a sensor-based observer for the rate gyro bias is developed by appropriate state definition,
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which bears some resemblance with the design proposed in Batista et al. (2011), where the prob-
lems of source localization and navigation based on single range measurements were addressed.
Secondly, a cascade attitude observer is proposed assuming that the rate gyro bias is known.
Finally, the overall cascade observer is proposed and its stability is analyzed. The cascade design
is similar, at large, to that proposed in Batista et al. (2012b). However, the structures of each
individual observer are very different as they now rely on range and range differences of arrival
measurements instead of vector measurements.

3.1 Rate gyro bias observer

The dependence of the attitude observer (and, consequently, the bias observer) on the inertial
position of the vehicle is highly undesirable and in fact it should not be required. Indeed, in a
LBL/USBL framework, the positions of the LBL landmarks with respect to the vehicle, expressed
in body-fixed coordinates, are indirectly available (after some computations). If one takes the
difference between pairs of these vectors, one obtains a set of body-fixed vectors that correspond
to constant known inertial vectors, obtained from the differences of the inertial positions of
the LBL landmarks. As such, this information suffices to determine the attitude of the vehicle
without the need of the inertial position of the vehicle. In fact, this is the idea of the approach
proposed in Batista et al. (2011). This section aims at achieving the same result but using
directly the ranges and range differences of arrival, hence achieving a tightly-coupled structure.
Let Cs denote a set of 2-combinations of elements of the set {1, . . . , N}, e.g.

Cs = {(1, 2), (1, 3), . . . (1, N), (2, 3), . . . , (2, N), . . . , (N − 1, N)} ,

and let Ca denote a set of 2-combinations of elements of the set {1, . . . ,M}, e.g.

Ca = {(1, 2), (1, 3), . . . (1,M), (2, 3), . . . , (2,M), . . . , (M − 1,M)} .

Define

q (m,n, i, j, t) := −
1

2

[

r2m,i(t)− r2n,i(t)
]

+
1

2

[

r2m,j(t)− r2n,j(t)
]

(7)

for all (m,n, i, j) ∈ Cs × Ca. First, notice that q (m,n, i, j, t) is a direct function of the ranges
and range differences of arrival, as it is possible to rewrite it as

q (m,n, i, j, t) =
1

2
[rn,i(t) + rn,j(t)] [rn,i(t)− rn,j(t)]−

1

2
[rm,i(t) + rm,j(t)] [rm,i(t)− rm,j(t)] .

Next, substituting (5) in (7) gives

q (m,n, i, j, t) = (sm − sn)
T R(t) (ai − aj) . (8)

As it can be seen, the inertial position of the vehicle does not influence q (m,n, i, j, t). Yet, it
depends on the attitude of the vehicle and, considering all 2-combinations of LBL landmarks
and all 2-combinations of USBL receivers, it is related to the entire geometric structure of the
LBL/USBL positioning system. The idea of the bias observer is to use q (m,n, i, j, t), for all
(m,n, i, j) ∈ Cs × Ca, as system states, which are measured, in order to estimate the rate gyro
bias bω(t), which is unknown.
Before proceeding some additional definitions are required. In particular, define, for all (i, j) ∈
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Ca, additional unit vectors a
⊥1

i,j ∈ R
3 and a⊥2

i,j ∈ R
3 such that











ai−aj

‖ai−aj‖
× a⊥1

i,j = a⊥2

i,j

a⊥1

i,j × a⊥2

i,j = ai−aj

‖ai−aj‖

a⊥2

i,j × ai−aj

‖ai−aj‖
= a⊥1

i,j

. (9)

In short, the sets of vectors
{

ai−aj

‖ai−aj‖
,a⊥1

i,j ,a
⊥2

i,j

}

, for all (i, j) ∈ Ca, form orthonormal bases of

R3. Next, notice that under Assumption 2, it is always possible to express all additional vectors
a⊥1

i,j and a⊥2

i,j as a linear combination of vectors ak − al. Let these be defined as











a⊥1

i,j =
∑

(k,l)∈Ca

φ1 (i, j, k, l) (ak − al)

a⊥2

i,j =
∑

(k,l)∈Ca

φ2 (i, j, k, l) (ak − al)
(10)

for all (i, j) ∈ Ca, where φ1 (i, j, k, l) , φ2 (i, j, k, l) ∈ R are the linear combination coefficients.
The nominal system dynamics of the rate gyro bias observer are now derived. Taking the

derivative of (8), and using (6), gives

q̇ (m,n, i, j, t) = (sm − sn)
T R(t)S (ωm(t)) (ai − aj)− (sm − sn)

T R(t)S (bω(t)) (ai − aj) . (11)

Express ωm(t) as the linear combination

ωm(t) = ωm(t) ·
(ai − aj)

‖(ai − aj)‖

(ai − aj)

‖(ai − aj)‖
+ ωm(t) · a⊥1

i,j a
⊥1

i,j + ωm(t) · a⊥2

i,j a
⊥2

i,j . (12)

Using (12) first and then (9) it is possible to write

ωm(t)× (ai − aj) = ωm(t) · a⊥1

i,j

[

a⊥1

i,j × (ai − aj)
]

+ ωm(t) · a⊥2

i,j

[

a⊥2

i,j × (ai − aj)
]

= ωm(t) · a⊥2

i,j ‖ai − aj‖a
⊥1

i,j − ωm(t) · a⊥1

i,j ‖ai − aj‖a
⊥2

i,j . (13)

Substituting (10) in (13) gives

ωm(t)× (ai − aj) = ωm(t) · a⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) (ak − al)

−ωm(t) · a⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) (ak − al) . (14)

Substituting (14) in the first term of the right side of (11), and using (8), gives

(sm − sn)
T R(t)S (ωm(t)) (ai − aj) = ωm(t)·a⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)

−ωm(t)·a⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t) .

(15)
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Following the same circle of ideas it is possible to rewrite the second term of the right side of
(11) as

(sm − sn)
T R(t)S (bω(t)) (ai − aj) = bω(t)·a

⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)

−bω(t)·a
⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t) .

(16)

Substituting (15) and (16) in (11) gives the nonlinear dynamics

q̇ (m,n, i, j, t) = ωm(t)·a⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)

−ωm(t)·a⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)

+bω(t)·a
⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)

−bω(t)·a
⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t) . (17)

for all (m,n, i, j) ∈ Cs × Ca. Notice that (17) depends only on the USBL array geometry, the
rate gyro measurements ωm(t), the additional quantities q (m,n, i, j, t), the linear coefficients
φ1 (i, j, k, l) and φ2 (i, j, k, l), all available, and the unknown rate gyro bias bω(t).
Consider the rate gyro bias observer dynamics given by

˙̂q (m,n, i, j, t) = ωm(t)·a⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q̂ (m,n, k, l, t)

−ωm(t)·a⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q̂ (m,n, k, l, t)

+b̂ω(t)·a
⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)

−b̂ω(t)·a
⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)

+α (m,n, i, j) [q (m,n, i, j, t)− q̂ (m,n, i, j, t)] (18)

for all (m,n, i, j) ∈ Cs × Ca, and

˙̂
bω(t) =

∑

(m,n,i,j)∈Cs×Ca

β (m,n, i, j) ‖ai − aj‖ [q (m,n, i, j, t)− q̂ (m,n, i, j, t)]

[

a⊥1

i,j

∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)− a⊥2

i,j

∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)

]

, (19)

where α (m,n, i, j) > 0 and β (m,n, i, j) > 0, for all (m,n, i, j) ∈ Cs × Ca, are observer tuning
parameters.

