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GES Long Baseline Navigation with Unknown Sound Velocity

and Discrete-time Range Measurements

Pedro Batista, Member, IEEE

Abstract—A common assumption in long baseline (LBL)
underwater acoustic navigation is that the speed of sound is
available. This quantity depends on the medium and it is
usually measured or profiled prior to the experiments. This
paper proposes a novel filtering solution that explicitly takes
into account the estimation of the speed of propagation of the
acoustic waves in the medium. Based on discrete-time range
measurements, an augmented system is derived that can be
regarded as linear for observability and observer design purposes.
Its observability is discussed and a Kalman filter provides the
estimation solution, with globally exponentially stable (GES)
error dynamics. Simulation results are presented, considering
noisy measurements, to evaluate the proposed solution, which
evidences both fast convergence and good performance.

I. INTRODUCTION

LONG baseline (LBL) navigation is a common solution for

positioning of underwater vehicles, resorting in general

to the round-trip travel time of acoustic signals from the

vehicle to several transponders, fixed in known positions in the

mission scenario. In [1] a LBL underwater acoustic localiza-

tion system that was developed to provide three-dimensional

position information for the Seaglider underwater vehicle is

discussed. The positioning system relies on acoustic round-trip

travel time measurements that are processed by an extended

Kalman filter (EKF). If data are available for post-processing,

further improvements were achieved by using a Rauch-Tung-

Striebel smoother. The performance of the system was as-

sessed both in simulation and with experiments. In [2] the

authors consider a Doppler Velocity Log (DVL) and compare

the performance of a combined LBL/DVL solution, consisting

of a complementary filter navigation system, with that of

standalone Doppler of LBL navigation. In [3] two different

approaches are compared for long baseline navigation. In

the first, so-called fix-computation method, dead-reckoning

from the last acoustic fix is performed and a reset occurs

whenever a new fix is available. In the second, so-called

filtering approach, an EKF is employed and, whenever a valid

travel-time is available, the filter updates the state estimates.

In [4] a review of underwater vehicle navigation is offered and

preliminary field trials of DVLNAV, an interactive program for

3-D navigation of underwater vehicles, are reported. In [5] the

concept of long baselines navigation is extended to the case

where measurements to a single acoustic source are available,

by combining dead-reckoning and rich trajectories to ensure

so-called Synthetic Long Baseline. Alternative solutions with

single range measurements can be found in [6] and [7], where
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EKFs have been extensively used to solve the navigation

problem based on single beacon range measurements. In [8]

the study of observability of single transponder underwater

navigation was carried out resorting to an algebraic approach

and algebraic observers were also proposed. In [9] preliminary

experimental results with single beacon acoustic navigation

were presented, where the EKF is employed as the state

estimator. In [10] the author proposes a GPS-like system

consisting of buoys equipped with Differential GPS. A related

solution, denominated as GPS Intelligent Buoy (GIB) system,

is now commercially available, see [11]. Further work on the

GIB underwater positioning system can be found in [12]. For

interesting discussions and detailed surveys on underwater

vehicle navigation techniques and challenges see [13], [14],

and [15].

In previous work by the authors a novel filtering solution

was proposed for long baseline navigation [16], based on an

extension of the framework for single range measurements,

proposed in [17], to multiple range measurements. A common

assumption, present in all previously mentioned contributions,

is that the speed of propagation of the waves in the medium

is known or measured. This quantity depends on several

characteristics such as the salinity, pressure, and temperature

and it is either measured or profiled, often prior to the

experiments. If that is not the case, or even for small errors

of the sound velocity profile, the range measurements can

carry large errors, particularly when the distances become

large, thus putting into question the entire navigation data. The

main contribution of this paper is the development of a novel

framework for long baseline navigation that explicitly includes

the estimation of the speed of propagation of the acoustic

waves in the medium. Based on discrete-time range measure-

ments, combined with attitude and relative velocity readings

obtained at high rates, an augmented system is derived that can

be considered as linear for observability and observer design

purposes. Its observability is carefully analyzed and a Kalman

filter is considered as the estimation solution, with globally

exponentially stable error dynamics. Previous work can be

found in [18]. This paper provides detailed results and proofs

and extensive simulation results, including comparison with

the EKF and Monte Carlo simulations.

The paper is organized as follows. The problem statement

and the nominal system dynamics are introduced in Section

II, while the filter design is detailed in Section III. Simulation

results are presented in Section IV and Section V summarizes

the main results of the paper.

A. Notation

Throughout the paper the symbol 0 denotes a matrix of

zeros and I an identity matrix, both of appropriate dimensions.
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A block diagonal matrix is represented by diag(A1, . . . ,An).
For x ∈ R

3 and y ∈ R
3, x · y represents the inner product.

II. PROBLEM STATEMENT

Consider a standard Long Baseline acoustic positioning

system, consisting of a set of transponders that are fixed in

the mission scenario, where an underwater vehicle operates,

also equipped with an acoustic transponder, as depicted in Fig.

1. Typically, the transponder of the vehicle sends a known

landmarks

Fig. 1. Long baseline mission scenario

acoustic signal to interrogate the transponders of the Long

Baseline acoustic positioning system, which then respond

sending each a known acoustic signal. These signals are then

received by the transponder of the vehicle and the range is

usually calculated using the round-trip travel time and the

speed of propagation of the acoustic waves in the medium.

In this paper, the latter is assumed unknown and as such

the range measurements, which are measured periodically, are

only available up to a scaling factor. Further suppose that the

vehicle is equipped with an Attitude and Heading Reference

System (AHRS) and a DVL. The problem considered herein

is that of designing a continuous-discrete filter, with globally

exponentially stable error dynamics, to estimate the position

and linear velocity of the vehicle, as well as the speed of

propagation of the acoustic waves in the medium.

