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Abstract: This paper proposes a method for homing and docking an Autonomous Underwater
Vehicle (AUV) to a subsea Docking station (DS) by combining acoustic and optical sensing. The
AUV is assumed to be within acoustic ranging distance to the DS, whose location is otherwise
unknown a priori. The homing and docking procedure comprises two stages. In the first stage,
a Sum of Gaussian (SoG) filter is used to estimate the DS location while the AUV is guided
along an observable trajectory. Once the DS position becomes known, the vehicle performs a
homing maneuver to bring it within visual reach of the DS. In the second stage, a light beacon
navigation system is used to estimate the DS pose with respect to the AUV. Visual information
is used to update to a Simultaneous Localization And Mapping (SLAM) filter providing an
AUV-pose estimate with the accuracy required for the docking maneuver. The feasibility and
performance of the method is evaluated through Hardware-in-the-loop (HIL) simulation. The
novelty and impact of the proposed approach lies in the complementarity of the two sensing
modalities, which have not been yet demonstrated for AUV docking.
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1. INTRODUCTION

Modern marine robots (such as ROVs, HROVs, AUVs,
gliders and surface vessels) and sensors (profilers, ADCPs,
lagrangian buoys, etc. . . ) can generate vast amounts of
data to help us better understand the oceans and their
resources. Nevertheless, with a growing number of de-
ployed systems, some of which operating continuously in
permanent ocean observatories, the problem arises of how
to make these data accessible to the scientific community.
The Underwater Internet of Things (UIoT) concept has
the potential to address this issue. Having the deployed
systems networked through an UIoT may allow the ‘things’
themselves to directly provide the data to the internet
without any user interaction. This is one of the main con-
cepts behind the SUNRISE FP7 (see Petrioli et al. (2013))
project which provides a federated network of 5 testbeds
for research and experimentation. These testbeds include
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cabled sensors and systems, and provide acoustic modems
to interface with mobile systems and robots. Nevertheless,
the industrial and/or scientific use of autonomous vehicles
for inspection or mapping purposes tend to generate large
amounts of data (such as imagery) which are far greater
than those used for other applications like oceanography,
for instance. In most cases, due to the large computational
requirements needed for data analysis and map building,
such large amounts of data will need to be transferred to
an end-user computer ashore in raw format.

Nowadays, standard operations require the recovery of
the vehicle in order to download the data through a
wired or wifi connection, it not being possible to rely on
low bandwidth acoustic communications for this purpose.
Recently, other alternatives have been appearing in the
market, providing high-speed communications at short
range. This is the case with electromagnetic modems
like the WFS S300 (WFS (2014)) providing a speed
of 125 Kbps up to 10 m distance, or the BlueComm
optical modem (Sonardyne (2014)) providing up to 20
Mbps and a distance up to 200m in deep water. In both
cases, data can be downloaded by descending a modem
to the respective depth and instructing the Autonomous
Underwater Vehicle (AUV) to home-in to its vicinity.

The use of support vessels for AUV operations represents
a significant part of the total operation cost. This has mo-
tivated researchers in recent years to look for alternatives
which bypass the need for such vessels, thus advancing



towards adopting a persistent deployment. The concept
is based on using resident AUVs to pursue systematic in-
spections of submerged infrastructures on a periodic basis.
Between two operations, the AUV homes and docks to a
docking station for charging the batteries and uploading
the mission data. This method of operation is of particular
interest for deep water infrastructures where the cost of
surfacing to recover the data is prohibitive. Persistent
deployment is on the research agenda of the oil and gas
industry (Gilmour et al. (2012)) and it is also of interest
for marine science, the renewable energies (wind farms)
and defense applications.

A step towards persistent deployment was demonstrated in
the SWIMMER EU project by Evans et al. (2001). In this
approach an AUV carrying a Remoted Operated Vehicle
(ROV), is launched from a support vessel to autonomously
navigate and then to dock onto an underwater docking
station in an offshore infrastructure. The docking station
provides a connection to the AUV and from it to the
ROV, allowing a standard ROV operation without the
need of a heavy umbilical. The next step towards a fully
autonomous intervention system for sub-sea panels was
achieved with the ALIVE project by Evans et al. (2003).
It demonstrated the capability of autonomously docking
into a ROV-friendly panel using hydraulic grabs.

