
Robotic Tasks Modeling and Analysis
Based on Petri Nets∗

Hugo Costelha and Pedro Lima
Instituto de Sistemas e Robótica

Instituto Superior T́ecnico
Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal

{hcostelha,pal}@isr.ist.utl.pt

Abstract— This paper proposes a method of defining and
analysing robotic tasks using Petri Nets. Both the robot
behaviors and environment are modelled using Generalized
Stochastic Petri Nets (GSPNs). Each action is modelled
separately and composed with others to provide a complete
task execution. The use of Petri Nets allows the qualitative
and quantitative analysis of the task execution.

Index Terms— DEDS, Robotic Tasks, Modeling, Analysis.

I. I NTRODUCTION

The number of tasks accomplished by robots is highly
increasing and with it, are the variety and complexity of
the tasks that a robot needs/should be able to perform. One
needs to have formal methods of specifying, controlling
and analysing a task, specially in hazardous environments
or very high risk missions where one cannot afford for
unexpected results to happend.

Most of the work found on the literature concerning
the design of robotic tasks using Discrete Event Systems
(DES) is based on Finite State Automata (FSA) for code
generation [2], qualitative specifications [1] and some quan-
titative specifications [4]. Reference [1] also provides a
high modularity in tasks specification.

Recent work has also been done in multi-robot analysis
and modeling using FSA ([6] and [7]).

Some work using Petri Nets to design robotic tasks
under some temporal requirements, focusing also on the
generation of real-time, error-free code can be found in
[3].

Part of the work presented in this paper is based on the
ideas introduced in [6] and [5], where in [5] a framework
for qualitative and quantitative performance using Petri
Nets is introduced.

The need for a modular design of complex robotic
tasks with somea priori knowledge of quantitative and
qualitative properties of the designed task is the main
motivationfor this work. Petri Nets come up has the
perfect modeling and analysis tool to acomplish that task.
It’s modeling and analysis power applied to a single or
multi robot task definition can prove to be quite effective.
The fact that Petri Nets and computer programs that run in
the robotic platforms are very tightly coupled, makes the
implementation of behaviors and the monitoring of those

∗This work is partially supported by FCT Grant SFRH/BD/12707/2003
to H. Costelha

behaviors the appropriate environment for the application
of Petri Nets.

II. PETRI NETS MODELS

In this work we use Petri Nets to model, design and
evaluate a robotic task exectution.

One of the reasons of choosing Petri Nets over FSA was
that combining Petri Nets does not lead to the same state
explosion as combining FSA. Of course when performing
the analysis the problems still exists, but at least visually we
don’t need to loose information and can easily monitor the
all system running using the original Petri Nets models in
an easier way. It also seems more apropriate in a robotic
environment to use a Petri Net approach, to model each
resource separetly and have the state of the robot has the
state of all its components.

The choosen environment is robotic soccer and we model
the behavior execution of a soccer robot in a single robot
environment. We define a set of behaviors that can be
used to perform a robotic task under supervisor control.
We modeled only three behaviors, enough to model an
atack behavior of a soccer robot without increasing the
visual complexity of the system. It’s clear however that the
system can be easily extended and that even a multi-robot
environment can be analysed (although we only focus on
a single-robot environment).

We wish to analyse a robotic task in two perspectives:
quantitative and qualitative. For that we will use respec-
tively marked Petri Nets and General Stochastic Petri Nets
(GSPNs) as explained in Sec. III-A and Sec. III-B.

The composition of the various Petri Nets is done using
place composition, so take into account that when looking
at places with the same label, they are in fact the same
place. The same doesn’t happen with the transitions, as
they are all different (of course that doesn’t mean that we
cannot incur in some simplifications concerning possible
duplicate transitions with the same inputs and outputs).

The places labels in the Petri Net models concerning the
robots actions and sensors have a trailingPN whereN is
the robot’s number. This does not remove any generality
to the models has they can be used in any other robot by
simply changing the robot’s number. The existence of the
number in the labels will be important in the future when

considering multi-robot models and the need to control
each robot’s actions independently.

To simplify the visual complexity of the Petri Nets
depicted in the following figures, whenever we have a
place and a transition connected with two arcs in opposite
directions, we draw a single arc with arrows in both ends.