8
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Let q̃ (m,n, i, j, t) := q (m,n, i, j, t) − q̂ (m,n, i, j, t), for all (m,n, i, j) ∈ Cs × Ca and b̃ω(t) :=

bω(t)− b̂ω(t) denote the observer error. Then, the observer error dynamics are given by

˙̃q (m,n, i, j, t) = ωm(t)·a⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q̃ (m,n, k, l, t)

−ωm(t)·a⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q̃ (m,n, k, l, t)

+b̃ω(t)·a
⊥1

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)

−b̃ω(t)·a
⊥2

i,j ‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)

−α (m,n, i, j) q̃ (m,n, i, j, t)

for all (m,n, i, j) ∈ Cs × Ca, and

˙̃
bω(t) = −

∑

(m,n,i,j)∈Cs×Ca

β (m,n, i, j) q̃ (m,n, i, j, t) ‖ai − aj‖

[

a⊥1

i,j

∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)− a⊥2

i,j

∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)

]

.

The following theorem establishes that the resulting rate gyro bias observer has globally ex-
ponentially stable error dynamics.

Theorem 3.1. Suppose that Assumptions 1 and 2 are satisfied and consider the rate gyro bias
observer given by (18) and (19), where α (m,n, i, j) > 0 and β (m,n, i, j) > 0 for all (m,n, i, j) ∈
Cs×Ca. Then, the origin of the error dynamics is a globally exponentially stable equilibrium point.

Proof. Let x̃1(t) :=
[

. . . q̃ (m,n, i, j, t) . . . b̃T
ω
(t)

]T
∈ R

N
2 CM

2 C+3, (m,n, i, j) ∈ Cs×Ca, denote the

estimator error, in compact form, where N
2 C = N (N − 1) /2 and M

2 C = M (M − 1) /2 denote
the number of 2-combinations of N and M elements, respectively. Define

V1 (x̃1(t)) :=
1

2

∑

(i,j,k,l)∈Cs×Ca

β (m,n, i, j) [q̃ (m,n, i, j, t)]2 +
1

2

∥

∥

∥
b̃ω(t)

∥

∥

∥

2

as a Lyapunov function candidate. Clearly,

γ1 ‖x̃1(t)‖
2 ≤ V1 (x̃1(t)) ≤ γ2 ‖x̃1(t)‖

2 , (20)

where

γ1 :=
1

2
min (1, β (m,n, i, j)) , (m,n, i, j) ∈ Cs × Ca

and

γ2 :=
1

2
max (1, β (m,n, i, j)) , (m,n, i, j) ∈ Cs × Ca.

9
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The time derivative of V1 (x̃1(t)) can be written, after some straightforward computations, as

V̇1 (x̃1(t)) = −x̃T
1 (t)C

T
1 C1x̃1(t) = −

∑

(i,j,k,l)∈Cs×Ca

α (m,n, i, j)β (m,n, i, j) [q̃ (m,n, i, j, t)]2 ,

where C1 =
[

diag
(

√

α (m, n, i, j)β (m, n, i, j)
)

0
]

. Hence,

V̇1 (x̃1(t)) ≤ 0. (21)

Now, notice that the error dynamics can be written as the linear time-varying (LTV) system

˙̃x1(t) =AAA1(t)x̃1(t), (22)

where

AAA1(t) =

[

AAA11(t)AAA12(t)
AAA21(t) 0

]

and each row of the matrix AAA12(t), corresponding to the state error q̃ (m,n, i, j, t), is given by

‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, t)
(

a⊥1

i,j

)T

−‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, t)
(

a⊥2

i,j

)T

.

The definitions of AAA11(t) and AAA21(t) are omitted as they are not required in the sequel. If in
addition to (20) and (21), the pair (AAA1(t),C1) is uniformly completely observable, then the ori-
gin of the linear time-varying system (22) is a globally exponentially stable equilibrium point,
see (Khalil 2001, Example 8.11). The remainder of the proof amounts to show that the pair
(AAA1(t),C1) is uniformly completely observable. For any piecewise continuous, bounded matrix
K1(t), of compatible dimensions, uniform complete observability of the pair (AAA1(t),C1) is equiv-
alent to uniform complete observability of the pair (A1(t),C1), with A1(t) :=AAA1(t)−K1(t)C1,
see (Ioannou and Sun 1995, Lemma 4.8.1). Now, notice that, attending to the particular forms of
C1 and AAA1(t), there exists a continuous bounded matrix K1(t), which depends explicitly on the
observer parameters, the rate gyro readings, ωm(t), the USBL structure, the linear coefficients
φ1 (i, j, k, l) and φ2 (i, j, k, l), and q (m,n, i, j, t), (m,n, i, j) ∈ Cs × Ca, such that

A1(t) =

[

0AAA12(t)
0 0

]

.

The expression of K1(t) is not presented here as it is evident from the context and it is not
required in the sequel. It remains to show that the pair (A1(t),C1) is uniformly completely
observable, i.e., that there exist positive constants ǫ1, ǫ2, and δ such that

ǫ1I � W (t, t+ δ) � ǫ2I (23)

for all t ≥ t0, where W1 (t0, tf ) is the observability Gramian associated with the pair (A1(t),C1)
on [t0, tf ]. Since the entries of both A1(t) and C1 are continuous and bounded, the right side of
(23) is evidently verified. Therefore, only the left side of (23) requires verification. Let

d =
[

. . . dm,n,i,j . . . d
T
2

]T
∈ R

N
2 CM

2 C+3, dm,n,i,j ∈ R, (m,n, i, j) ∈ Cs × Ca, d2 ∈ R
3

10
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be a unit vector and define

f (τ, t) :=
[

. . . fm,n,i,j (τ, t) . . .
]T

∈ R
N
2 CM

2 C , (m,n, i, j) ∈ Cs × Ca,

where

fm,n,i,j (τ, t) :=
√

α (m,n, i, j)β (m,n, i, j) (dm,n,i,j

+
τ
∫

t

‖ai − aj‖
∑

(k,l)∈Ca

φ2 (i, j, k, l) q (m,n, k, l, σ)a⊥1

i,j · d2dσ

−
τ
∫

t

‖ai − aj‖
∑

(k,l)∈Ca

φ1 (i, j, k, l) q (m,n, k, l, σ)a⊥2

i,j · d2dσ

)

,

(24)

τ ∈ [t, t+ δ], t ≥ t0. It is easy to show that

dT
W1 (t, t+ δ)d =

∫ t+δ

t

‖f (τ, t)‖2 dτ.