The LOON-DOCK Experiment of the SUNRISE-FP7
project targets the demonstration of the persistent deploy-
ment of an AUV for survey/inspection in the LOON cable
submerged infrastructure connected to the surface world
through the UIoT. In future development, a Docking Sta-
tion (DS) will be integrated within the LOON testbed, see
Alves et al. (2014). A DS, to be designed and implemented,
will be equipped with an Evologics acoustic modem acting
as a transponder for homing purposes and also providing
on-line monitoring of the AUV operation (Fig. 1). It will
also be equipped with visual light beacons (see Bosch et al.
(2016)) to allow for a robust autonomous visual based
docking. A contact-less high bandwidth communication
link will be used to download the vast amounts of data
required for mapping purposes. The complete system will
be integrated with the GATE architecture using the SUN-
SET framework (Petrioli et al. (2014)) and will be tested
by remotely launching persistent survey operations that
will be carried out by SPARUS II AUV (see Carreras et al.
(2013)) at La Spezia (Italy).

Fig. 1. Docking station concept with Sparus II AUV. An
acoustic modem on top (black) and 4 light beacons
(yellow) at the front.

In this paper, a method is proposed using range-only
acoustic measurements for homing and light-beacon local-

ization for docking, and demonstrated using Hardware-
in-the-loop (HIL) simulation. A distinctive feature of this
proposal with respect to the current state of the art is
the fact that it combines the two complementary modal-
ities. Acoustic ranging can provide reliable distance mea-
surements over large distances, but cannot provide pose
information for all the degrees of freedom that are re-
quired for docking. Optical sensing is limited in range
due to visibility constraints, but can provide very fast
and accurate updates on the pose, which are needed for
fine position control during the final stage of dock entry.
Another important aspect of this approach is the fact that
acoustic ranging and optical sensing are capabilities that
either already exist, or can be easily added to most AUVs,
due to their low cost. The same reasoning applies to the
DS, since the light beacon system is relatively inexpensive
to manufacture.

The paper is divided into sections as follows: Section 2
describes the mission strategy for homing and docking.
Section 3 describes the range-only localization as well as
the light-beacon detection and navigation. Following these
descriptions, Section 4 reports the HIL simulation results
before concluding in Section 5.

2. HOMING AND DOCKING

The DS localization for homing and docking is obtained
in 2 steps. First the AUV localizes the DS with range-
only measurements obtained by the acoustic modem (if
the DS position is unknown) and uses this approximate
position for homing. Then, once the AUV is in the vicinity
of the DS, the light beacon detection system provides feed-
back through the Simultaneous Localization and Mapping
(SLAM) navigation filter for a precise docking.

A state machine has been developed to control the various
stages of the autonomous homing and docking. First of all,
it is worth noting that there are two different scenarios to
the problem of docking.

In the first, the vehicle starts at the DS and it is requested
to execute an autonomous mission. It uses the range up-
dates in the navigation filter to reduce position uncertainty
and when the mission is finished returns to the DS.

In the second, the vehicle doesn’t know the exact position
of the DS because of loss of communication or because
its position was a priori unknown. In this case, the
vehicle must use the range-only localization (Section 3.1)
to estimate the DS location and then home towards it.

In both cases the final docking maneuver is aided by de-
tection of light beacons (see Section 3.2) which drastically
reduce the uncertainty of the DS position. Their higher
update rate compared to the range-only allow for a precise
control for the final docking maneuver.

For the sake of simplicity, only the second scenario is
detailed next (see Fig. 2), which includes the following
sequential phases:

(1) Create a waypoint far from the approximate DS
position.

(2) Navigate towards this waypoint.
(3) Use SOG filter to detect the DS following a star like

trajectory.



Fig. 2. Schematic of the mission steps to localize and dock
to the DS.

(4) If the DS is detected, create a waypoint 10m in front
of the DS. Otherwise, return to (1).

(5) Navigate towards the waypoint.
(6) Follow a trajectory towards the DS until light beacons

are detected. Otherwise, return to (4).
(7) Execute the docking maneuver.
(8) If correctly docked inform the DS to latch the AUV.

Otherwise, undock and return to (4).

The docking maneuver consists of several waypoints placed
in front of the DS entrance that the AUV must follow in
a straight line. At the end of this line, docking is finalized
by an extra command which requests the vehicle to exert
a constant force along the x axis of the AUV while keeping
its heading and depth constant for a specific period of time.

Similarly, the undocking maneuver requests the AUV to
move backwards exerting a constant force along the x axis
of the AUV while keeping the heading and depth constant
for a specific period of time.