A. System dynamics

Let {I} denote a local inertial reference coordinate frame

and {B} a coordinate frame attached to the vehicle, usually

referred to as the body-fixed reference frame. The linear

motion of the vehicle satisfies

ṗ(t) = R(t)v(t), (1)

where p(t) ∈ R
3 denotes the inertial position of the vehicle,

v(t) ∈ R
3 is the velocity of the vehicle relative to {I},

expressed in body-fixed coordinates, and R(t) ∈ SO(3) is

the rotation matrix from {B} to {I}.

The AHRS provides the rotation matrix R(t), while the

DVL measures, in the absence of bottom-lock, the velocity

of the vehicle relative to the fluid, expressed in body-fixed

coordinates. Let vc(t) ∈ R
3 denote the velocity of the fluid,

in inertial coordinates, and vr(t) ∈ R
3 be the DVL reading,

i.e., the velocity of the vehicle relative to the fluid, expressed

in body-fixed coordinates. Then,

v(t) = vr(t) +RT (t)vc(t). (2)

Finally, let si ∈ R
3, i = 1, . . . , L, denote the inertial

positions of the transponders. Then, the range measurements

are given by

ri (k) = vs(t) ‖si − p (tk)‖ , i = 1, . . . , L, (3)

with tk := t0 + kT , k ∈ N, where T > 0 is the sampling

period, t0 is the initial time, and vs(t) > 0 is a dimension-

less scaling factor that accounts for the unknown speed of

propagation of the acoustic waves in the medium. In short, a

nominal speed of propagation in assumed by the range sensor,

which does not necessarily correspond to the actual speed of

propagation, which is assumed unknown. The scaling factor

vs(t) accounts for that relation.

Assuming that both the fluid velocity and the speed of

propagation of the acoustic waves in the medium are constant,

i.e., v̇c(t) = 0 and v̇s(t) = 0, and combining (1)-(3), results

in the nonlinear system with discrete outputs



































ṗ(t) = vc(t) +R(t)vr(t)
v̇c(t) = 0

v̇s(t) = 0
r1 (k) = vs (tk) ‖s1 − p (tk)‖
...

rL (k) = vs (tk) ‖sL − p (tk)‖

. (4)

The problem considered herein is the design of an estimator

for (4) with globally exponentially stable error dynamics.

III. FILTER DESIGN

In previous work by the authors [16] a novel LBL frame-

work was proposed in continuous time. In short, additional

states and outputs are derived that allow one to consider the

system as linear in the state, even though it still is, in fact,

nonlinear. This is done by means of identification of some

nonlinear terms as new variables and noticing that the output

and input are available signals for observer design purposes.

In this paper, a similar approach is somehow pursued, in

the sense that state and output augmentation are performed,

but considering: i) discrete-time measurements; and ii) scaled

ranges, with unknown speed of propagation of the acoustic

waves in the medium. This setting leads to a different state

vector and consequently a different dynamic system, and

captures the nature of the underwater ranging sensing system

when the speed of propagation is unknown or only known

approximately.
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A. Discretization and system augmentation

The exact discrete-time system dynamics corresponding to

(4) are given by



































p (tk+1) = p (tk) + Tvc (tk) +
∫ tk+1

tk
R (τ)vr (τ) dτ

vc (tk+1) = vc (tk)
vs (tk+1) = vs (tk)
r1 (k) = vs (tk) ‖s1 − p (tk)‖
...

rL (k) = vs (tk) ‖sL − p (tk)‖

. (5)

Define the discrete-time states







x1(k) := v2s (tk)p (tk)
x2(k) := v2s (tk)vc (tk)
x3 (k) = v2s (tk)

.

From (5) one may write







x1 (k + 1) = x1 (k) + Tx2 (k) + x3 (k)u (k)
x2 (k + 1) = x2 (k)
x3 (k + 1) = x3 (k)

, (6)

where

u(k) :=

∫ tk+1

tk

R (τ)vr (τ) dτ.

Now, consider the scaled range measurements as additional

system states, i.e., define











x4(k) := r1(k)
...

x3+L(k) := rL (k)

.

To derive the discrete-time dynamics of the range measure-

ments, consider their squares and expand

r2i (k + 1) = x3 (k + 1)

∥

∥

∥

∥

si −
x1 (k + 1)

x3 (k + 1)

∥

∥

∥

∥

2

using (6), which gives

r2i (k + 1) = r2i (k) + 2u (k) · x1 (k)

−2T [si − u (k)] · x2 (k)

− [2si − u (k)] · u (k)x3 (k)

+2T
x1 (k) · x2 (k)

x3 (k)

+T 2 ‖x2 (k)‖
2

x3 (k)
, (7)

i = 1, . . . , L. Identifying the nonlinear terms x1 (k) ·
x2 (k) /x3 (k) and ‖x2 (k)‖

2
/x3 (k) in (7) with new system

states, i.e.,

{

x4+L (k) := x1(k)·x2(k)
x3(k)

= v2s (tk)p (tk) · vc (tk)

x5+L (k) := ‖x2(k)‖
2

x3(k)
= v2s (tk) ‖vc (tk)‖

2 , (8)

and noticing that r2i (k) = x3+i(k)ri (k), i = 1, . . . , L, allows

one to write

x3+i (k + 1) =
2u (k) · x1 (k)

ri (k + 1)
−

2T [si − u (k)] · x2 (k)

ri (k + 1)

−
[2si − u (k)] · u (k)

ri (k + 1)
x3 (k)

+
ri (k)x3+i (k)

ri (k + 1)
+

2Tx4+L (k)

ri (k + 1)

+
T 2x5+L (k)

ri (k + 1)
,

i = 1, . . . , L. The evolution of the new states can be written,

using (6), as
{

x4+L(k + 1) = u (k)·x2 (k) + x4+L (k) + Tx5+L (k)
x5+L (k + 1) = x5+L (k)

.

Define the augmented state vector as

x (k) :=



























x1 (k)
x2 (k)
x3 (k)
x4 (k)

...

x3+L (k)
x4+L (k)
x5+L (k)



























∈ R
3+3+1+L+2.