Reversing the train of thought used to obtain (15) but considering d2 instead of ωm(t), i.e.,
substituting (8) in (24), and then using (10) and (9), it is trivial to rewrite fm,n,i,j (τ, t) as

fm,n,i,j (τ, t) :=
√

α (m,n, i, j)β (m,n, i, j)
(

dm,n,i,j −
τ
∫

t

(sm − sn)
T R(σ)S (d2) (ai − aj) dσ

)

.

The derivative of fm,n,i,j (τ, t) with respect to τ is given by

∂

∂τ
fm,n,i,j (τ, t) := −

√

α (m,n, i, j)β (m,n, i, j) (sm − sn)
T R(t)S (d2) (ai − aj) .

Under Assumptions 1 and 2 it is trivial to conclude that there exists a positive constant µ such
that

∥

∥

∂
∂τ
f (t, t)

∥

∥ > µ ‖d2‖ for all non-null vectors d2 and t ≥ t0. Fix δ > 0. Resorting to (Batista
et al. 2011, Proposition 2), it follows that there exists ν1 > 0 such that

∥

∥

∥

∥

∥

∥

t+δ
∫

t

∂

∂τ
f (σ, t) dσ

∥

∥

∥

∥

∥

∥

> ν1 ‖d2‖

for all non-null vectors d2 and t ≥ t0. Fix ǫ > 0 sufficiently small such that

|dm,n,i,j | < ǫ (25)

for all (m,n, i, j) ∈ Cs × Ca and

ǫ <
1

2
ν1 ‖d2‖ .

Notice that this is always possible as the smallest ǫ is the largest ‖d2‖ is, as d is a unit vector.
Then, it is clear that there exists ν2 such that ‖f (t+ δ, t)‖ ≥ ν2 for all t ≥ t0 and all unit vectors
d that satisfy (25). Resorting to (Batista et al. 2011, Proposition 2) again, it follows that there

11



January 13, 2014 International Journal of Systems Science LBL-USBL

exists ν3 > 0 such that, for all unit vectors d that satisfy (25), (23) holds for all t ≥ t0, with
ǫ1 = ν3. Suppose now that there exists dm,n,i,j such that

|dm,n,i,j | ≥ ǫ. (26)

In that case, it is trivial to see that ‖f (t, t)‖ ≥ ǫ for all t ≥ t0. Hence, resorting to (Batista et
al. 2011, Proposition 2) again, it follows that there exists ν4 > 0 such that, for all unit vectors d
that satisfy (26) for some (m,n, i, j) ∈ Cs × Ca, (23) holds for all t ≥ t0, with ǫ1 = ν4. But then
it follows that (23) holds for all t ≥ t0 and unit vectors d, with ǫ1 := min (ν3, ν4), which means
that the pair (A1(t),C1) is uniformly completely observable, hence concluding the proof.

3.2 Attitude observer

Let

x2(t) :=
[

zT1 (t) z
T
2 (t) z

T
3 (t)

]T
∈ R

9

be a column representation of R(t), where

R(t) =





zT1 (t)
zT2 (t)
zT3 (t)



 ,

with zi(t) ∈ R
3, i = 1, 2, 3. Then, it is easy to show that ẋ2(t) = −S3 (ωm(t)− bω(t))x2(t),

where S3 (x) := diag (S (x) ,S (x) ,S (x)) ∈ R
9×9.

From (8) it is possible to write q (m,n, i, j, t) as a linear combination of elements of x2(t), i.e.,
q (m,n, i, j, t) = cm,n,i,j · x2(t), where

cm,n,i,j :=





(ai − aj) 0 0
0 (ai − aj) 0
0 0 (ai − aj)



 (sm − sn) ∈ R
9.

Let q(t) :=
[

. . . q (m,n, i, j, t) . . .
]T

∈ R
M
2 CM

2 C , (m,n, i, j) ∈ Cs × Ca. Then, it is possible to

write q(t) = C2x2(t), where C2 ∈ R
N
2 CM

2 C×9 is omitted as it is evident from the context. Under
Assumptions 1 and 2 is is trivial to show that C2 has full rank.
Consider the attitude observer given by

˙̂x2(t) = −S3 (ωm(t)− bω(t)) x̂2(t) +CT
2 Q

−1 [q(t)−C2x̂2(t)] , (27)

where Q = QT ∈ R
N
2 CM

2 C×N
2 CM

2 C is a positive definite matrix, and define the error variable
x̃2(t) = x2(t)− x̂2(t). Then, the observer error dynamics are given by

˙̃x2(t) =AAA2(t)x̃2(t), (28)

where AAA2(t) := −
[

S3 (ωm(t)− bω(t)) +CT
2 Q

−1C2

]

.
The following theorem is the main result of this section.

Theorem 3.2. Suppose that the rate gyro bias is known and consider the attitude observer (27),
where Q ≻ 0 is a design parameter. Then, under Assumptions 1 and 2, the origin of the observer
error dynamics (28) is a globally exponentially stable equilibrium point.

12
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Proof. The proof follows by considering the Lyapunov candidate function

V2 (x̃2(t)) :=
1

2
‖x̃2(t)‖

2 .

It is similar to that of (Batista et al. 2012b, Theorem 2) and therefore it is omitted. The only
difference is, in fact, in the definition of C2, which is nevertheless full rank, the only requirement
for the proof.

3.3 Cascade observer

This section presents the overall cascade observer and its stability analysis. In Section 3.1 an
observer was derived, based directly on the ranges and range differences of arrival, that provides
an estimate of the bias, with GES dynamics. The idea of the cascade observer is to feed the
attitude observer proposed in Section 3.2 with the bias estimate provided by the bias observer
proposed in Section 3.1. The bias observer remains the same, given by (18) and (19), whereas
the attitude observer is now written as

˙̂x2(t) = −S3

(

ωm(t)− b̂ω(t)
)

x̂2(t) +CT
2 Q

−1 [q(t)−C2x̂2(t)] . (29)

The error dynamics corresponding to the bias observer are the same and therefore Theorem
3.1 applies. Evidently, the use of an estimate of the bias instead of the bias itself in the attitude
observer introduces an error, and the stability of the system must be further examined. In this
situation, the error dynamics of the cascade observer can be written as

{

˙̃x1(t) =AAA1(t)x̃1(t)

˙̃x2(t) =
[

AAA2(t)− S3

(

b̃ω(t)
)]

x̃2(t) + u2(t),
(30)

where u2(t) := S3

(

b̃ω(t)
)

x2(t).

The following theorem is the main result of the paper.

Theorem 3.3. Consider the cascade attitude observer given by (18), (19), and (29). Then, in
the conditions of Theorem 3.1 and Theorem 3.2, the origin of the observer error dynamics (30)
is a globally exponentially stable equilibrium point.

