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Abstract—This paper describes a probabilistic surface match-
ing method for pose-based bathymetry SLAM using a multibeam
sonar profiler. The proposed algorithm compounds swath profiles
of the seafloor with dead reckoning localization to build surface
patches. Then, a probabilistic implementation of the ICP is
used to deal with the uncertainty of the robot pose as well
as the measured points in a two-stage process including point-
to-point and point-to-plane metrics. A surface adaptation using
octrees and difference of normals is proposed to have ICP-derived
methods working in feature-poor or highly unstructured areas
typical of bathymetric scenarios. Moreover, a heuristic based on
the uncertainties of the surface points is used to improve the
basic algorithm, decreasing the ICP complexity to O(n). The
performance of the method is demonstrated with real data from
a bathymetric survey with Girona 500 AUV.

I. INTRODUCTION

Navigation and mapping are two fundamental problems
to achieve fully operational Autonomous Underwater Vehi-
cles (AUVs). On-board navigation systems, based on dead
reckoning, are known to suffer an unbounded drift even
when sophisticated high-end inertial navigation systems are
used [1]. Hence, it is common to aid these systems using
absolute position fixes from GPS on surface, or coming from
acoustic beacon/transponder networks when submerged [2].
State of the art methods include, for instance, Long Base Line
(LBL) systems [3], where an on-board transceiver is used to
interrogate a fixed number of transponders which are located at
a priori known positions. The calibration cost may be reduced
if single beacon/transponder methods are used instead [4]. At
the cost of decreasing the accuracy, the calibration step may
be even avoided if an inverted LBL [5] or Ultra Short Base
Line (USBL) [6] is used.

The above mentioned methods have the problem of con-
fining the robot to the limited area of coverage of the acoustic
network. Terrain-Based Navigation (TBN) methods [7] have
the potential to overcome such a limitation when an a priori
digital terrain map of the area is available. On the other hand, a
truly autonomous robot should be able to localize itself within
the environment using its own sensors without any external
infrastructure or previous knowledge of the area. This is fully
summarized in the concept of Simultaneous Localization and
Mapping (SLAM). After many years of research, there exist a
number of algorithms proposed to solve the SLAM problem,
with notable achievements mostly in land mobile robotics [8].
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Comparatively, there is still limited research done underwater,
mostly because of the physical characteristics of the water and
the environment complexity.

From the sensors vantage point, we can classify underwater
SLAM in two main categories: sonar and vision based SLAM.
Although cameras provide a large amount of high-resolution
information with fast refresh rate, their use underwater is lim-
ited by the visibility conditions of the medium. Recent years
have witnessed a number of successful, real world underwater
vision implementations of the SLAM problem [9], [10], [11],
[12]. In comparison with vision, sonar sensors may work in
bad visibility conditions, being able to penetrate deeper (∼150
m) because of the low attenuation of sound in water. However,
they provide limited information and medium to low resolution
and refresh rate. Although there are still few works in sonar-
based underwater SLAM, they are promising. There have been
reported several feature-based methods [13], [14], [15], [16],
[17], [18]. However, in a natural underwater environment, the
appearance of the features change dramatically depending on
the point of view which makes it extremely difficult to extract
them robustly. For this reason, some researchers have focused
their efforts on using featureless methods like occupancy grids
and scan matching. In [19], a SLAM algorithm based on
a particle filter (PF) was used to build an occupancy grid
of a sinkhole with the range measurements from multiple
pencil-beam sonars. The method uses a smart representation of
the environment based on octree structures, saving space and
reducing the computation time. While bathymetry (elevation)
2.5D maps have been extensively used in the context of TBN
[7], there exist few works reporting successful SLAM imple-
mentations using a multibeam sonar profiler and bathymetric
maps. The pioneering work corresponds to [20] who used cross
correlation and Iterative Closest Point (ICP) for coarse and
fine registration of bathymetric surface patches respectively.
Recently, [21] has reported the BPSLAM, a method inspired
in the DPSLAM from [22], which uses a PF as in [19] but
representing the environment as an elevation map distributed
across the ancestry of a given particle. In [23] it has been
reported MBpIC-SLAM (based on [20]). This uses a prob-
abilistic ICP for matching, an octree surface adaptation for
dealing with areas with poor information, and a heuristic based
on the uncertainties of the points in the patches to reduce the
complexity of the ICP to O(n).

