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Abstract-This work presents a class of scaling functions for
Genetic Algorithms. These functions imply individual
performance to be expressed as a set of costs.
Two basic functions are obtained. Both are based in exponential
functions and contain a selectivity parameter assuring  an
adjustable degree of discernment  between individuals.  The first
is translation invariant while the second is both translation and
scale invariant.
Three examples were used to compare these scaling functions
with linear scaling. A integer linear programming, a best path
finding problem and a best path finding with deceiving
characteristics.
In all examples, exponential based functions achieved better
results than linear scaling.

I. Introduction
The choice of a fitness function can be a difficult step in
Genetic Algorithms (GA). Different fitness functions promote
different GA behaviour [6].
The use of proportional selection [4,7], linear scaling
functions tend to  produce low selective GA with a slow
convergence. In order to minimise these effects it is common
to scale the function.
Usually a fitness function  consists of  two functions [3]:

f x g h x( ) ( ( ))=

Where h is the objective function and g is a scaling function.
This work presents a different approach to the design of
scaling functions. It is assumed that the objective function
returns a cost or  a cost vector.
Based on certain conditions and on  proportional selection,
two kinds of scaling functions are obtained. One is time
invariant, thus called  static selectivity scaling function. The
other is time variant to be automatically adjusted in the GA
progress. It was called dynamic selectivity scaling function.
Both are based the exponential function.

A comparison between these functions and linear scaling  was
done with three examples:
• Integer Linear Programming (ILP)
• Best Path Finding (BPF)
• Best Path Finding with Obstacles (BPFWO)
 The third example uses obstacles, arranged in an alley
configuration,  to act like deceiving elements in the scaling
function.

II Background
The improvement of scaling functions is an important issue in
GA optimisation. Goldberg  considered three classes of
scaling functions [4,9] :
• Linear Scaling
• Sigma Truncation
• Power Law Scaling
The second is an extension of Linear Scaling. Others
extensions of  Linear Scaling were also presented. John
Grefenstette’s GENESIS system used the Windowing
Algorithm as default fitness technique [2,6]. Bramlette used
dynamic  scaling method, Dynamic Range, to assure a
constant competitive pressure [1].
Hyperbolic scaling functions are also common. Songwu Lu
and Tamer Basar achieved good results with hyperbolic
scaling functions in a systems identification problem [8].
Maza and Tidor [10, 11] used the Boltzmann scaling which
uses an exponential function. They defined some properties
for the scaling functions: translation and scaling invariance. It
was also shown that linear scaling is scale invariant but not
translation invariant and, on the other hand, the Boltzmann
scaling was translation invariant but not scale invariant.
 Nuno Gracias et. al made a comparison between linear
scaling, hyperbolic and exponential scaling functions for the
Travelling  Salesperson problem [5] and showed that latest
achieved better results.



III Approach
This work presents a different method for scaling function
design, which are deduced  from a given  set of conditions  it
must obey.

A. Framework

Let 
�

X be the population of a canonical GA with  a fixed size
of N elements. It is assumed that the scaling function can be
expressed just by a non-negative cost parameter c.  For each
time step it is defined:

ci cost of i-th element
fi=f(ci) fitness of i-th element
pi=p(ci) probability of i-th element to be selected

For all population respective vectors can be defined in the set
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Definition 1: [10] A selection procedure is translation
invariant exactly when:

� � � � � � � � �

P F C X P F C X C( ( ( ))) ( ( ( ) ))= + 0 (5)

where 
�

C0   is a vector of identical elements co.

Definition 2: [10] A selection procedure is scale invariant
exactly when:

� � � � � � � �

P F C X P F k C X( ( ( ))) ( ( ( )))= ⋅ (6)

where k is a positive scalar.

Definition 3 :  A selection procedure has fixed selectivity if,

for two elements of 
�

X with a fixed cost difference, Δc,
verifies:
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k
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for any non negatives values of c.