Then, the discrete-time system dynamics can be written as

x (k + 1) = A (k)x (k) ,

where A(k) ∈ R
(7+L+2)×(7+L+2),

A (k) =





























I T I u (k) 0 0 0
0 I 0 0 0 0
0 0 1 0 0 0

2T
r1(k+1)

T 2

r1(k+1)

A21(k) A22(k)
...

...
2T

rL(k+1)
T 2

rL(k+1)

0 uT (t) 0 0 1 T
0 0 0 0 0 1





























,

with A21(k) ∈ R
L×7

A21(k) =









2uT (k)
r1(k+1) 2T

u
T (k)−s

T
1

r1(k+1)
u(k)−2s1
r1(k+1) · u (k)

...
...

...
2uT (k)
rL(k+1) 2T

u
T (k)−s

T
L

rL(k+1)
u(k)−2sL
rL(k+1) · u (k)









,

and

A22(k) = diag

(

r1(k)

r1(k + 1)
, . . . ,

rL(k)

rL(k + 1)

)

∈ R
L×L.

To encode the LBL structure in the system dynamics, i.e.,

the include the geometry of the LBL array in the system

dynamics, take the difference of the squares of range mea-

surements to two different transponders, which gives

r2i (tk)− r2j (tk) = v2s (tk)
(

‖si‖
2
− ‖sj‖

2
)

−2v2s (tk) [(si − sj) · p (tk)] . (9)
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Using

r2i (k)− r2j (k) = [ri (k) + rj (k)] [x3+i (k)− x3+j (k)]

allows one to rewrite (9) as

2(si−sj)
ri(k)+rj(k)

· x1(k)−
‖si‖

2−‖sj‖
2

ri(k)+rj(k)
x3 (k)

+x3+i(k)− x3+j(k) = 0 (10)

for i, j ∈ {1, . . . , L}, i 6= j. Discarding the origi-

nal nonlinear output equation, considering that the states

x4(k), . . . , x3+L(k) are measured, and using (10) allows one

to define the augmented system output


































































































y1(k) = x4(k)
...

yL(k) = x3+L(k)

yL+1(k) =
2(s1−s2)·x1(k)
r1(k)+r2(k)

− ‖s1‖
2−‖s2‖

2

r1(k)+r2(k)
x3 (k)

+x3+1(k)− x3+2(k)

yL+2(k) =
2(s1−s3)·x1(k)
r1(k)+r3(k)

− ‖s1‖
2−‖s3‖

2

r1(k)+r3(k)
x3 (k)

+x3+1(k)− x3+3(k)
...

yL+CL
2

−1(k) =
2(sL−2−sL)·x1(k)
rL−2(k)+rL(k) − ‖sL−2‖

2−‖sL‖2

rL−2(k)+rL(k) x3 (k)

+x3+L−2 − x3+L(k)

yL+CL
2
(k) = 2(sL−1−sL)·x1(k)

rL−1(k)+rL(k) − ‖sL−1‖
2−‖sL‖2

rL−1(k)+rL(k) x3 (k)

+x3+L−1 − x3+L(k)

,

where CL

2 is the number of 2-combinations of L elements, i.e.

CL

2 = L (L− 1) /2.
The discrete-time augmented system can then be written, in

compact form, as
{

x (k + 1) = A (k)x (k)
y (k + 1) = C (k + 1)x (k + 1)

, (11)

with

C (k) =

[

0 I 0

C21(k) C22 0

]

∈ R
(L+CL

2 )×(7+L+2),

where C21(k) ∈ R
CL

2
×7 is given by

C21(k) =





















2(s1−s2)
T

r1(k)+r2(k)
0 −‖s1‖

2−‖s2‖
2

r1(k)+r2(k)
2(s1−s3)

T

r1(k)+r3(k)
0 −‖s1‖

2−‖s3‖
2

r1(k)+r3(k)

...
...

...
2(sL−2−sL)T

rL−2(k)+rL(k) 0 −‖sL−2‖
2−‖sL‖2

rL−2(k)+rL(k)
2(sL−1−sL)T

rL−1(k)+rL(k) 0 −‖sL−1‖
2−‖sL‖2

rL−1(k)+rL(k)





















,

and

C22=















1 −1 0 . . . . . . . . . 0
1 0 −1 0 . . . . . . 0

...

0 . . . . . . 0 1 0 −1
0 . . . . . . . . . 0 1 −1















∈ R
CL

2
×L .

Remark 1: Notice that the system (11) is well defined

as no range measurement can be nonpositive. Indeed, by

definition, the range measurements are nonnegative and a null

measurement would imply that two transponders were in the

same position, which is impossible. In fact, there is always a

minimum distance between transponders.

B. Observability analysis

The system (11) can be regarded as a discrete linear time-

varying system for observer design purposes, even though the

system matrices A(k) and C(k) depend on the system input

and the range measurements. This is possible because for

observer (or filter) design purposes both the ranges and the

input are available and, hence, they can be simply considered

as functions of time. This idea was first pursued by the authors

in [17, Lemma 1] for continuous systems, whose application is

equivalent for the discrete-time case, as shown in the following

lemma.
Lemma 1: Consider the nonlinear discrete-time system

{

x(k + 1) =AAA
(

k,UUUk+1

k0
,YYYk+1

k0

)

x(k)

y (k + 1) = CCC
(

k + 1,UUUk+1

k0
,YYYk+1

k0

)

x (k + 1)
, (12)

where UUU
kf

k0
:= {u (k0) ,u (k0 + 1) , . . . ,u (kf )} and YYY

kf

k0
:=

{y (k0) ,y (k0 + 1) , . . . ,y (kf )} are the input and out-

put signals, respectively, on the time interval [k0, kf ],
and x(k) ∈ R

n. If rank (O (k0, kf )) = n, where

O (k0, kf ) is the observability matrix associated with the

pair
(

AAA
(

k,UUU
kf−1
k0

,YYY
kf−1
k0

)

,CCC
(

k,UUU
kf−1
k0

,YYY
kf−1
k0

))

on I :=

[k0, kf ], then the nonlinear system (12) is observable on I in

the sense that, given the system input and output signals UUU
kf−1
k0

and YYY
kf−1
k0

, the initial condition x (k0) is uniquely defined.