Proof. The proof follows exactly the same steps of (Batista et al. 2012b, Theorem 3) and therefore
it is omitted, even though the specific system dynamics are different. It is omitted due to space
limitations.

3.4 Further discussion

3.4.1 Estimates on SO(3)

The attitude solution previously proposed does not yield estimates on SO(3) as the Special
Orthogonal Group restrictions have been relaxed, in a similar fashion to the approaches proposed
in Batista et al. (2012a) or Batista et al. (2012b). In the absence of noise, the estimates converge
asymptotically to elements of SO(3), while in the presence of noise their distance to SO(3)
remains close to zero. Additional refinements are possible such as those discussed in (Batista et
al. 2012b, Section 3.4). This is not the focus of the paper and as such it is omitted. Furthermore,
explicit estimates on SO(3) could be obtained, based in the attitude observer here proposed,
resorting to (Batista et al. 2012c, Theorem 7).

13
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3.4.2 Computational complexity

The design herein proposed consists in a cascade observer where the number of states of the
second observer is 9 and the number of states of the first observer is N (N − 1)M (M − 1) /4 +
3, with a total number of states of N (N − 1)M (M − 1) /4 + 12. For a typical LBL/USBL
configuration with 4 landmarks and 4 acoustic receivers in the USBL array, that corresponds
to 48 states. While this number may seem relatively high, it is very important to stress that
the resulting observer is computationally efficient and of simple implementation. Indeed, all the
observer coefficients are computed offline and no differential equations are required to compute
the observer gains.

4. Position and linear velocity estimation

This section addresses the design of an estimation solution for the inertial position and inertial
ocean current velocity based on the LBL/USBL positioning system assuming exact angular
information, i.e., assuming that both the attitude and the angular velocity are available. First,
state and output augmentation are performed, in Section 4.1, to attain a nominal system that,
although nonlinear, can be regarded as linear for observability analysis and observer design
purposes. Afterwards, the observability of that system is analyzed in Section 4.2. Finally, in
Section 4.3, a Kalman filter for the resulting system, with globally exponentially stable error
dynamics, is briefly discussed.

4.1 State and output augmentation

In the recent past, a novel observer analysis and design technique has been proposed by the
authors for navigation systems based on nonlinear range measurements, which consists basically
in: i) include the range measurements in the system state; ii) identify the nonlinear terms of the
dynamics of the range measurements as additional state variables; iii) define augmented outputs,
when appropriate, to capture the structure of arrays of landmarks or receivers; and iv) work with
the resulting nonlinear system, which can actually be regarded as linear time-varying, for ob-
servability analysis and observer design purposes. This approach has been successfully employed
considering single measurements, see Batista et al. (2011), LBL configurations, see Batista et
al. (2010, 2013), and USBL configurations, see Morgado et al. (2011), where different auxiliary
sensors were considered, for example DVLs or triads of accelerometers. The design presented
herein consists in the integration of both LBL/USBL measurements with this approach.
The time derivative of the range measurements (5) is given by

ṙi,j(t) =
u(t) +R(t)S (ω(t)) aj

ri,j(t)
·p(t)+

−si +R(t)aj
ri,j(t)

· Ivc(t)+
1

ri,j(t)
p(t) · Ivc(t)+uri,j (t), (31)

where

uri,j (t) :=
uT (t)R(t)aj − uT (t)si − sTi R(t)S (ω(t)) aj

ri,j(t)
.

Identifying the nonlinear term p(t) · Ivc(t) in (31) with a new variable and taking its time
derivative gives

d

dt

[

p(t) · Ivc(t)
]

= u(t) · Ivc(t) +
∥

∥

Ivc(t)
∥

∥

2
. (32)

Finally, identifying the nonlinear term
∥

∥

Ivc(t)
∥

∥

2
in (32) and taking its time derivative gives

14
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d
dt

[

∥

∥

Ivc(t)
∥

∥

2
]

= 0.

For the sake of clarity of presentation, let x1,1(t) := r1,1(t), . . . , xN,M(t) := rN,M(t), x3(t) :=

p(t) · Ivc(t), and x4(t) :=
∥

∥

Ivc(t)
∥

∥

2
, and define the augmented state vector as

x3(t) :=
[

pT (t) IvT
c (t) x1,1(t) x1,2(t) . . . xN,M(t) x3(t) x4(t)

]T
∈ R

3+3+NM+1+1.

Then, the system dynamics can be written as

ẋ3(t) := A3(t)x3(t) +B3ua(t),

where A3(t) ∈ R
(6+NM+2)×(6+NM+2),

A3(t) =

























0 I 0 0 0
0 0 0 0 0

uT (t)−aT
1 S(ω(t))RT (t)
r1,1(t)

−sT1 +aT
1 R

T (t)
r1,1(t)

0 1
r1,1(t)

0
...

...
...

...
...

uT (t)−aT
MS(ω(t))RT (t)
rN,M (t)

−sTN+aT
MRT (t)

rN,M (t) 0 1
rN,M (t) 0

0 uT (t) 0 0 1
0 0 0 0 0

























,

B3 =













I 0
0 0
0 I
0 0
0 0













∈ R
(6+NM+2)×(3+NM),

and

ua(t) :=
[

uT (t) ur1,1(t) . . . urN,M
(t)

]T
∈ R

3+NM .

In order to define the output, notice first that the states x1,1(t), . . . , xN,M(t) are measured.
Note, however, that the range differences of arrival (RDOA) between pairs of receivers to the
same landmark are measured more accurately with the USBL when compared to the distance
between the landmark and any given receiver of the USBL. Selecting a reference sensor on the
array, for instance receiver 1 for now, all the other ranges are easily reconstructed from the range
measured at receiver 1 and the RDOA between receiver 1 and the other receivers. Hence, the
first set of measurements that is considered is

y1(t) =





























r1,1(t)
r1,1(t)− r1,2(t)

...
r1,1(t)− r1,M (t)

...
rN,1(t)

...
rN,1(t)− rN,M(t)





























∈ R
NM . (33)

However, if that was the only output to be considered, the LBL/USBL structure would not be

15



January 13, 2014 International Journal of Systems Science LBL-USBL

encoded in the output. In order to capture the LBL/USBL structure, consider first the square
of the range measurements, which is given by

r2i,j(t) = ‖p(t)‖2 + ‖si‖
2 + ‖aj‖

2 − 2 [si −R(t)aj ] · p(t)− 2sTi R(t)aj

for all i = 1, . . . , N , j = 1, . . . , M . Then,

r2m,j(t)− r2n,j(t) = ‖sm‖2 − ‖sn‖
2 − 2 (sm − sn) · [p(t) +R(t)aj ] (34)

and

r2i,m(t)− r2i,n(t) = ‖am‖2 − ‖an‖
2 − 2 [R(t) (am − an)] · [si − p(t)] . (35)

Breaking the differences of the squares, using a2 − b2 = (a+ b)(a− b), it follows from (34) and
(35) that

2
(sm − sn)

T

rm,j(t) + rn,j(t)
p(t) + xm,j(t)− xn,j(t) =

‖sm‖2 − ‖sn‖
2 − 2 (sm − sn)

T R(t)aj
rm,j(t) + rn,j(t)

(36)

and

−2
(am − an)

T RT (t)

ri,m(t) + ri,n(t)
p(t) + xi,m(t)− xi,n(t) =

‖am‖2 − ‖an‖
2 − 2 (am − an)

T RT (t)si
ri,m(t) + ri,n(t)

, (37)

which capture the LBL/USBL structure. The augmented output can then be written as

y3(t) = C3(t)x3(t),

with C3(t) ∈ R
(NM+M N

2 C+N M
2 C)×(3+3+NM+1+1),

C3(t) =





0 0 C13 0 0
C21(t) 0 C23 0 0
C31(t) 0 C33 0 0



 ,

where C13 := diag
(

C0
13, . . . ,C

0
13

)

∈ R
NM×NM, with

C0
13 :=

















1 0 . . . . . . 0

1 −1
. . .