The method used here for the SLAM is an evolution of the
one in [23], which is an extension to 2.5D of our previously
reported 2D SLAM framework [24]. The framework presented
here employs the same point-to-point and point-to-plane met-
rics for coarse and fine registration respectively, but proposes
a new surface adaptation method based on [25] and octrees
which is used to deal with the featureless areas typically found
in bathymetric maps. As said before, the method also uses a
heuristic based on the uncertainties of the surface points to
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improve the performance of the algorithm by reducing the ICP
complexity to O(n).

The rest of the paper is organized as follows; first the
registration algorithm is outlined in Section II, then the SLAM
algorithm is presented in Section III followed by the supporting
experimental results and conclusions in Sections IV and V.

II. REGISTRATION ALGORITHM

The proposed method is a probabilistic ICP algorithm
using point-to-point/point-to-plane association for registering
surface patches. The algorithm receives as input two surface
patches (a reference surface Sref and a new gathered surface
Snew) as well as an initial guess q0 = N(q̂0,Pq0) of the
6 degrees of freedom (DOF) displacement between them. In
this section it is explained how the stochastic point cloud
representations of the patches are extracted as well as the
method used for their registration providing an estimate of the
the real displacement qmin which minimizes the Mahalanobis
distance of the association error.

A. Forming a Surface Patch

Because multibeam sonar profilers can only produce 2D
swaths transversal to the vehicle motion, it is necessary to com-
pound them with an estimate of the vehicle trajectory to build a
2.5D surface patch. In our approach, a 6 DOF dead-reckoning
estimate of the trajectory is obtained by means of an Extended
Kalman Filter (EKF) which merges the predictions from a
simple constant velocity kinematic model with the updates
from the onboard navigation sensors: a Doppler Velocity Log
(DVL), a pressure sensor and an Attitude and Heading Refer-
ence System (AHRS). Given that, the process of compounding
the measurements with the trajectory is straightforward: Let
δi = N(δ̂i,Pδi) be one of the polar range measurements that
compose a particular sonar swath, and xi = N(x̂i,Pxi) be
the vehicle position at the time which the swath was acquired.
Then, the position of one point pi = N(p̂i,Ppi

) of the surface
patch can be obtained as:

p̂i = x̂i ⊕ g(δ̂i) (1)
Ppi

= J1⊕Pxi
JT1⊕ + J2⊕(JgPδiJ

T
g )JT2⊕ (2)

where g(.) is the polar to Cartesian conversion function,
Jg is its corresponding Jacobian and J1⊕ and J2⊕ are the
Jacobians of the compounding function ⊕ as defined in [26].
It is worth mentioning that after finishing a surface patch all
the pi points are referenced to a new frame {I} chosen to be
coincident with the vehicle pose in the middle of the sequence
previously used to build the patch. Choosing this reference
frame instead of the initial pose, produces a more convenient
uncertainty distribution among the points that form the patch
[27].

The different patches are created according to the size and
the variance of the 2.5D surfaces. Whenever a new patch
is being generated, its variance in depth is checked. If the
patch grows in variance, it means that a rich non-flat terrain
is being observed. After observing a growing variance during
a successive number of data additions (e.g. 200 times), and
after ensuring that a minimum patch size has been reached

(30m in length), the resulting cloud of points is stored and a
new patch is started. Unfortunately, the presence of areas with
lack of distinctive features will result in large patches with
an important accumulation of internal error. For this reason, a
second condition has been established to close the patch when
it reaches a maximum size (∼ 80m in length).

B. Patch Registration

To make the registration problem tractable from the com-
putational point of view, only a subset of the surface points
are used. As a consequence, the points are more scattered and
traditional point-to-point association may produce inaccurate
results. On the other hand, we have observed that although
point-to-plane registration is often cheated by noisy data and
it is not able to correct large displacements, it can improve
the registration results when applied after an initial correction
done with the point-to-point approach.