A. The Environment

To be able to analyse the tasks in simulation, we have
to model the environment, the robot’s sensors response to
environment changes and the response of the environment
to the robots actions. While these models might not have a
direct relation with the program that will eventually run on
the robot, their modeling is very important in simulation
results.

We divided the field in six regions:OwnGoal,
OwnSide , OpSide , OpGoal and two other regions,
OwnGoalScored and OpGoalScored , which respre-
sent a goal scored in each goal (these regions are only
available to the ball’s position and not the robot’s position).

We assumed that both the ball and the robot cannot
go from one region to the other without going through
intermediary regions.

1) The Ball Position Model and the Player Position
Model: For now we will make some assumptions relative to
the ball movement and possible positions. We will consider
that the ball can only be moved by a robot, so we have
a place for each possible ball position (six places) and no
transitions between them (these will appear from the robots
actions models).

The player position model is very similar with the ball
position model, apart from theGoalScored regions. In
this case too, the transitions between the robot’s possible
positions will appear from the robot’s actions models.

If we wanted to model the ball movement, or the
possibility of someone picking up the robot and change its
position, we would add transitions connecting the various
places, representing those movements.

2) The Sensors Models:Considering the possible
robot and ball positions one can model the sensors
of the robots. We consider as sensors all the relevant
information that is extracted from the real sensors on a
robotic platform. In the case presented in this paper we
consider the following sensors:SEE BALL/N SEE BALL,
HASBALL/N HASBALL, NEARBALL/N NEARBALL,
NEAROPGOAL, GOALSCORED.

We will not consider errors or uncertainty on the sen-
sors, only on the actions effects on the environment, thus
NEAROPGOALand GOALSCOREDare in fact the same
as the player’s positionOPGOALand the ball’s position
OPGOALSCORED.

The HASBALL resource model is presented in Fig. 1
has an example of a resource model. In general we model
separately the transition from the theresource availableto
resource not availableand fromresource not availableto
resource available, has is the case of the model shown
in Fig. 1, where only the model of the transition from
P1 HASBALL to P1 N HASBALL is shown.

1t

2t

P1_HAS_BALL

P1_N_HAS_BALL

3t

4t

P1_OWN_GOAL

P1_OWN_SIDE

BALL_OP_GOAL

P1_OP_GOAL

BALL_OP_SIDE

P1_OP_SIDE

BALL_OWN_GOAL

BALL_OWN_SIDE

Fig. 1. HASBALL resource model for Player 1.

The resources models should be always immediate tran-
sitions since they are basically the verification of environ-
ment conditions.

B. The Robotic Behavior

The Robotic Behavior represents the basic module of the
task execution. The composition of the various behaviors
will ultimately form the Robotic Task. These are tightly
coupled with the program that runs in the robot and can
also be used to generate code (one of the planned future
features). It will also allow to monitor the task performing
by looking at the tokens traveling through the Petri Net.

The Robotic Behavior has a standard form consisting
of inputs, outputs, pre-conditions , post-conditions and the
behavior action. The pre-conditions and the post-conditions
represent sensorial information and determin respectively
the conditions to start and end the behavior. The inputs are
used by the supervisor to control the behavior execution,
while the outputs are used to keep knowledge of the
behavior success or failure. For this work we started with
three possible behaviors:Move2Ball , TakeBall2Goal
and Shoot . This three behaviors allow to perform a
complete soccer attack play and many different situations
to emerge.

In Fig. 2 is depicted theTakeBall2Goal behavior. In
this model we see the common structure that appears in
all the behaviors, except for thePre-conditions, the Post-
conditionsand theAction, which differ from behavior to
behavior. TheTB2G Action place has a dashed line only
to indicate that this place represents the core execution of
theTakeBall2Goal robotic behavior: the robotic action.
This is still a higher level representation of the model, and
at this level one cannot see what the action really does.
From Fig. 2 it also gets clear how the pre-conditions and
post-conditions influence the behavior execution.