...

1 0 −1
. . .

...
...

...
. . .

. . . 0
1 0 . . . 0 −1

















∈ R
M×M ,

C21(t) :=







C1
21(t)
...

CM
21(t)






∈ R

(M N
2 C)×3,

16



January 13, 2014 International Journal of Systems Science LBL-USBL

Ci
21(t) := 2















(s1−s2)
T

r1,i(t)+r2,i(t)
(s1−s3)

T

r1,i(t)+r3,i(t)
...

(sN−1−sN )T

rN−1,i(t)+rN,i(t)















∈ R
N
2 C×3,

C31(t) :=







C1
31(t)
...

CN
31(t)






∈ R

(N M
2 C)×3,

Ci
31(t) := −2















(a1−a2)
TRT (t)

ri,1(t)+ri,2(t)
(a1−a3)

TRT (t)
ri,1(t)+ri,3(t)

...
(aM−1−aM )TRT (t)
ri,M−1(t)+ri,M (t)















∈ R
M
2 C×3,

where N
2 C = N (N − 1) /2 and M

2 C = M (M − 1) /2 correspond to the numbers of 2-
combinations ofN andM elements, respectively, andC23 andC33 encode the differences of range
measurements in (36) and (37), respectively, which are omitted as they are evident from the con-
text. In short, C31 encodes (33), matrices C21(t) and C23 encode (36) for all j ∈ {1, . . . , M} and
m,n ∈ {1, . . . , N}, with n 6= m, and matrices C31(t) and C33 encode (37) for all i ∈ {1, . . . , N}
and m,n ∈ {1, . . . , M}, with n 6= m.
Considering the augmented system state and outputs, the final augmented system dynamics

can be written as

{

ẋ3(t) = A3(t)x3(t) +B3ua(t)
y3(t) = C3(t)x3(t)

. (38)

4.2 Observability analysis

The observability of the nonlinear system (38) and its relation with the original nonlinear system



























ṗ(t) = Ivc(t) + u(t)
I v̇c(t) = 0(t)
r1,1(t) = ‖s1 − p(t)−R(t)a1‖
...
rN,M(t) = ‖sN − p(t)−R(t)aM‖

. (39)

is analyzed in this section.
Even though the system dynamics (38) resemble a linear time-varying system, it is, in fact,

nonlinear, as the system matrices depend both on the output and the input. However, this is
not a problem for observability and observer design purposes and the results for linear time-
varying systems still apply, see (Batista et al. 2011, Lemma 1). Before presenting the main
results, it is therefore convenient to compute the transition matrix associated with A3(t) and the
observability Gramian associated with the pair (A3(t),C3(t)). Long, tedious but straightforward
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computations allow to show that the transition matrix associated with A3(t) is given by

φ (t, t0) =





φ
A
(t, t0) 0 0

φ
BA

(t, t0) I φ
BC

(t, t0)
φ

CA
(t, t0) 0 φ

CC
(t, t0)



 ,

where

φ
A
(t, t0) =

[

I (t− t0) I
0 I

]

∈ R
6×6,

φ
BA

(t, t0) =
[

φ
BA1

(t, t0) φBA2
(t, t0)

]

∈ R
NM×6,

φ
BA1

(t, t0) =







φ
BA1(1,1)

(t, t0)
...

φ
BA1(N,M)

(t, t0)






∈ R

NM×3,

φ
BA1(i,j)

(t, t0) =

∫ t

t0

uT (σ)− aTj S (ω (σ))RT (σ)

ri,j (σ)
dσ,

φ
BA2

(t, t0) =







φ
BA2(1,1)

(t, t0)
...

φ
BA2(N,M)

(t, t0)






∈ R

NM×3,

φ
BA2(i,j)

(t, t0) =

∫ t

t0

−sTi + aTj R
T (σ1)

ri,j (σ)
dσ1

+

∫ t

t0

(σ − t0) [u (σ1) +R (σ1)S (ω (σ1))aj ]
T +

∫ σ1

t0
uT (σ2) dσ2

ri,j (σ)
dσ1,

φ
BC

(t, t0) =









∫ t

t0
1

r1,1(σ)
dσ

∫ t

t0

σ−t0
r1,1(σ)

dσ
...

...
∫ t

t0
1

rN,M (σ)dσ
∫ t

t0

σ−t0
rN,M (σ)dσ









∈ R
NM×2,

φ
CA

(t, t0) =

[

0
∫ t

t0
uT (σ) dσ

0 0

]

∈ R
2×6,

and

φ
CC

(t, t0) =

[

1 t− t0
0 1

]

∈ R
2×2,

18
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It is, however, straightforward to verify that φ (t0, t0) = I and d
dt
φ (t, t0) = A3(t)φ (t, t0). The

observability Gramian associated with the pair (A3(t),C3) is simply given by

W3 (t0, tf ) =

∫ tf

t0

φT (t, t0)C
T
3 (t)C3(t)φ (t, t0) dt. (40)

The following theorem addresses the observability of (38).

Theorem 4.1. Under Assumptions 1 or 2 (or both), the nonlinear system (38) is observable
on I := [t0, tf ], t0 < tf , in the sense that, given the system input {ua(t), t ∈ I} and the system
output {y3(t), t ∈ I}, the initial condition x3 (t0) is uniquely determined.