Proof: For the sake of ease of notation, and as both

the system input and output signals UUU
kf−1
k0

and YYY
kf−1
k0

are

assumed available, consider the simplified notation AAA (k) =
AAA
(

k,UUUk+1
k0

,YYYk+1
k0

)

and CCC (k + 1) = CCC
(

k + 1,UUUk+1
k0

,YYYk+1
k0

)

.

Given UUU
kf

k0
and YYY

kf

k0
, it is possible to compute the transition

matrix associated with the system matrix AAA (k), given by

φ (k, k0) = AAA (k − 1)AAA (k − 2) . . .AAA (k0) for k0 < k ≤ kf ,

with φ (k0, k0) = I. Hence, it is possible to compute the

observability matrix

O (k0, kf ) =











CCC (k0)
CCC (k0 + 1)φ (k0 + 1, k0)

...

CCC (kf − 1)φ (kf − 1, k0)











.

Now, notice that it is possible to write the evolution of the

state, given the system input and output (which allow one to

compute the transition matrix), as

x (k) = φ (k, k0)x0 (13)

for k0 < k < kf , where x0 = x (k0) is the initial condition.

This is easily verified by substitution into the state equation.

The remainder of the proof follows as in classic theory. The

output of the system can be written, from (13), as

y (k) = CCC (k)φ (k, k0)x0

for k0 < k < kf , with y (k0) = CCC (k0)x0. Considering the

output for all available time instants gives














y (k0)
y (k0 + 1)
y (k0 + 2)

...

y (kf − 1)















= O (k0, kf )x0. (14)
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Multiplying (14) on both sides by O
T (k0, kf ) yields

W (k0, kf )x0 = O
T (k0, kf )















y (k0)
y (k0 + 1)
y (k0 + 2)

...

y (kf − 1)















, (15)

where W (k0, kf ) := O
T (k0, kf )O(k0, kf ) is the observabil-

ity Gramian associated with the pair (AAA(k),CCC(k)) on I. All

quantities in (15) but x0 are known given the system input and

output and as such (15) is a linear algebraic equation on x0.

Hence, if rank (O (k0, kf )) = n, the observability Gramian

W (k0, kf ) is invertible and therefore x0 is uniquely defined,

concluding the proof.

Remark 2: It is important to stress that, even though (13)

resembles, at first glance, the zero-input response of a linear

system, that is not the case because the transition matrix

in (13) depends explicitly on the system input and output.

Moreover, the superposition principle does not necessarily

apply. However, that is not a problem for observability and

observer design purposes as both the input and output signals

are assumed available.

The following result addresses the observability of the

nonlinear discrete-time system (11).

Theorem 1: Suppose that the configuration of the Long

Baseline acoustic positioning system is such that

L :=























2 (s1 − s2)
T

−
(

‖s1‖
2
− ‖s2‖

2
)

2 (s1 − s3)
T

−
(

‖s1‖
2
− ‖s3‖

2
)

...
...

2 (sL−2 − sL)
T

−
(

‖sL−2‖
2
− ‖sL‖

2
)

2 (sL−1 − sL)
T

−
(

‖sL−1‖
2
− ‖sL‖

2
)























∈ R
CL

2
×4

is full rank, i.e.,

rank (L) = 4. (16)

Then, the discrete-time system (11) is observable on

any interval [ki, ki+3], ki = 0, 1, 2, . . ., in the sense

that the initial state x (ki) is uniquely determined by

the input {u (k) : k = ki, ki+1, ki+2} and the output

{y (k) : k = ki, ki+1, ki+2}.

Proof: The proof resorts to Lemma 1 and it reduces

to show that the observability matrix O (ki, ki + 3) associ-

ated with the pair (A (k) ,C (k)) on [ki, ki+3], ki > k0,

has rank equal to the number of states of the system if

rank (L) = 4. Fix ki > k0 and suppose that the rank of

the observability matrix is less than the number of states of

the system. Then, there exists a unit vector d ∈ R
7+L+2,

d =
[

dT
1 dT

2 d3 dT
4 d5 d6

]T
, with d1,d2 ∈ R

3,

d3 ∈ R, d4 ∈ R
L, d5, d6 ∈ R, such that O (ki, ki + 3)d = 0

or, equivalently,







C (ki)d = 0

C (ki + 1)A (ki)d = 0

C (ki + 2)A (ki + 1)A (ki)d = 0

. (17)

From the first equation of (17), and attending to the structure of

C (ki), one immediately concludes that d4 = 0. Substituting

that in the first equation of (17) gives











































2 (s1 − s2)
T
d1 −

(

‖s1‖
2
− ‖s2‖

2
)

d3 = 0

2 (s1 − s3)
T
d1 −

(

‖s1‖
2
− ‖s3‖

2
)

d3 = 0

...

2 (sL−2 − sL)
T
d1 −

(

‖sL−2‖
2
− ‖sL‖

2
)

d3 = 0

2 (sL−1 − sL)
T
d1 −

(

‖sL−1‖
2
− ‖sL‖

2
)

d3 = 0

. (18)

If (16) holds, then the only solution of (18) is d1 = 0 and

d3 = 0. Now, with d1 = 0, d3 = 0, and d4 = 0, one may

write, from the second equation of (17), that































(s1 − s2)
T
d2 = 0

(s1 − s3)
T
d2 = 0

...

(sL−2 − sL)
T
d2 = 0

(sL−1 − sL)
T
d2 = 0

. (19)

Again, if (16) holds, then the only solution of (19) is d2 = 0.