TheAction, in it’s simplest form, can be just a movement
(e.g. go forward) but it can also be a more complex action,
represented by a more complex Petri Net (e.g. rotate to
the ball and follow it). It is in theAction Petri Net that
we will model the robot’s actions plus the uncertainty and
time issues concerning their execution.

outputs
Supervisor

P1_N_SEE_BALL

P1_OP_GOAL

P1_N_HAS_BALL

P1_SEE_BALL

P1_OP_GOAL

P1_HAS_BALL
failure

end

terminate

start

Action

Pre−conditions

P1_N_SEE_BALL

P1_N_HAS_BALL

Post−conditions

failure

P1_TB2G_END

init

P1_TB2G_Init

P1_TB2G_Destroy

Supervisor inputs

P1_TB2G_Action

P1_TB2G_SUCCESS
P1_TB2G_FAILURE

failure

P1_TB2G_TERMINATEP1_TB2G_START

failure

success
success

P1_TB2G_Idle

Fig. 2. TakeBall2Goal behavior.

The model of theTakeBall2Goal Actionassociated with
the placeTB2G Action can be seen in Fig. 3. In this
action, the uncertainty introduced reflects the fact that the
robot might not be able to proceed do the next field region.
It’s rather simple to introduce other uncertainties/failures
(e.g. the ball going to another region but the robot not
moving to another region) but we decided to keep it simple
for this case. On a successfull sequence of transitions we
have the robot plus the ball going from it’s starting region
to theOPGOALregion. Here also the time taken to take the
ball from one region to the other is considered by the use
of the stochastic timed transitions. The action Petri Net was
not depicted in the behavior figure so that the behavior Petri
Net could be more readable and to show how the various
modules can be designed apart from each other for later
integration.

B_OWN_SIDE

P1_OWN_SIDE

B_OP_SIDE

P1_OP_SIDEP1_OP_GOAL

B_OP_GOAL

P1_OWN_GOAL

B_OWN_GOAL

success success

failure

failure

success

failure
P1_TB2G_Action

success

Fig. 3. TakeBall2Goal action.

It is clear now that a behavior starts when there is a
”supervisor command” to start it, and that it stops upon
failure/success of the pre-conditions and/or post-conditions
or there is a ”supervisor command” to end the behavior.

C. The Robotic Task

Having the robotic behaviors, the robotic task is simply
an execution of those behaviors. If there weren’t any
uncertainties or failures, the execution of the task of scoring

a goal would simply be the sequential execution of the
behaviors:Move2Ballfollowed byTakeBall2Goalfollowed
by Shoot. But we know that this will not happend always
and in fact it would be the best scenario case in this task
case.

In order to control the behaviors execution we need
a supervisor . For this work we will use a very simple
supervisor that the only thing it does is to allow the
execution of any of the behaviors, but only one at a time.
To make the supervisor a little more efficient, we use the
starting pre-conditions of each behavior as a condition to
be met in order for that behavior to be selectable. Thus we
get the supervisor depicted in Fig. 4

1t

2t

3t

4t

6t

7t

8t

9t

5t

P1_N_HAS_BALL

P1_SEE_BALL

P1_HAS_BALL

P1_OP_GOAL

M2B_START

TB2G_START

SHOOT_START

ROBOT_IDLE

P1_M2B_FAILURE

P1_M2B_SUCCESS

P1_TB2G_FAILURE

P1_TB2G_SUCCESS

P1_SHOOT_FAILURE

P1_SHOOT_SUCCESS

Fig. 4. Supervisor for the Score Goal Task.

The overall task model results from the composition by
places of all the models previously addressed.

III. TASK ANALYSIS

The main purpose of the modeling using the Petri Nets
is the available analysis and the various properties that can
be studied. In this work we try to do both types of analysis:
quantitative and qualitative.

With the complete task model we can now study it’s
various properties as can be seen in the following sections.
One interesting point of the method depicted in this paper is
that, besides analysing the task itself, one can also analyse
each behavior independentely (by having the supervisor
enabling only the behavior in question). This might give
us some ideas on problematic behaviors that need to be
improved and allows the tunning of a behavior before
inserting it in the behaviors set for real use.

A. Qualitative Analysis

To perform the qualitative analysis we consider all the
transitions in the task Petri Net as immediate transitions,
using the general form of the Petri Nets. We can then use
several techniques such as Coverability Tree or Structural
Analysis to determin the following properties: Bound-
edness, Safety, Blocking, Coverability, Conservation and
Liveness.