1) Point to Point Association: Given a certain point
ni = N(n̂i,Pni

) of a new patch Snew, a matching candidate
point rk = N(r̂k,Prk) of a previously existing reference
surface Sref (see Section II-C2 for insight on the selection
of candidades), and an initial guess for the displacement
between the two patches q0 = (q̂0,Pq0) obtained from
the estimated dead-reckoning trajectory, the association error
eik = N(êik,Peik

) can be obtained as:

êik = r̂k − q̂0 ⊕ n̂i (3)
Pik = Prk + J1⊕Pq0J

T
1⊕ + J2⊕Pni

JT2⊕ (4)

The matching candidate is accepted if it passes an individ-
ual compatibility test using the Mahalanobis distance:

D2 = êTikP
−1
ik êik < χ2

d,α (5)

where the acceptance threshold is set by a chi-square
distribution with d = dim(eik) and the confidence level α.
Given a point in the Sref , all the possible candidates in Snew
are tested with the objective of building a set A of compatible
points. The point in A with the minimum Mahalanobis distance
is chosen for the point-to-point association, while the full set
will be later used in the point-to-plane approach.

2) Point to Plane Association: On this stage, a set Ai of rk
points in Sref which are compatible with a particular point ni

in Snew is used to define a local plane Π(νi,di), with νi being
its normal vector and di its distance to the origin. Because of
the probabilistic nature of the proposed algorithm, it is neces-
sary to estimate the plane parameters but also its uncertainty.
In [28], the authors present a method for estimating planes
where the error of a set of samples is minimized using the
uncertainty related to the sensor range by means of a weighted
Principal Component Analysis (PCA). In our implementation,
the samples are the rk points represented by their mean and
covariance. Minimizing the plane error taking into consider-
ation such uncertainty representation resulted in a problem
too complex to be solved analytically. To be able to solve
the problem as efficiently as in [28], each point uncertainty
was approximated by the largest eigenvalue of its covariance



Fig. 1. A 3D visual concept of the idea behind octree use: two surfaces to
be matched (left); the same surfaces resampled (right).

matrix. In this way, the error ellipsoid is approximated to a
sphere, making it possible to solve the method analytically. The
minimization uses Lagrange multiplier to fit the best plane. For
a more detailed derivation, please refer to the original work.

The outcome of this plane estimation process are the
parameters ν̂i and d̂i and their associated covariance matri-
ces Pνi and Pdi . Given this, a new point ai which is the
orthogonal projection of ni over the plane can be defined as:

âi = q̂0 ⊕ n̂i − ((q̂0 ⊕ n̂i)
T ν̂i − d̂i)ν̂i (6)

Pai
=

∂âi
∂q̂0

Pq0
∂âi
∂q̂0

T

+
∂âi
∂n̂i

Pni

∂âi
∂n̂i

T

+

∂âi
∂ν̂i

Pνik
∂âi
∂ν̂i

T

+
∂âi

∂d̂i

Pdik
∂âi

∂d̂i

T

(7)

This new point ai, which is virtual and not existing in Sref ,
makes possible to calculate the point-to-plane error with the
same point-to-point procedure described in eq. 3 to 4 but using
ai instead of rk.

3) Minimization: After each association stage, a minimiza-
tion process is carried out to estimate a displacement qmin

which minimizes the addition of the Mahalanobis distance of
the association error:

qmin = argminq
∑

(εTP−1
ε ε) (8)

Being ε a vector composed of all the êik error vectors
calculated after associating all the points and Pε the block
diagonal matrix with their corresponding covariances. This
minimization is done using a stochastic least squares:

qmin = [JTP−1
ε J]−1JTP−1

ε ε (9)

being J the Jacobian matrix of the error function at the
previous estimation evaluated in all the points.

C. Scan Adaptation

This section discusses some issues related with the use
of ICP-based algorithms and proposes two methods which
improve the performance of our approach.

1) Adaptive Point Sampling: In a scenario like the one in
Fig. 1 (left), where two almost flat surfaces share a poorly
visible feature, traditional ICP-based methods may encounter
some problems. First, ICP tends to associate each point with
its closest neighbor according to a particular metric. For that
reason it may be difficult to correctly associate the feature
areas when the displacement is large (i.e. they are far from

Fig. 2. Topview of the octree (left) and resampled points (right) using the
DoN resampling method.

each other, and the proximity of flat areas may lead to a
local minimum). This particular issue may benefit from the
probabilistic ICP approach, since a more accurate description
of the error will indicate that the two features are candidates
for the matching.