2.1 Navigation filter

The navigation filter of the AUV is based on the well
known Extended Kalman Filter (EKF). It combines the
information on depth returned by the Pressure sensor, ve-
locities from the Doppler Velocity Log (DVL) and attitude
from the Attitude and Heading Reference System (AHRS)
to provide a Dead Reckoning (DR) navigation. This nav-
igation drifts over time and needs absolute measurements
to correct it. Those measurements can come from either
Global Positioning System (GPS) when on the surface,
Ultra-Short Baseline (USBL) with a support vessel, ranges
to a known position, or visual detections (Fig. 3).
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Fig. 3. Set of sensors that take part in the navigation
algorithm of the AUV software architecture.

When the position of the DS is known with certain
precision, its position is used to setup a landmark in
the feature-based EKF-SLAM navigation filter with the
following state vector:

x =
[
x y z u v w l1 . . . lN

]
(1)

where [x y z] and [u v w] are the position and linear
velocity vectors, and li is the landmark i pose vector
defined as:

li =
[
lxi lyi lzi lφi lθi lψi

]
(2)

those landmarks can come either from visual detection,
where they are fully defined or from range-only measure-
ments, where orientation cannot be estimated.

The navigation filter uses a constant velocity model with
attitude input:

x̂k =
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(3)

where t is the sample time, [nu nv nw] is the noise vector
and [φk θk ψk] are the Euler angles used as the filter input
uk.

In the case of range-only measurements, the observation
equation provides the expected range measurement h(xk)
which is given by the norm of the difference between the
vehicle and beacon positions at time k.

h(xk) = ||(x, y, z)− (lxi, lyi, lzi)|| (4)

The standard EKF update equations are used with R =
σ2
range.

In the case of visual detection update, refer to Palomeras
et al. (2015) for details on its implementation.

3. DS LOCALIZATION

As explained in previous sections when the position of
the DS is unknown, the range-only localization method
is needed to obtain an approximate location. Once the
vehicle homes to the vicinity of the DS the light beacon
detection provides updates to the navigation filter for a
precise docking maneuver.

3.1 Range-Only Localization

Range-only localization is a highly non-linear problem.
Given 1D measurements (range), the vehicle must be local-
ized in a higher dimensional space (3D). With an unknown
position of the beacon, a simple EKF approach is not
enough to solve the localization problem. A particularly
interesting feature is the symmetries of the possible local-
izations when the AUV follows a straight trajectory.

Several range-only localization methods have been applied
in the literature, see Vaganay et al. (2000); Newman
and Leonard (2003); Olson et al. (2006); Webster et al.
(2009); Wang et al. (2013); Blanco et al. (2008). However,



those methods are demonstrated offline after the vehicle is
recovered and no online localization is performed.

In this paper we assume that the beacon depth is known
a priori, since it is easy to measure during the DS deploy-
ment. This simplifies the problem from 3D to 2D (Fig. 4).
Depth information provided by the AUV pressure sensors
is very precise, only having to take into account the tide,
for which appropriate models are already available.
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Fig. 4. Projection of the range measurement.

During the estimation of the beacon position, we rely
on the on-board DR navigation filter based on the
DVL/AHRS/Pressure. The drift is not taken into account
because the time needed to localize the DS is small enough,
as demonstrated in Vallicrosa et al. (2014) where a 3D Sum
of Gaussian (SoG) filter with Active Localization (AL) was
used to successfully localize an acoustic beacon in a real
scenario.

At known depth, a range measurement describes a beacon
as being in any position on a circumference around the
AUV with a radius equal to the projected range and
thickness equal to the uncertainty of the measurement.
To cover this big space of possibilities one might use
a Particle Filter (PF) to represent the static beacon
position, however, the PF solution will leave empty space
without coverage. To avoid that, a much larger number
of particles could be used, but then the problem will
become intractable. Another more elaborate option is the
SoG filter, see Blanco et al. (2008). The SoG filter is
similar to the PF, but instead of using weighted particles,
it uses weighted Gaussians. It represents the believed
beacon position B according to the odometry xk and the
measurements zk:

p(B|xk, zk) ≈
N∑
i=1

υikN
(
zk;µik,Σ

i
k

)
(5)

where υik is the weight associated with each Gaussian, and
µik and Σik its mean and covariance matrix.

The Gaussians in the SoG can cover all the probability
space if they are well distributed. Moreover, an EKF is
used to correct their position according to the measure-
ments, thus improving its performance.