B. Quantitative Analysis

It is in the performance analyses that the GSPNs of the
task plays its role. The modeling of the task using GSPNs
allows us to analyse the task as a Markov Decision Problem
and to take advantage of all the existing Markov Decision

Theory to determine several quantitative properties (such
as minimum time to score a goal, best action selection in
order to achieve that minimum time, steady state analysis,
etc.).

The task’s Petri Net (GSPN model) has an equivalent
Continuous Time Markov Chain (CTMC) where the state is
defined as a vector containing the number of tokens in each
place (see [8]) and an associated finite cost that depends
only on the active state and the control action selected from
a set of possible control actions. The transition probabilities
from one state to another depend only on the active state
and the selected control action. Then by uniformization of
this CTMC we get a Discrete Time Markov Chain (DTMC)
and we have our Markov Decision Problem.

In this works case, the control policy is directly related
with the supervisor’s ”decisions” i.e., it will determin the
best behavior selection at each state in order to achieve a
determined goal.

For instance, if we want to minimize the time to score
a goal, one can simply add a zero cost to the state(s)
corresponding to a scored goal and a positive cost to every
other state. The policy resulting from this minimization
problem will be the optimal policy for scoring a goal given
an initial state.

Other interesting analyses one can do in this process is
for instance the time spent in theTakeBall2Goalbehavior,
the recurrence time of theShoot behavior, and others.
This can be done by working with the properties of the
places belonging to the behaviors models. Considering the
example of the time spent on theTakeBall2Goalbehavior,
it would be equal to the sum of the time spent on every state
that contains at least one token on any place that belongs
to the TakeBall2Goalbehavior. This results can then be
used to understand possible problems in our task design,
and when applied to a real robot, it can be used not just to
improve the real task execution, but also the model itself
by comparing the real results with the simulated ones. This
will ultimately lead to the design of a task with a very high
a priori knowledge of the task execution results.

IV. CONCLUSIONS ANDFUTURE WORK

In the immediate future we expect to improve the action
models (possibly adding in a first phase the possibility of
using uncontrollable transitions and, on a second phase, un-
observable transitions) and extend the available behaviors
in order to apply the method with a real robot.

We will also extend the modeling and analysis capabili-
ties to a multi-robot environment, specially considering that
we we can have teammates and opponents playing in the
environment and that one can’t always know/predict the
adversaries actions.

REFERENCES

[1] J. Kosecka, H. Christensen and R. Bajcsy, ”Experiments in behaviour
composition”, Robotics and Autonomous Systems, vol. 19, pp. 287-
298, March 1997.

[2] A. Dominguez-Brito, M. Andersson and H. Christensen, ”A software
architecture for programming robotic systems based on the discrete
event system paradigm”, Tech. Rep. CVAP244, ISRN KTH/NA/P-
00/13-SE, September 2000.

[3] L. Montano, F. Garcia and J. Villaroel, ”Using the time petri net
formalism for specification, validation and code generation in robot-
control applications”, in The International Journal of Robotics Re-
search, vol. 19, pp. 59-76, January 2000.

[4] B. Espiau, K. Kapellos, M. Jourdan and D. Simon, ”On the validation
of robotics control systems part I: High level specification and formal
verification”, Tech. Rep. 2719, February 1995.

[5] D. Milutinovic and P. Lima, ”Petri net models of robotic tasks”, In
Proc. of IEEE 2002 Int. Conf. on Robotics and Automation (ICRA
2002), May 2002.

[6] B. Damas and P. Lima, ”Stochastic discrete event model of a
multi-robot team playing an adversarial game”, 5th IFAC/EURON
Symposium On Intelligent Autonomous Vehicles, July 2004.

[7] M. Andersen, R. Jensen, T. Bak and M. Quottrup, ”Motion planning
in multi-robot systems using timed automata”, 5th IFAC/EURON
Symposium On Intelligent Autonomous Vehicles, July 2004.

[8] C. Cassandras and S. Lafortune, ”Introduction to Discrete Event
Systems”, Kluwer Academic Publishers, 1999.