Substituting that in the second equation of (17), together with

d1 = 0, d3 = 0, and d4 = 0 gives

2d5 + Td6 = 0. (20)

Substituting d1 = d2 = 0, d3 = 0, and d4 = 0 in the third

equation of (17) allows one to write

d5 + Td6 = 0. (21)

The only solution of (20)-(21) is d5 = d6 = 0. But this

contradicts the hypothesis of existence of a unit vector d such

that (17) holds. Hence, the observability matrix must have rank

equal to the number of states of the system. As the derivation

remains unchanged for any other different ki > k0, the proof

is concluded invoking Lemma 1.

Finally, it is important to stress that, in the definition of

the augmented system (11), the original nonlinear outputs

ri(k) =
√

x3 (k + 1)
∥

∥

∥
si −

x1(k+1)
x3(k+1)

∥

∥

∥
, i = 1, . . . , L, were

discarded. Furthermore, there is nothing in (11) imposing the

nonlinear constraints (8). While it is true that these restrictions

could be easily imposed including artificial outputs, e.g.,

x4+L (k)−x1 (k) ·x2 (k) /x3 (k) = 0, this form was preferred

as it allows one to apply Lemma 1. However, care must be

taken when extrapolating conclusions from the observability

of (11) to the observability of (5). The following theorem

addresses this issue and provides the means for design of a

state observer or filter for (5), as it will be seen shortly after.

Theorem 2: Suppose that (16) holds. Then:

i) the nonlinear system (5) is observable on any inter-

val [ki, ki+3], ki = 0, 1, 2, . . ., in the sense that

the initial state x (ki) is uniquely determined by

the input {u (k) : k = ki, ki+1, ki+2} and the output

{r1 (k) , . . . , rL (k) : k = ki, ki+1, ki+2}; and
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ii) the initial condition of the augmented nonlinear system

(11) corresponds to that of (5), i.e., the relations


















































x1 (ki) = v2s (tki
)p (tki

)
x2 (ki) = v2s (tki

)vc (tki
)

x3 (ki) = v2s (tki
)

x4 (ki) = vs (tki
) ‖s1 − p (tki

)‖
...

x3+L (ki) = vs (tki
) ‖sL − p (tki

)‖
x4+L (ki) = v2s (tki

)p (tki
) · vc (tki

)

x5+L (ki) = v2s (tki
) = ‖vc (tki

)‖
2

are verified.

Proof: Let

x (ki) :=



























x1 (ki)
x2 (ki)
x3 (ki)
x4 (ki)

...

x3+L (ki)
x4+L (ki)
x5+L (ki)



























∈ R
3+3+1+L+2

be the initial condition of (11) and let p (tki
), vc (tki

), and

vs (tki
) be the initial condition of (5). From the first L outputs

of (11) it must be

x3+j (ki) = vs (tki
) ‖sj − p (tki

)‖ = rj (ki) , (22)

j = 1, . . . , L. Considering the differences of squares of the

outputs of the nonlinear system (5) for k = ki as a function

of its initial state yields

r2l (ki)− r2m (ki) =
(

‖sl‖
2
− ‖sm‖

2
)

v2s (tki
)

−2 (sl − sm) · v2s (tki
)p (tki

) (23)

for all l, m ∈ {1, . . . , L}, l 6= m. On the other hand,

evaluating the outputs of (11) y
L+1(k) to y

L+CL
2
(k) for k = ki

as a function of x (ki), and using (22) allows to conclude that

r2l (ki)− r2m (ki) =
(

‖sl‖
2
− ‖sm‖

2
)

x3 (ki)

−2 (sl − sm) · x1 (ki) (24)

for all l, m ∈ {1, . . . , L}, l 6= m. Comparing (23) with (24),

and considering (16), implies that
{

x1 (ki) = v2s (tki
)p (tki

)
x3 (ki) = v2s (tki

)
. (25)

For k = ki+1 it is possible to write the differences of squares

of the output of (5), as a function of its initial state, as

r2l (ki + 1)− r2m (ki + 1) =
(

‖sl‖
2
− ‖sm‖

2
)

v2s (tki
)

−2 (sl − sm) · v2s (tki
)p (tki

)

−2T (sl − sm) · v2s (tki
)vc (tki

)

−2 (sl − sm) · u (k) v2s (tki
) (26)

for all l, m ∈ {1, . . . , L}, l 6= m. From the first L outputs of

(11) for k = ki+1 it follows that xL+j (ki + 1) = rj (ki + 1).

Now, from the outputs y
L+1(k) to y

L+CL
2
(k), for k = ki +1,

of the nonlinear system (11), one may write

r2l (ki + 1)− r2m (ki + 1) =
(

‖sl‖
2
− ‖sm‖

2
)

x3 (ki)

−2 (sl − sm) · x1 (ki)

−2T (sl − sm) · x2 (ki)

−2 (sl − sm) · u (k)x3 (ki) (27)

for all l, m ∈ {1, . . . , L}, l 6= m. Comparing (26) with (27),

and using (25), gives



























(s1 − s2) ·
[

x2 (ki)− v2s (tki
)vc (tki

)
]

= 0
(s1 − s3) ·

[

x2 (ki)− v2s (tki
)vc (tki

)
]

= 0
...

(sL−2 − sL) ·
[

x2 (ki)− v2s (tki
)vc (tki

)
]

= 0
(sL−1 − sL) ·

[

x2 (ki)− v2s (tki
)vc (tki

)
]

= 0

. (28)

If (16) holds, then the only solution of (28) is

x2 = v2s (tki
)vc (tki

) . (29)

Expanding the square of the output of the nonlinear system

(5) for k = ki + 1 and k = ki + 2 as a function of its initial

state yields

r2j (ki + 1) = r2j (ki) + [u (ki)− 2sj ] · u (ki) v
2
s (tki

)

+2u (ki) · v
2
s (tki

)p (ki)

+2T [u (ki)− sj ] · v
2
s (tki

)vc (ki)

+2Tp (ki) · v
2
s (tki

)vc (ki) + T 2v2s (tki
) ‖vc (ki)‖

2
(30)

and

r2j (ki + 2) = r2j (ki) + ‖u (ki) + u (ki + 1)‖
2
v2s (tki

)