The SoG is initialized with the first range measurement
(Fig. 5). The filtering is carried out in two main steps.
First, the range measurement is used to update each of
the Gaussians (µik, Σik) with an EKF. Second, the weights
are updated with the innovation yik = zk − h(µik):

υik = υik−1 · exp
(
−
(
yik
)2)

. (6)

x

y

proj_rng

Fig. 5. Initialization of the SoG filter (2σ bounds).

i being the index of the Gaussian and υk−1 the previous
weight. This computed weight is always in the [0, 1] range.
The weights of the Gaussians with a small innovation are
significantly greater than those having a greater innova-
tion. With time, the Gaussians which are not consistent
with the observed ranges become negligible while those
consistently compatible will influence the estimated pose
of the beacon.

When the vehicle follows an observable path, see Vaganay
et al. (2000), the beacon is localized in a few seconds
(see Section 4). In this work, a simple approach using
a star shaped trajectory is used to avoid symmetries
and locate the beacon (Fig. 6). This trajectory is scaled
proportionally to the first measured range and it is aborted
as soon as the beacon is localized.

Fig. 6. Star shaped trajectory used for beacon localization.

3.2 Pose Estimation using Light Beacons

Acoustic localization can be very effective from medium
to long distances, but it is not so advantageous at short
distances when high precision operation is required for
successfully completing the docking maneuver. To achieve
a level of performance capable of ensuring the vehicle’s
safety during docking, visual sensing is used to provide
updates with small uncertainty and high update rate.

The proposed solution consists in placing a set of active
light beacons in distinct and known positions of the DS
(Fig. 1). Using a standard camera it is possible to detect
the lights in the images and estimate the pose between
the DS and the camera. It is worth noting that differently
from range-only localization, this method is able to provide
information on the relative orientation of the DS, with the
full 6 DOFs (3 relative translations and 3 rotations).

With the aim of facilitating the detection of the light
markers (beacons) and avoiding wrong identifications, the
markers follow a known pattern, turning off simultaneously
for 0.1 seconds every second. This blinking pattern allows
the actual markers to be discerned in the presence of



any reflection or permanent shiny spot in the scene being
viewed.

The detection technique used for field experiments is simi-
lar to the one detailed in Bosch et al. (2016), where it was
used to track multiple AUVs for cooperative navigation in
real sea conditions, and proved to be both effective and
robust.

For simulation purposes the visual tracking module has
been simplified to avoid the use of synthetic images, which
differ significantly from real images. During simulation,
the ground truth poses of both the AUV and the DS are
known, thus, the light markers can be projected into the
image-plane. In order to achieve a more realistic simulation
the light markers are considered visible only when the
distance camera-marker is smaller than 10 m, which is a
conservative value in normal visibility conditions. Further-
more, Gaussian noise has been added to the location of
the lights in the image-plane, to simulate the uncertainty
of the estimate of the center of a light in a real image.

When at least three markers have been detected, the

relative landmark pose l̂ of the DS that best fits the
observation of the markers in the image, u, is found using
non-linear least squares minimization. This is done by
searching for the values of the variable l that minimize the
re-projection error of the markers; that is, the difference
between the real observation and the projection of the
marker derived from the variable l and the calibration
parameters of the camera.

l̂ = arg min
l

n∑
i

(fl(qi)− ui)2 (7)

The variable x contains the complete pose of the DS

with respect to the camera l =
[
lcx l

c
y l

c
z l

c
φ l

c
θ l

c
ψ

]T
. The

function f computes the image projection of a marker
given l, and the position of the marker in the DS ref-
erence frame, qi. This function uses the pinhole camera
model (Zhang (2000); Hartley and Zisserman (2004)), and
assumes known intrinsic calibration parameters. Although
an approximate linear solution can be found for 4 or more
light markers using a different pose parametrization, we
are interested in the above parametrization since it can
be directly used in the docking problem. The problem is
solved with the Levenberg-Marquardt algorithm available
in the Ceres library (Agarwal et al. (2012)). As with all
iterative methods, it needs an initial guess of the variables,
which can be approximated from the range measurements
between acoustic modems. Further details on the pose
estimation problem and its performance with a varying
number of light markers can be found in Gracias et al.
(2015).

For the proper operation of the navigation filter it is
essential to have an estimate of the pose uncertainty. A
first-order approximation of the pose covariance Σl̂ can be
computed from the assumed covariance Σu of the pixel
location of the beacons in the image and the Jacobian

J(l̂) = ∂u
∂l (l̂) that relates small changes in the pose parame-

ter with small changes in the observations. The Levenberg–
Marquardt implementation provides this Jacobian at the

Fig. 7. Light markers located during preliminary experi-
ments at 10m , 6.5m, 5m and 3m from the camera.

end of the minimization. The pose covariance estimate
is given by:

Σl̂ = (J(l̂)TΣ−1
u J(l̂))−1 (8)

The uncertainty in the localization of a light in the image
is inversely dependent on the distance of the beacon from
the camera. The closer the beacon is to the camera, the
larger the projected light will be in the image, thus leading
to higher uncertainty than for far away beacons, which
appear in the image as small disks (Fig. 7).