A second issue is that flat areas have a weak contribution to
the success of the registration (they all look similar and there
are many matching possibilities). Moreover, in scenarios with
few features, flat areas may prevail and lead to poor matchings.
We believe that ICP algorithms have higher potential when
the used points are significant. For that reason, we propose to
use a smart sampling over the surface which reduces the size
of the point cloud by removing those points which are less
informative (see Fig. 1 (right)). Since the surface distribution
is not available, the points need to be sampled in a discrete
way. An octree structure is used to sample the scan in its most
significant areas. An area is considered significant when it has
a rich relief.

In previous works [23], the criteria used for resampling
a set of points was related with their vertical distance to
the average depth of the patch. This criteria works well for
patches obtained in a mainly planar seabed, where areas with
significant height differences correspond with relevant features.
However, in the presence of inclined terrains, the method may
wrongly classify smooth areas that are far from the average
plane just because of the slope and not because a rich relief.

The weak point of the original approach was using as a
reference the average depth of the patch, which actually defines
a horizontal plane, to analyze the relief of the patches that may
or may not be horizontal. For this reason we propose a new
solution using difference of normals (DoN) [25] which has
been proved to work properly in the segmentation of unstruc-
tured point clouds. The criteria does a principal component
analysis (PCA) of two set of points: the one corresponding
to the whole patch and the one of the points contained in a
particular cell of the octree. Then, the PCA returns 3 directions
and their 3 variances. The two directions with the largest
variances determine the plane that fits the point cloud, while
the remaining direction corresponds to the normal of that
plane. Once both normals are computed (the one for all the
patch −→np and the one for the cell −→nc), DoN can be computed
as: −→

4n = −→np −−→nc (10)

if the module of
−→
4n is grater than a threshold, which means



Fig. 3. Use of a support grid during the association time: ellipsoids for the
points r1 and r2 in Sref (left); both r1 and r2 are candidates for a point
n1 in Snew (right).

that −→np and −→nc are significantly different, the cell of the octree
is considered that contains relevant data and, therefore, will be
divided to resample more points from that region.

Fig 2 (left) shows an example of the octree subdivision
applied to a test patch from real data where the size of each
cell is inversely proportional to the richness of the area. During
the resampling phase a single point is taken for each cell.
In this way, less significant areas (bigger cells) produce less
points, while significant ones (smaller cells) produce more
(see Fig. 2 (right)). This resampling not only improves the
chances for a successful matching, even in the presence of
large displacements, but also decreases drastically the number
of points involved in the registration which greatly increases
the performance of the algorithm. In Fig. 2 the number of
points has been reduced to 918 from an original patch of 4031.

2) Association in Linear Time: Determining correspon-
dences between the points in two surfaces has a high com-
putational cost for ICP-based methods. This is mainly caused
because of the large number of different matrix operations,
including inversions, which leads to an O(n2) algorithm.
Hereafter, a method for reducing complexity by considering
the uncertainty estimates of the points, which are already
available, is proposed.

The method basically takes advantage of the fact that a
Gaussian random point pi can be graphically represented as an
ellipsoid for a desired confidence level α, and that there will be
overlapping between the ellipsoids of two points deemed com-
patible after a Mahalanobis distance test. Therefore, instead
of checking correspondences among all the points in a patch,
the search can be limited to those points whose ellipsoids
overlap. This reduction on the space of exploration decreases
the complexity of the algorithm to O(n). The process can be
easily understood by following the schematic in Fig. 3. First,
a 3D grid is generated for the Sref patch. For each point rk
in Sref , the principal axes of the Prk uncertainty ellipsoid
are obtained for a given confidence level and then, employed
to determine the occupied volume within the grid by placing
tokens inside the overlapping cells (see Fig. 3 (left)). Then, a
similar procedure is repeated for each point ni in the second
patch Snew (see Fig. 3 (right)). As it can be seen, when a
new ellipsoid is laid, it may happen that some of the cells
already contain markers from points in the Sref . This situation
determines the overlapping of the ellipsoids and therefore,
those points will be the ones considered for the Mahalanobis
compatibility test.