−2sj · [u (ki) + u (ki + 1)] v2s (tki
)

+2 [u (ki) + u (ki + 1)] · v2s (tki
)p (ki)

+4T [u (ki) + u (ki + 1)− sj ] · v
2
s (tki

)vc (ki)

+4Tv2s (tki
)p (ki) · vc (ki) + 4T 2v2s (tki

) ‖vc (ki)‖
2

(31)

for j = 1, . . . , L. On the other hand, expanding the first L
outputs of the nonlinear system (11) for k = ki + 1 and k =
ki + 2 allows one to write

r2j (ki + 1) = rj (ki)x3+j (ki)

+ [u (ki)− 2sj ] · u (ki)x3 (ki)

+2u (ki) · x1 (ki) + 2T [u (ki)− sj ] · x2 (ki)

+2Tx4+L (ki) + T 2x5+L (ki) (32)

and

r2j (ki + 2) = rj (ki)x3+j (ki)

+ ‖u (ki) + u (ki + 1)‖
2
x3 (ki)

−2sj · [u (ki) + u (ki + 1)]x3 (ki)

+2 [u (ki) + u (ki + 1)] · x1 (ki)

+4T [u (ki) + u (ki + 1)− sj ] · x2 (ki)

+4Tx4+L (ki) + 4T 2x5+L (ki) (33)
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for j = 1, . . . , L. Using (22), (25), and (29), and comparing

(30) with (32), gives

2
[

x4+L(ki)− v2s (tki
)p(tki

)·vc(tki
)
]

+T
[

x5+L (ki)− v2s (tki
) ‖vc(tki

)‖
2
]

= 0 (34)

while comparing (31) with (33) yields

[

x4+L (ki)− v2s (tki
)p(tki

) · vc(tki
)
]

+T
[

x5+L (ki)− v2s (tki
) ‖vc(tki

)‖
2
]

= 0. (35)

The only solution of (34)-(35) is
{

x4+L(ki) = v2s (tki
)p(tki

)·vc(tki
)

x5+L (ki) = v2s (tki
) ‖vc(tki

)‖
2 .

This concludes the second part of the theorem, as it has

been shown that, in the conditions of the theorem, the initial

condition of (5) corresponds to that of (11). Now, notice that,

using Theorem 1, the initial condition of (11) is uniquely

determined. Hence, it follows due to the correspondence

between the two systems, that the initial condition of (5) is

also uniquely determined.

C. Estimation solution

1) Augmented system: The means to design an observer

for the quantities v2s (tk)p (tk), v
2
s (tk)vc (tk), and v2s (tk) are

provided by Theorem 2 as it is shown that an observer for (11),

which can be regarded as linear for observer design purposes,

suffices. A simple Kalman filter can be applied, yielding

globally exponentially stable error dynamics if the system is

shown to be uniformly completely observable [19]. In the

paper, the pair (A (k) ,C (k)) was shown to be observable.

The proof of uniform complete observability follows similar

steps considering uniform bounds in time. An alternative to the

Kalman filter could be the design of a Luenberger observer as

detailed in [20, Theorem 29.2], which would allow one to

choose the convergence rate.

Notice that, even though the ocean current velocity and the

factor that accounts for the unknown sound speed velocity are

assumed constant, in nominal terms, by appropriate tuning of

the Kalman filter it is possible to successfully track slowly

time-varying quantities.

2) Estimation between range measurements: An observer

(or filter) for the discrete-time system (11), as previously

derived, only provides estimates when there are range mea-

surements. However, the relative velocity and attitude mea-

surements are usually available at a much higher rate than the

range readings. As such, it is possible to obtain estimates of

the scaled position, scaled velocity, and speed to propagation

of the acoustic waves, at a higher rate, using open-loop

propagation between range measurements, as given by














x̂1(t) = x̂1 (tk) + (t− tk) x̂2 (tk)

+x̂3 (tk)
∫ t

tk
R (τ)vr (τ) dτ

x̂2(t) = x̂2 (tk)
x̂3(t) = x̂3 (tk)

for tk < t < tk+1.

3) Estimates of p(t), vc(t), and vs(t): Estimates for p (tk),
vc (tk), and vs(t) follow from the Kalman filter or the Luen-

berger observer estimates, under some mild assumptions.

Assumption 1: The speed of propagation of the acoustic

waves in the medium satisfies

Vm ≤ vs(t) ≤ VM ,

with Vm, VM > 0.

Assumption 2: The inertial position of the vehicle and the

ocean current velocity are norm-bounded.

Considering estimates x̂3(t) with globally exponentially

stable error dynamics, the estimate of the speed of propagation

of the acoustic waves in the medium can be obtained from

v̂s(t) =







Vm, x̂3(t) < V 2
m

√

x̂3(t), V 2
m ≤ x̂3(t) ≤ V 2

M

VM , x̂3(t) > V 2
M

, (36)

whose error also converges exponentially fast to zero for

all initial conditions under Assumption 1. Estimates for the

position and ocean current velocity then follow from
{

p̂(t) = x̂1(t)
v̂2
s(t)

v̂c(t) =
x̂2(t)
v̂2
s(t)

, (37)

and it is possible to show that, under Assumptions 1 and 2,

these also converge exponentially fast to zero for all initial

conditions. This is established in the following proposition.

Proposition 1: Consider an estimator with globally expo-

nentially stable error dynamics for the augmented system (11).

Let 





p̃(t) := p(t)− p̂(t)
ṽc(t) := vc(t)− v̂c(t)
ṽs(t) := vs(t)− v̂s(t)

denote the estimation errors of the inertial position, the ocean

current velocity, and the speed of propagation scale factor.

Then, under Assumptions 1 and 2, the estimation errors p̃(t),
ṽc(t), and ṽs(t) converge exponentially fast to zero for all

initial conditions.