Proof. The proof follows by contradiction. Suppose that the nonlinear system (38) is not observ-
able in I. Then, the observability Gramian W (t0, tf ) is not invertible, see (Batista et al. 2011,
Lemma 1), which means that there exists a unit vector

d =
[

dT
1 dT

2 dT
3 dT4 d5

]T
∈ R

3+3+NM+1+1,

with d1 ∈ R
3, d2 ∈ R

3, d3 ∈ R
NM , and d4, d5 ∈ R, such that

dT
W (t0, t)d = 0 (41)

for all t ∈ I. Substituting (40) in (41) yields

∫ t

t0

‖C3 (τ)φ (τ, t0)d‖
2 = 0 (42)

for all t ∈ I. Taking the time derivative of (42) gives ‖C3 (t)φ (t, t0)d‖
2 = 0 for all t ∈ I, which

in turn implies that

C3 (t)φ (t, t0)d = 0 (43)

for all t ∈ I. With t = t0 in (43) gives







C13d3 = 0
C21 (t0)d1 +C23d3 = 0
C31 (t0)d1 +C33d3 = 0

. (44)

Notice first that C13 has full rank, which means that d3 = 0. On the other hand, under Assump-
tion 1 matrix C21 (t0) has full rank, while under Assumption 2 matrix C31 (t0) has full rank.
Hence, under the conditions of the theorem, is has been shown so far that the only solution of
(44) is d1 = 0 and d3 = 0. Taking in the time derivative of (43) gives d

dt
C3 (t)φ (t, t0)d = 0 for

all t ∈ I. In particular, for t = t0, and considering d1 = 0 and d3 = 0, it is possible to write
that

[−si +R (t0)aj ]
T d2 + d4 = 0 (45)

for all i ∈ {1, . . . , N} and j ∈ {1, . . . , M}. Now, under Assumption 1 or 2 (or both), it is
straightforward to show that the only solution of (45) is d2 = 0 and d4 = 0. Finally, taking the
second time derivative of (43), for t = t0, and considering d1 = d2 = 0, d3 = 0, and d4 = 0,
it is straightforward to show that it must also be d5 = 0. But this contradicts the hypothesis
of existence of a unit vector d such that (41) holds. Hence, by contradicton, the observability
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Gramian W (t0, tf ) is invertible and hence the nonlinear system (38) is observable in the sense
established in the theorem, see (Batista et al. 2011, Lemma 1).

The fact that (38) is observable does not immediately entail that the nonlinear system (39)
is observable nor that an observer for (38) is also an observer for (39), as there is nothing in
the system dynamics (38) imposing the nonlinear algebraic relations that were at its own origin.
Moreover, the range measurements as a nonlinear function of the state were also discarded.
However, all that turns out to be true, as shown in the following theorem.

Theorem 4.2. Under Assumptions 1 or 2 (or both), the nonlinear system (39) is observable
on I := [t0, tf ], t0 < tf , in the sense that, given the system input u(t) and the system output
r1,1(t), . . . , rN,M(t) for t ∈ I, the initial condition p (t0) and Ivc (t0) is uniquely determined.
Moreover, the initial conditions of the augmented nonlinear system (38) match those of (39)
and hence an observer with globally asymptotically stable error dynamics for (38) is also an
observer for (39) with globally asymptotically stable error dynamics.

Proof. Let

x3 (t0) :=



























p′ (t0)
Iv′

c (t0)
x1,1 (t0)
x1,2 (t0)

...
xN,M (t0)
x3 (t0)
x4 (t0)



























∈ R
3+3+NM+1+1

be the initial condition of (38), which, from Theorem 4.1, is uniquely determined, and let
p (t0) and Ivc (t0) be the initial condition of (39). First, notice that it must be x1,1 (t0) =
r1,1 (t0) , . . . , xN,M (t0) = rN,M (t0) as these states are actually measured. Moreover, evaluating
the outputs of the nonlinear system (38) that capture the LBL and USBL structure, given by
(36) and (37), at t = t0, gives

2
(sm − sn)

T

rm,j (t0) + rn,j (t0)
p′ (t0) + xm,j (t0)− xn,j (t0) =

‖sm‖2 − ‖sn‖
2 − 2 (sm − sn)

T R (t0)aj
rm,j (t0) + rn,j (t0)

and

−2
(am − an)

T RT (t0)

ri,m (t0) + ri,n (t0)
p′ (t0) + xi,m (t0)− xi,n (t0) =

‖am‖2 − ‖an‖
2 − 2 (am − an)

T RT (t0) si
ri,m (t0) + ri,n (t0)

or, equivalently,

2 (sm − sn)
T p′ (t0) + r2m,j (t0)− r2n,j (t0) = ‖sm‖2 − ‖sn‖

2 − 2 (sm − sn)
T R (t0)aj (46)

and

−2 (am − an)
T RT (t0)p

′ (t0) + r2i,m (t0)− r2i,n (t0) = ‖am‖2 − ‖an‖
2 − 2 (am − an)

T RT (t0) si.
(47)

Substituting (34) and (35) in (46) and (47), respectively, gives

2 (sm − sn)
T
[

p′ (t0)− p (t0)
]

= 0 (48)
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for all m,n ∈ {1, . . . , N}, n 6= n, and

2 (am − an)
T RT (t0)

[

p′ (t0)− p (t0)
]

= 0 (49)

for all m,n ∈ {1, . . . , M}, n 6= n. Now, it is straightforward to show that, under Assumption 1
the only solution of (48) is p′ (t0) = p (t0), while under Assumption 2 the only solution of (49)
is also p′ (t0) = p (t0). Thus, so far it has been shown that



















p′ (t0) = p (t0)
x1,1 (t0) = r1,1 (t0)
...
xN,M (t0) = rN,M (t0)

. (50)

As a function of the initial state of (39), the square of the range readings can actually be written
as

r2
i,j
(t) =

∥

∥

∥

∫ t

t0
u (τ) dτ

∥

∥

∥

2
+ 2 [u (t) +R(t)aj ] · p (t0)

+2 (t− t0)
[

−si +R(t)aj +
∫ t

t0
u (σ) dσ

]

· Ivc (t0)

+2 (t− t0)p (t0) ·
Ivc (t0) + (t− t0)

2
∥

∥

Ivc (t0)
∥

∥

2

+r2i,j (t0)− 2pT (t0)R (t0)aj + 2sTi R (t0)aj

−2sTi R(t)aj − 2 [si −R(t)aj ] ·
∫ t

t0
u (τ) dτ, (51)

while as a function of the initial states of (38) it is possible to write

r2
i,j
(t) =

∥

∥

∥

∫ t

t0
u (τ) dτ

∥

∥

∥

2
+ 2 [u (t) +R(t)aj ] · p

′ (t0)

+2 (t− t0)
[

−si +R(t)aj +
∫ t

t0
u (σ) dσ

]

· Iv′
c (t0)

+2 (t− t0)x3 (t0) + (t− t0)
2 x4 (t0)

+x2i,j (t0)− 2xT
1 (t0)R (t0) aj + 2sTi R (t0)aj

−2sTi R(t)aj − 2 [si −R(t)aj ] ·
∫ t

t0
u (τ) dτ. (52)

Now, comparing the differences of the squares of the ranges r2
m,j

(t)− r2
n,j
(t) and r2

i,m
(t)− r2

i,n
(t),

using (50), (51), and (52), it is possible to write

{

[si − sj ]
T
[

Iv′
c (t0)−

Ivc (t0)
]

= 0

[am − an]
T RT (t)

[

Iv′
c (t0)−

Ivc (t0)
]

= 0
(53)

for all i, j ∈ {1, . . . , N}, i 6= j, and all m,n ∈ {1, . . . , M}, m 6= n. Under Assumption 1,
Assumption 2, or both, the only solution of (53) is

Iv′
c (t0) =

Ivc (t0) . (54)

Now, comparing (51) with (52) and using (50) and (54) it follows that

2 (t− t0)
[

x3 (t0)− p (t0) ·
Ivc (t0)

]

+ (t− t0)
2
[

x4 (t0)−
∥

∥

Ivc (t0)
∥

∥

2
]

= 0. (55)
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As the functions 2 (t− t0) and (t− t0)
2 are linearly independent, it follows from (55) that

{

x3 (t0) = p (t0) ·
Ivc (t0)

x4 (t0) =
∥

∥

Ivc (t0)
∥

∥

2 .