III. SLAM ALGORITHM

The proposed framework is a pose-based SLAM which
uses an EKF as the core of the stochastic process. The state
vector x stores the global 6 DOF vehicle positions {x1 . . .x

B
n }

corresponding with the positions previously chosen as local
reference frames {I} during the generation of the patches:

x̂k =
[
x̂Tn . . . x̂T1

]T
k

(11)

Pxk
= E([xk − x̂k][xk − x̂k]T ) (12)

A. Prediction Step

Each time a new patch is completed, a new pose is
introduced in the state vector x. The new pose is obtained
by compounding the previous vehicle pose xn with the dead-
reckoning displacement qk estimated during the generation of
the current patch:

x̂+
k+1 =

[
(x̂n⊕ q̂k)

T
x̂Tn . . . x̂T1

]T
(13)

P+
xk+1

= Fk+1Pxk
FTk+1 + Gk+1PqkG

T
k+1 (14)

with

Fk+1 =

[
J1⊕ 0
0 I

]
; Gk =

[
J2⊕
0

]
(15)

B. Matching Strategy

Whenever a newly created patch is available, it is compared
with all the previously created patches looking for match-
ings. This search is accomplished by determining intersections
between the polygons delimiting the coverage areas of the
patches (the polygons are calculated after the completion of
each patch). A new patch may potentially overlap with several
patches which may, or may not be consecutive in time (see
for instance patch number 13 in Fig. 4). As it can be also
observed, consecutive patches (such as number 1 and 2, or
8 and 9) may have a small overlapping with the new patch.
For this reason, we propose to join consecutive patches in
order to maximize the overlapping. It is worth mentioning that
this is only recommendable for patches which are consecutive
in time, since contiguous non-consecutive patches may suffer
large drift errors (e.g. patches number 1 and 6). Therefore,
the process proposed here has three steps: First, a search for
overlapping patches given a newly introduced patch. Second, a
search for consecutive patches among the previously selected
and finally, the construction of joint surface patches with those
which are found to be consecutive. The joint surface is the
result of combining all the points in the two patches and
representing them in a common {I} reference frame. In the
proposed approach, the reference frame of the earliest created
patch is chosen as the new frame for the joint patch.

C. Scan Matching

Given two overlapping scans Si and Sn with related poses
xi and xn, an initial guess of their relative displacement qin0

is necessary. This can be easily extracted from the state vector



Fig. 4. The surface patch number 13 is overlapping with the previously
existing patches numbered as 1, 2, 6, 8, 9 and 10. To improve the matching
process, consecutive patches (1 and 2 but also 8 and 9) are joined together.
As a result, four patches will take part in the matching.

using the tail-to-tail transformation:

q̂in0 = 	x̂i ⊕ x̂n (16)

Since the tail-to-tail transformation is actually a nonlinear
function of the full state vector x, the uncertainty of the initial
guess can be computed by means of its Jacobian:

Pqin0
= JPJT (17)

where

J =
∂(	x̂i ⊕ x̂n)

∂ x

∣∣∣∣
(x=x̂)

=[J2⊕ · · · 0 · · · J1⊕J	 · · · 0 ] (18)

After determining the initial guess of the relative displacement
qin0 , it is feed to the registration algorithm together with the
two patches (Si and Sn) to produce a refined estimate of the
displacement qin.

D. State Update

The displacement described in (16) defines a constraint
between two vehicle poses in the state vector which can be
expressed by means of the following measurement model:

zk = h(xk,vk) = 	xik ⊕ xnk
+ vk; (19)

where the measurement zk corresponds to the estimated dis-
placement q̂in and vk is a zero-mean white Gaussian noise
with covariance Pqin which accounts for the errors in the scan
matching process. Given this, the state can be updated with the
standard EKF update equations.

IV. EXPERIMENTAL RESULTS

For testing the new scan adaptation algorithm, a real
experimental dataset acquired in an area with a sloped seafloor
has been used. The experiment was performed with the Girona
500 AUV [29] (Fig. 5) in a sunken volcano at the Santorini
island during the Caldera 2012 Eurofleets cruise. The mission
consisted on the execution of a bathymetric survey over a lava
tongue of geologic interest found at depths between 280 and
330 m and covering an area of approximately 230 x 300 m. The
vehicle navigated at an altitude of 15 m over the seabed and, in
addition to the measurements from a multibeam echosounder,
the dataset also included navigation data from the on-board
DVL, AHRS and pressure sensor. Since the purpose of the
experiment was to cover a large area in the minimum time,
the resulting survey does not have much overlapping between

consecutive transects and only the beginning transversal track
patch allows for loop closures.