Proof: Let

x̃(t) =



















x̃1(t)
x̃2(t)
x̃3(t)
x̃4(t)

...

x̃5+L(t)



















denote the estimation error of the estimator with globally

exponentially stable error dynamics for the augmented system

(11), which means that there exist positive constants α and λ
such that

‖x̃(t)‖ ≤ α ‖x̃ (t0)‖ e
−λ(t−t0) (38)

for all t ≥ t0. Using simple norm inequalities, it follows from

(38) that

‖x̃1(t)‖ ≤ α ‖x̃ (t0)‖ e
−λ(t−t0), (39)

‖x̃2(t)‖ ≤ α ‖x̃ (t0)‖ e
−λ(t−t0),

and

|x̃3(t)| ≤ α ‖x̃ (t0)‖ e
−λ(t−t0) (40)
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for all t ≥ t0. Next, it is shown that ṽs(t) converges

exponentially fast to zero by considering separately the three

different cases of (36). Suppose that x̂3(t) < V 2
m, which

implies, from (36), that v̂s(t) = Vm. In that case, one has

x̃3(t) > x3(t)− V 2
m

= v2s(t)− V 2
m

= [vs(t) + Vm] [vs(t)− Vm]

≥ 2Vmṽs(t), (41)

where the bounds of vs(t) were used. In addition, notice that,

in this case, ṽs(t) = vs(t)− Vm ≥ 0. Hence, it follows from

(41) that

|ṽs(t)| ≤
1

2Vm

|x̃3(t)| (42)

when x̂3(t) < V 2
m. Consider now V 2

m ≤ x̂3(t) ≤ V 2
M . In that

case, one has v̂s(t) =
√

x̂3(t) and hence

|x̃3(t)| =
∣

∣v2s(t)− v̂2s(t)
∣

∣

= |vs(t) + v̂s(t)| |vs(t)− v̂s(t)|

≥ 2Vm |ṽs(t)| , (43)

where the bounds on vs(t) and v̂s(t) were used. Thus, one

has from (43) that

|ṽs(t)| ≤
1

2Vm

|x̃3(t)| (44)

when V 2
m ≤ x̂3(t) ≤ v2M . Consider now x̂3(t) > V 2

M > 0. In

that case, one may write

|x̃3(t)| =

∣

∣

∣

∣

v2s(t)−
[

√

x̂3(t)
]2
∣

∣

∣

∣

=
∣

∣

∣
vs(t) +

√

x̂3(t)
∣

∣

∣

∣

∣

∣
vs(t)−

√

x̂3(t)
∣

∣

∣

≥ 2Vm

∣

∣

∣
vs(t)−

√

x̂3(t)
∣

∣

∣
, (45)

where the bounds on vs(t) were yet again used. In this case,

vs(t)−
√

x̂3(t) < 0 and hence it follows from (45) that

|x̃3(t)| ≥ 2Vm

[

−vs(t) +
√

x̂3(t)
]

. (46)

Also, in this case, one has

|ṽs(t)| = |vs(t)− VM |

= −vs(t) + VM

≤ −vs(t) +
√

x̂3(t). (47)

From (46) and (47) it follows that

|ṽs(t)| ≤
1

2Vm

|x̃3(t)| (48)

when x̂3(t) > V 2
M . But then, it has been shown, in (42), (44),

and (48), that

|ṽs(t)| ≤
1

2Vm

|x̃3(t)| (49)

for all t ≥ t0. Substituting (40) in (49) gives

|ṽs(t)| ≤
1

2Vm

α ‖x̃ (t0)‖ e
−λ(t−t0), (50)

which concludes the proof for ṽs(t). Next, it is shown that the

position error also converges exponentially fast to zero. By

definition,

p̃(t) = p(t)− p̂(t)

= p(t)−
x̂1(t)

v̂2s(t)

= p(t)−
x1(t)

v̂2s(t)
+

x̃1(t)

v̂2s(t)

= −
p(t)

v̂2s(t)

[

v2s(t)− v̂2s(t)
]

+
x̃1(t)

v̂2s(t)

= −
p(t)

v̂2s(t)
[vs(t) + v̂s(t)] ṽs(t) +

x̃1(t)

v̂2s(t)
(51)

for all t ≥ t0. By assumption, the inertial position is bounded.

Let ‖p(t)‖ ≤ P for all t ≥ t0. Using also the bounds for vs(t)
and v̂s(t), one concludes from (51) that

‖p̃(t)‖ ≤
2VM

V 2
m

P |ṽs(t)|+
1

V 2
m

‖x̃1(t)‖ . (52)

Substituting (39) and (50) in (52) immediately allows one to

conclude that the position error also converges exponentially

fast to zero. The proof for the error for the ocean current

velocity follows similar steps and therefore it is omitted.

Remark 3: Notice that, according to (50) and (52), not only

the error of the estimates provided by (36)-(37) converges

exponentially fast to zero but also the convergence rate remains

unaffected and it does not depend on the bounds of vs(t) stated

in Assumption 1. In fact, these bounds only affect the bound

of the initial transients.

IV. SIMULATION RESULTS

This section presents numerical simulations in order to ex-

emplify the achievable performance with the proposed solution

for long baseline navigation with estimation of the scale factor

that accounts for the unknown sound velocity of propagation

of the acoustic waves.

The initial position of the vehicle is p(0) = [0 0 10]
T
m,

while the ocean current velocity was set to vc(t) =
[−0.1 0.2 0]

T
m/s. The trajectory that was described by the

vehicle is shown in Fig. 2. The LBL configuration is composed

0

100

200

300 −80

−60

−40

−20

0

0

50

100

150

y (m)
x (m)

z 
(m
)

start

end

Fig. 2. Trajectory described by the vehicle

of five acoustic transponders and their inertial positions are
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s1 =
[

0 0 1000
]T

(m), s2 =
[

1000 0 500
]

(m),
s3 =

[

0 750 500
]

(m), s4 =
[

0 0 500
]

(m), and

s5 =
[

1000 1000 500
]

(m), hence satisfying the rank

condition (16). The velocity of propagation factor was set to

vs (t) = 1.05.