But this concludes the proof: i) it has been shown that the initial conditions of (39) match those
of (38), which are uniquely determined as shown in Theorem 4.1, hence concluding the proof
of the first part of the theorem; and ii) the second part of the theorem follows from the first:
the estimation error of an observer for (38) with globally asymptotically stable error dynamics
converges to zero, which means that its estimates asymptotically approach the true state. But
as the true state of (38) matches that of the nonlinear system (39), that means that an observer
for (38) is also an observer for the original nonlinear system, with globally asymptotically stable
error dynamics.

4.3 Kalman filter

As a result of Theorem 4.2, a filtering solution for the nonlinear system (39) is simply obtained
with the design of a Kalman filter for the augmented system (38), which can be regarded as
LTV for this purpose as the output and input are available. The design is trivial and therefore
it is omitted. Notice that the proposed solution is not an EKF, which would not offer global
convergence guarantees, and no approximate linearizations are carried out.
In order to guarantee that the Kalman filter has globally exponentially stable error dynamics,

stronger forms of observability are required, in particular uniform complete observability, see
Sastry and Desoer (1982) and Jazwinski (1970). The pair (A3(t),C3(t)) can be easily shown
to be uniformly completely observable following the same reasoning as in Theorem 4.1 but
considering uniform bounds. The proof is omitted due to the lack of space.

5. Integrated LBL/USBL navigation system

In Section 3 a cascade observer was proposed for the attitude based on the measurements pro-
vided by the rate gyros and the LBL/USBL system, which gives in addition estimates of the rate
gyro bias. The error dynamics were shown to be globally exponentially stable and the estima-
tion system does not depend on any other quantities. In Section 4 the problem of estimating the
linear motion quantities (inertial position and ocean current velocity) was addressed assuming
perfect angular information, i.e., assuming that the attitude and the angular velocity are known.
In practice, these quantities are provided by the estimator developed in Section 3 and as such the
overall LBL/USBL navigation system consists in a cascade system, where the attitude observer
feeds the position and velocity filter, as depicted in Fig. 1. In short, the rate gyro bias estimate is
employed to obtain an estimate of the angular velocity, which is fed, together with the estimate
of the attitude, to the estimator for linear motion quantities.
The fact that the exact values of R(t) and ω(t) are not available for the Kalman filter proposed

in Section 4.3 induces errors in the system matrices A3(t) and C3(t), as well as in the system
input ua(t), and only estimates of these quantities are available, i.e., the Kalman filter for the
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Figure 1. Integrated LBL/USBL navigation system

estimation of linear motion quantities has available

Â3(t) =



























0 I 0 0 0
0 0 0 0 0

ûT (t)−aT
1 S(ω̂(t))R̂

T
(t)

r1,1(t)
−sT1 +aT

1 R̂
T
(t)

r1,1(t)
0 1

r1,1(t)
0

...
...

...
...

...
ûT (t)−aT

MS(ω̂(t))R̂
T
(t)

rN,M (t)
−sTN+aT

MR̂
T
(t)

rN,M (t) 0 1
rN,M (t)0

0 ûT (t) 0 0 1
0 0 0 0 0



























,

instead of A3(t),

Ĉ3(t) =





0 0 C13 0 0
C21(t) 0 C23 0 0

Ĉ31(t) 0 C33 0 0





instead of C3(t), with

Ĉ31(t) :=







Ĉ1
31(t)
...

ĈN
31(t)






∈ R

(N M
2 C)×3,

Ĉi
31(t) := −2

















(a1−a2)
T R̂

T
(t)

ri,1(t)+ri,2(t)

(a1−a3)
T R̂

T
(t)

ri,1(t)+ri,3(t)
...

(aM−1−aM )T R̂
T
(t)

ri,M−1(t)+ri,M (t)

















∈ R
M
2 C×3,
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and

ûa(t) :=











û(t)
ûr1,1(t)

...
ûrN,M

(t)











instead of ua(t), with û(t) := R̂(t)vr(t) and

ûri,j (t) :=
ûT (t)R̂(t)aj − ûT (t)si − sTi R̂(t)S (ω̂(t)) aj

ri,j(t)
.

Moreover, the augmented measurements are also estimated, and

ŷ3(t) =























































y1(t)
‖s1‖

2−‖s2‖
2−2(s1−s2)

T R̂(t)a1

r1,1(t)+r2,1(t)
‖s1‖

2−‖s3‖
2−2(s1−s3)

T R̂(t)a1

r1,1(t)+r3,1(t)
...

‖sN−2‖
2−‖sN‖2−2(sN−2−sN )T R̂(t)aM

rN−2,M (t)+rN,M (t)
‖sN−1‖

2−‖sN‖2−2(sN−1−sN )T R̂(t)aM

rN−1,M (t)+rN,M (t)

‖a1‖
2−‖a2‖

2−2(a1−a2)
T R̂

T
(t)s1

r1,1(t)+r1,2(t)

‖a1‖
2−‖a3‖

2−2(a1−a3)
T R̂

T
(t)s1

r1,1(t)+r1,3(t)
...

‖aM−2‖
2−‖aM‖2−2(aM−2−aM )T R̂

T
(t)sN

rN,M−2(t)+rN,M (t)

‖aM−1‖
2−‖aM‖2−2(aM−1−aM )T R̂

T
(t)sN

rN,M−1(t)+rN,M (t)























































is employed instead of y3(t).
Let w (t) denote the system disturbances, assumed as zero-mean white Gaussian noise, with

E
[

w (t)wT (t− τ)
]

= Ξδ (τ), and n (t) be the output noise, assumed as zero-mean white Gaus-

sian noise, with E
[

n (t)nT (t− τ)
]

= Θδ (τ) and E
[

w (t)nT (t− τ)
]

= 0. The resulting Kalman
filter is given by

˙̂x3(t) = Â3(t)x̂3(t) +B3ûa(t) + K̂(t)
[

ŷ3(t)− Ĉ3(t)x̂3(t)
]

,

where K̂(t) is the Kalman gain,

K̂(t) = P̂ (t) ĈT
3 (t)Θ

−1,

where P̂(t) is the covariance matrix, which satisfies

˙̂
P (t) = Â3 (t) P̂ (t) + P̂ (t) ÂT

3 (t) +Ξ− P̂ (t) ĈT
3 (t)Θ

−1Ĉ3(t)P̂ (t) .