In order to have an approximate value of this uncertainty,
the size of the lights was analyzed using a set of selected
real images from one preliminary experiment. The beacons
in the images were fitted to a 2D Gaussian distribution
centered at u, with standard deviation σ, amplitude A
and an offset c0: f(u, σ,A, c0). The results of this ex-
periment (Figure 8) show that the variation of σ can
be considered constant without significantly affecting the
final uncertainty computed. A conservative mean value of
σ = 2 pixels was chosen for the standard deviation of both
horizontal and vertical pixel uncertainties.

Fig. 8. Evolution of the standard deviation of the Gaussian
distributions fitted to the lights as a function of
distance.

4. RESULTS

Experiments were carried out in a HIL simulation. The
light beacon measurements were simulated as explained in



Section 3.2. Range measurements were simulated by using
the modulus of the difference between the position of the
AUV and the DS every 3 seconds with added Gaussian
noise, and a probability of success of measurement of 80%
to take into account communication loss.

Fig. 9. Autonomous trajectory performed by the AUV
while homing and docking.

Figure 9 shows a trajectory performed by the AUV in one
of these simulations while locating the DS and docking
to it. The AUV follows the steps previously described.
Note that both the acoustic beacon and the light beacons’
localization trajectories are aborted as soon as they are
detected.

The SoG filter detects the DS at position (0.46, 0.08, 4.0)
with an uncertainty of 2σ = (1.12, 4.47,−). The visual
landmark detector places the DS at (0.15, 0.16, 3.98) with
and uncertainty of 2σ = (0.12, 0.12, 0.04).

Comparing against the ground truth given by the simu-
lator, the position estimated using the light beacons has
an error below 0.06m in the X-Y plane, and below 0.03m
in depth which means that the funnel shaped DS is big
enough to dock the vehicle.

The DS position is added as a new landmark in the EKF
once the light beacons are detected. From this moment,
every time they are detected, the AUV/Docking positions
are corrected. This can be seen in the trajectory performed
by the AUV in Fig. 9 around position (13,−1), marked
with a red circle, where it seems that the vehicle slides to
the east. In fact, new beacon detections were introduced
in the EKF updating the AUV/docking position.

If the vehicle starts the mission from the DS, the acoustic
modem position is already defined in the EKF as a
landmark and therefore, range updates can be done during
the whole mission without waiting for the light beacon to
detect the DS. Figure 10 shows how the uncertainty, along
the east axis, grows at a reduced rate in the presence of
range updates.

Looking at the range-only localization using a SoG filter,
a strong symmetry can be observed while the AUV is fol-
lowing the first straight line of the star-shaped trajectory
(Fig. 11). When the second line starts, the small turn
of the AUV brings a discrepancy to the symmetry. This
discrepancy ensures that the correct localization is the

Fig. 10. Uncertainty of the navigation filter without and
with range updates.

bottom one. The filter correctly localizes the beacon and
quickly aborts the remaining trajectory.

Fig. 11. Odometry of the AUV with circles representing
the ranges obtained while range-only localization was
running. Observe the symmetry (red) in localization
between top and bottom.

The module for pose estimation using light beacons showed
very good results in uncertainty for both position and ori-
entation. As shown in Table 1 the uncertainty drastically
reduces as the distance between the camera and the DS
decreases. The values of the uncertainty were calculated
assuming a constant value for the noise in the detection
of the center of the lights of σ = 2 pixels as detailed in
section 3.2.

Table 1. Volume of the ellipsoid that contains
the position of the DS with a probability of
95% at different distances according to the

optical tracking.

Distance (m) 10 7.5 5 3.5

Volume (dm3) 45 27.3 16.5 4.3

5. CONCLUSIONS

This paper has presented the design and implementation
of a homing and docking algorithm for AUVs. The main



innovation of the proposed method is the combination of
a single beacon range-only localization system at large
distances, with a light beacon localization module over
short distances. This combination allows localization of the
DS from afar, while maintaining enough accuracy to suc-
cessfully perform a docking maneuver. Both systems are
conveniently combined by a state machine used for mission
control. HIL simulated results show that the homing and
docking algorithm is successful with acceptable error on
both localization systems.
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