Sensor noise was considered for all sensors. In partic-

ular, the LBL range measurements and the DVL relative

velocity readings were assumed to be corrupted by additive

uncorrelated zero-mean white Gaussian noise, with standard

deviations of 1m and 0.01m/s, respectively. The attitude,

provided by the AHRS and parameterized by roll, pitch,

and yaw Euler angles, was also assumed to be corrupted

by zero-mean, additive white Gaussian noise, with standard

deviation of 0.03° for the roll and pitch and 0.3° for the yaw.

The sampling period for the range measurements was set to

T = 1 s, while the remaining sensors were sampled at 100

Hz. The discrete time input u(k), corresponding to a definite

integral, was approximated using the trapezoid rule, while the

open-loop solution of the position and ocean current velocity

estimates, between range measurements, was computed using

the Euler method. In fact, as it also corresponds to a definite

integral, it is equivalent to the application of the trapezoid rule.

A. Proposed solution

To tune the Kalman filter, the state disturbance covariance

matrix was chosen as

diag
(

10−3I, 10−5I, 10−5, 10−2I, 10−2, 10−5
)

and the output noise covariance matrix was set to

diag (I, 0.5I) .

These values were chosen empirically to adjust the perfor-

mance of the proposed solution. The initial condition for

the position was set with a large initial error, x̂1(0) =
[1000 1000 1000]

T
(m), while the velocity of propagation fac-

tor estimate was set to x̂3 (0) = 1. The states corresponding

to the range measurements were set according to the initial

range measurements and the remaining initial state estimates

were set to zero.

The initial convergence of the position and velocity errors

is depicted in Fig. 3, along with details of the discrete-time

updates and open-loop propagation between range measure-

ments, which translates into linearly increasing position errors

between range measurements (approximately, due to noise).

The detailed evolutions of the position and velocity errors are

depicted in Figs. 4 and 5, respectively. The most noticeable

feature is that the position and velocity errors remain, most of

the time, below 1m and 0.03m/s, respectively. The evolution

of the error of the speed of propagation of the acoustic waves

is shown in Fig. 6. The relevant feature here is that the error

remains well below 0.5%. For the sake of completeness, the

evolution of the range errors is shown in Fig. 7, whereas that

of the remaining states is depicted in Fig. 8.

B. Performance comparison

The proposed solution was compared with the Extended

Kalman Filter (EKF), applied to the original nonlinear system
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(b) Ocean current velocity error

Fig. 3. Initial convergence of the errors
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Fig. 4. Steady-state evolution of the position error

(5). The initial estimates were set as in the previous simulation,

only now the states that are considered are only the position,

the ocean current velocity, and the factor that accounts for the

speed of propagation of the waves in the medium. The state

disturbance matrix was set to

diag
(

10−2I, 5× 10−5I, 10−3
)

and the output noise covariance matrix was set to the identity

I.
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Fig. 5. Steady-state evolution of the ocean current velocity error
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Fig. 6. Evolution of the error of x3 (k)

The initial convergence of the position and velocity errors is

depicted in Fig. 9. The initial convergence of the error of the

factor that accounts for the speed of propagation of the waves

in the medium is shown in Fig. 10 In comparison with the

proposed solution, the initial transients exhibited by the EKF

are not only much larger but also last longer. The detailed

evolutions of the position and velocity errors are depicted in

Figs. 11 and 12, respectively. The detailed evolution of the

steady-state scale factor error is depicted in Fig. 13. The EKF
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Fig. 9. Initial convergence of the EKF errors
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300 600 900 1200 1500
−0.12

−0.09

−0.06

−0.03

0

0.03

0.06

0.09

0.12

t (s)

In
e
rt
ia
l c
u
rr
e
n
t 
v
e
lo
ci
ty
 e
rr
o
r 
(m
/s
)

 

 

x

y

z

Fig. 12. Steady-state evolution of the EKF ocean current velocity error
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Fig. 13. Steady-state evolution of the EKF error of vs(t)

TABLE I
STANDARD DEVIATION OF THE STEADY-STATE ESTIMATION ERROR,

AVERAGED OVER 1000 RUNS OF THE SIMULATION

Variable Standard deviation EKF standard deviation

p̃x (m) 40.8× 10−2 52.5× 10−2

p̃y (m) 43.2× 10−2 61.5× 10−2

p̃z (m) 61.1× 10−2 58.3× 10−2

ṽcx (m/s) 11.8× 10−3 16.7× 10−3

ṽcy (m/s) 12.0× 10−3 18.6× 10−3

ṽcz (m/s) 11.0× 10−3 17.5× 10−3

ṽs not explicitly estimated 8.46× 10−4

ṽ2s 1.59× 10−3 not estimated

performs, in steady-state, similarly to the proposed solution.

It does not offer, however, global convergence guarantees.

Finally, in order to better evaluate the performance of the

proposed solution, the Monte Carlo method was applied, and

1000 simulations were carried out with different, randomly

generated noise signals. The standard deviation of the errors

were computed for each simulation and averaged over the set

of simulations. The results are depicted in Table I. The results

with the EKF are also included. As it is possible to observe,

both solutions achieve similar performance. Yet, the novel

solution proposed in this paper provides global convergence

results.

V. CONCLUSIONS

A common assumption in Long Baseline navigation is that

speed of propagation of the acoustic waves in the medium

is either known or measured. This paper presents a novel

long baseline navigation framework where the factor related

to the speed of propagation of the waves is explicitly taken

into account and estimated. Considering discrete-time range

measurements, an augmented system is proposed that can be

regarded, for observability and observer design purposes, as

linear. Its observability was analyzed and sufficient conditions

were derived. The Kalman filter provides the estimation so-

lution, with globally exponentially stable error dynamics, and

DVL and AHRS measurements, obtained at higher rates, are

integrated to obtain estimates at high rates. Simulation results

evidence fast convergence and good performance, comparable
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with that of the Extended Kalman Filter (EKF), which does

not offer global convergence guarantees and exhibits longer

and larger transients.
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