Naturally, it is necessary to show that the error of the perturbed Kalman filter converges to zero
for all initial conditions. This is a theoretical problem, that of the study of the convergence of the
error of the Kalman filter when the system matrices A(t) and C(t), as well as the system output
y(t), are perturbed by exponential decaying errors. Assuming: i) bounds on the system matrices;
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ii) that the nominal system is uniformly completely observable; and iii) that the system state is
bounded, it can actually be shown that the error of the Kalman filter converges exponentially fast
for all initial conditions. This falls out of the scope of this paper and will be detailed in a future
article. However, all required assumptions are verified, in practice, for the proposed LBL/USBL
setup, as the mission scenario is bounded in space and the linear and angular velocities must
also be bounded due to the actuation bounds of any real system.

6. Simulations

This section provides simulation results in order to demonstrate the achievable performance
with the proposed solution. In the simulations, the 3-D kinematic model for an underwater
vehicle was employed. It is not necessary to consider the dynamics as the estimators are purely
kinematic, hence the results apply to all underwater vehicles, regardless of the dynamics. The
trajectory described by the vehicle is shown in Fig. 1. The LBL configuration is composed of
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Figure 1. Trajectory described by the vehicle

4 acoustic transponders and their inertial positions are s1 =
[

0 0 0
]

(m), s2 =
[

0 0 250
]

(m),

s3 =
[

1000 0 250
]

(m), s4 =
[

0 1000 250
]

(m), while the positions of the USBL array receivers,

in body-fixed coordinates, are a1 =
[

0 0 0
]

(m), a2 =
[

0 0.3 0
]

(m), a3 =
[

0.20 0.15 0.15
]

(m),

a4 =
[

0.20 0.15 −0.15
]

(m), hence both Assumptions 1 and 2 are satisfied.
Sensor noise was considered for all sensors. In particular, the LBL range measurements, the

USBL range differences of arrival, and the DVL relative velocity readings are assumed to be
corrupted by additive uncorrelated zero-mean white Gaussian noise, with standard deviations of
1m, 6× 10−3m, and 0.01m, respectively. The angular velocity measurements are also assumed
to be perturbed by additive, zero mean, white Gaussian noise, with standard deviation of 0.05
°/s.
To tune the Kalman filter for the estimation of the linear motion quantities, the state distur-

bance intensity matrix was chosen as

diag
(

10−2I, 10−4I, 10−2, . . . , 10−2, 10−2, 10−3
)

and the output noise intensity matrix as

diag (Q0,Q0,Q0,Q0, 1, . . . , 1) ,

where Q0 := diag (1, 0.6, 0.6, 0.6) . The parameters of the attitude observer were chosen as
α (m,n, i, j) = 0.1, β (m,n, i, j) = 5× 10−8 for all (m,n, i, j) ∈ Cs×Ca, and Q = 104I. All initial
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conditions were set to zero but the initial attitude estimate, which was set with a large error,
with a rotation of 180 degrees about the z-axis.
The convergence of the attitude observer error is very fast, as it is possible to observe from the

evolution of the errors of the components of the rotation matrix and the rate gyro bias error,
which are depicted in Fig. 2. The error of the additional states of the attitude observer, q̃(t) also
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Figure 2. Initial convergence of the attitude observer errors R̃(t) and b̃ω(t)

converges and is not shown here only because it corresponds to intermediate states with no use
in practice.
The initial evolution of the position and velocity errors are depicted in Fig. 3. As it can be

seen from the various plots, the convergence rate of the filter for the estimation of the linear
motion quantities is quite fast.
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Figure 3. Initial convergence of the position error p̃(t) and the current velocity error ṽc(t)

In order to evaluate the performance of the attitude observer, and for the purpose of per-
formance evaluation only, an additional error variable is defined as R̃p(t) = RT (t)R̂(t), which
corresponds to the rotation matrix error. Using the Euler angle-axis representation for this new
error variable,

R̃p(t) = I cos
(

θ̃(t)
)

+
[

1− cos
(

θ̃(t)
)]

d̃(t)d̃T (t)− S
(

d̃(t)
)

sin
(

θ̃(t)
)

,

where 0 ≤ θ̃(t) ≤ π and d̃(t) ∈ R
3,
∥

∥

∥
d̃(t)

∥

∥

∥
= 1, are the angle and axis that represent the rotation

error, the performance of the observer is identified with the evolution of θ̃. After the initial
transients fade out, the resulting angle mean error is around 0.06 °.
Finally, in order to better evaluate the performance of the proposed solution, the Monte Carlo

method was applied, and 1000 simulations were carried out with different, randomly generated
noise signals. The standard deviation of the errors were computed for each simulation and
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Table 1. Standard deviation of the steady-state estimation error, averaged over 1000 runs of the simulation

Variable Standard deviation
p̃x (m) 3.6× 10−2

p̃y (m) 4.0× 10−2

p̃z (m) 4.4× 10−2

ṽx (m/s) 2.3× 10−3

ṽy (m/s) 2.4× 10−3

ṽz (m/s) 3.0× 10−3

b̃ωx (°/s) 1.2× 10−3

b̃ωy (°/s) 0.9× 10−3

b̃ωz (°/s) 2.0× 10−3

averaged over the set of simulations. The results are depicted in Table 1. The mean attitude
angle error is 0.05 °. As it is possible to observe, the standard deviation of the errors is very low,
adequate for the sensor suite that was considered.

7. Conclusions

This paper proposed a novel integrated tightly-coupled navigation filter for autonomous vehicles
based on a combined Long Baseline / Ultra-short Baseline (LBL/USBL) positioning system.
First, rate gyro bias is proposed, which feeds a second attitude observer that yields estimates of
the rotation matrix from body-fixed to inertial coordinates. The error of the cascade rate gyro
bias and attitude observer was shown to be globally exponentially stable (GES). Secondly, a
framework for the estimation of the position of the vehicle and the ocean current velocity was
proposed, which also features GES error dynamics assuming perfect knowledge of the attitude of
the vehicle. This quantity is actually provided by the previous observer, which results in an overall
cascade system. The structure is tightly-coupled in the sense that the actual measurements of
the LBL/USBL are directly employed in the estimator dynamics. Simulation results were carried
out, including Monte Carlo simulations, that evidence excellent performance of the proposed
solution in the presence of realistic sensor noise. Future work includes: i) explicitly account for
measurement delays; ii) comparison with the Extended Kalman filter, which does not offer global
convergence guarantees; iii) design of an outlier rejection algorithm that takes advantage of the
fact that each range or range difference of arrival is used directly in the filter, meaning that it
is possible to exclude some measurements while still operating with the others; iv) study of the
convergence of the error of the Kalman filter when the system matrices, as well as the system
output, are perturbed by exponential decaying errors; and v) experimental validation of the
proposed estimation solution.
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