Fig. 6 shows the final elevation map of the area, while
Fig. 7 shows the different patches generated to serve as input
for the scan-matching algorithm. As it can be seen, the scenario
presents a slope of approximately 14%, with some depressions
along the tongue of lava. The patches have a very small lateral
overlapping and only those corresponding to the transversal
transect will allow the crossovers to clearly cover previously
visited areas. Because of that limitation in the dataset, we
observe small changes in the resulting map after applying the
SLAM framework. For that reason, and to demonstrate the
consistency of our method, we have proposed a second test
in which noise is artificially introduced in the initial patch
positions to slightly increase the misalignments in the original
map.

The maps in Fig. 8 were generated by rendering the result-
ing point clouds over a grid of 1m resolution and measuring
the standard deviation for each cell. Fig. 8(a) and 8(b) show
the initial maps obtained after compounding the multibeam
data over the original dead reckoning trajectory and after the
addition of noise respectively. As it can be seen, the bigger
errors are present in the top part of the map (red spots),
coinciding with the last part of the experiment where the robot
accumulated more uncertainty, and on the overlapping parts
of due to roll error. Given the predominance of errors with a
standard deviation around and below 1 m (green to blue areas),
it is difficult to assess improvements after the application of
the SLAM frameworks by just observing the red spots. For that
reason, we have included numerical results to better evaluate
the performance of the methods.

Table I shows the numerical results for the two experi-
ments. In the original dataset, after the SLAM is executed,
not much improvement can be appreciated, indeed, Fig. 8(a)
and Fig. 8(d) are practically the same. This improvement is,
in terms of the mean of the standard deviation in each grid
cell, 1.20% for the method using the distance to average patch
depth and 1.59% for the proposed method using DoN. In terms
of the total addition of standard deviations in all the cells, the
improvement is 1.20% and 1.68% respectively. In both metrics

Fig. 5. GIRONA500 AUV being deployed in Greek waters



(a) Dead reckoning (b) Dead reckoning with noise to patch positions

(c) SLAM with distance to average depth (d) SLAM with DoN

Fig. 8. Standard deviation map (in meters) of the scanned area.

Fig. 6. Corrected bathymetry rendered in 1m cells. Fig. 7. Patches subdivision over the points. In black the robot trajectory, in
red the multibeam points and in green the patches division.



Experiment
Surface adaptation Original Noise

Dead
reckoning

Sum of std 19589.368478 20343.946626
Mean of std 0,247097 0,257173

Distance
to average
depth

Sum of std 19354.091382 19354.091382
improvment 1.20% 4.87%
Mean of std 0.244129 0.244129
improvment 1.20% 5.07%

DoN

Sum of std 19260.870833 19260.870833
improvment 1.68% 5.32%
Mean of std 0.243168 0.243168
improvment 1.59% 5.45%

TABLE I. RESULTS STATISTICS SUMMARY

the improvement is bigger with the new approach than the one
using the criteria from previous work [23].

The results for the second experiment with the added noise
can be seen on the right column of table I. Both surface
adaptation methods show exactly the same results already
observed for the first experiment. Since the resampling of the
surfaces is not subject to random decisions, and noise is only
added at the patch positions and not internally, this results
are basically the consequence of the ICP matching process
converging to the same solution. Again, the results obtained
using DoN show an improvement when compared with the
previous method.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a SLAM algorithm which takes
advantage of a probabilistic framework for dealing with the
subdivision of the mapped surface into smaller patches while
taking into consideration the motion uncertainty during their
formation. The main contribution of this work is a new method
for the adaptive subsampling of the sensor data that improves
the quality of the results obtained with a previously proposed
method [23].

Preliminary tests have been presented to evaluate the
proposed method with a dataset obtained in a submerged
lava tongue. The small overlapping between the different
transects and the relatively good dead-reckoning estimate in
the experiment makes it difficult to observe large corrections in
the map. However, the results demonstrate some improvement
with the new approach, and given the intrinsic operation of the
method, we believe that this approach could be better suited for
dealing with different typologies of seafloor than the original
method.

Future work will include intensive testing and comparison
of the different sampling strategies in order to assess their true
potential. The analysis will include the use of synthetic data
which will make possible to establish a ground truth against
which the methods will be compared. Also, future works will
need to deal with the internal errors in the patches. Whenever
a patch is matched against another, only a rigid transformation
that minimizes the matching error is found, but no work has
been done to refine the patch internally to remove the errors
introduced by the dead-reckoning process.
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