Observation 1 : If a selection procedure has a fixed
selectivity, then it is translation invariant if the roulette wheel
is used.
Proof:
Note that:
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B.  Static Selectivity Scaling

For an element si of 
�

X  with cost c , let Δc be a  positive
disturbance. It is assumed that Δc is small.
The desired fitness function must verify :

p f c c p f c( ( )) ( ) ( ( ))− = + >Δ ε ε1 0     and   (9)

df

dc
< ∀ >0 0   c (10)

f c c( ) > ∀ >0 0   (11)

The (9) expression assures translation invariance and fixed
selectivity for a fixed Δc. On the other hand, (10) and (11)
assure that  f is monotonous and the validation of (4).
Both Δc and ε can be considered designing constants in the
determination of a fitness function that always assures a
probability gain (1+ε)  when cost is decreased by a fixed
value Δc. This is independent of c values.  If Δc represents
the c minimal step, than (1+ε) will be the minimal probability
step on the roulette wheel.
This function must verify conditions (9), (10) and (11). The
first step is to replace p(f(c)) by (4) in (9):

f c c

F

f c

F

( )
( )

( )− = +Δ ε 1 (12)

f c c f c( ) ( ) ( )− = + ⋅Δ ε 1 (13)

By making a first order approximation it is obtained:

f c c f c
df

dc
c c( ) ( ) ( )− ≅ − ⋅Δ Δ (14)



Being  Δc  constant and applying expression (14) in (13)
gives:

df

dc
c

c
f c( ) ( )= − ε

Δ
(15)

Solving this homogeneous linear differential equation, f can
be expressed as:

f c K e c
c

( ) = ⋅
−

ε
Δ (16)

The K depends on boundary conditions.σ is defined as:

σ ε= −
Δc

(17)

Parameter σ can be interpreted as a discernment measure, i.e.,
a selectivity parameter. The higher σ is, the higher the
probability gain will be for the same Δc. Note that this gain
only depends on Δc, and not on c like others scaling
functions. This means that this function preserves its
discernment characteristic for all c values.
Being ε > 0  and Δc > 0, for positive values of K,
conditions (10) and (11) are always satisfied. K can be any
positive number, but as it   doesn’t affect selection, it is
chosen K=1.
The static selectivity scaling function can now be expressed
as:

f c e c( ) = − ⋅σ (18)

C. Dynamic selectivity scaling function
Result (18) showed a scaling function with a constant
selectivity independent of c values. This property can
complies with condition (9). Nonetheless, in this function, the

fitness of some relevant elements of 
�

X cannot be predicted.
In this section is presented a function with a fixed

relationship, between best and average cost of 
�

X . This can
be achieved by adding two more conditions:

f c( )min = 1 (19)

 f c( ) = <φ φ             1 (20)

The fitness function must verify (9), (10), (11), (19) and (20).
Applying (19) and (20) to expression (16):

K e c⋅ =− ⋅σ min 1 (21)

 K e c⋅ =− ⋅σ φ (22)

K can be obtained directly from (21):

K e c= − ⋅σ min (23)
φ can be obtained by applying (23) in (22):

φ σ= − ⋅ −e c c( )min (24)

After some algebraic manipulation σ can be expressed as:

σ φ= −
−

ln( )

minc c
(25)

The dynamic selectivity scaling function is defined by:
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= −
−

φ

(26)

This function has the same properties as (18), assuring a fixed
relation between best cost and the average cost.

Observation 2: The dynamic selectivity scaling function is
both scale invariance and translation invariance.
Proof:

Let 
�

′C   be a transformed cost by the equation

� � �

′ = ⋅ +C C Cα 0 (27)

The dynamic parameters will then be
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D. Generalised selectivity scaling functions
Functions (18) and (26) depended only on single cost
parameter. In this section they are generalised for vector of M
cost parameters.

Let C be a [ M ×1]  cost vector of one element of 
�

X :
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and f(C) a scalar function. It is wanted that, for any ci , the
following conditions are verified:
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It is assumed that f(C) can be decomposed in:
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The function can be obtained by taking steps (14) to (17).
The selectivity factors, σj , can be arranged in a selectivity
vector:

Σ Σ=
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The generalised static selectivity scaling function can now be
expressed as:

f C e
T C( ) = − ⋅Σ

(34)

Defining Cmin  as a vector, the i-th element is the minimal i-th

cost of all the members of population 
�

X . Let the dynamic
selectivity vector, Ψ, be defined as:
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The generalised dynamic selectivity scaling function can now
be expressed as :

f C e
T C C( ) ( )min= ⋅ −Ψ

(36)

Note that (36) does not assure that the best element of 
�

X  has
unitary fitness. This only happens when [ ]C C

bestof X
� = min ,

i.e., the best element has the minimal cost in every value of
the cost vector, which, generally, may not be true.
Nonetheless (36) still verifies (29), (31) and (32). And even if
condition (19) is only verified for a hypothetical-element, the
dynamic characteristics of (36) are still valid.

IV. Experimental Method
The operators used in these examples were:
• Crossover
• Mutation
• Proportional Reproduction
All simulations used populations of 40 strings. For each case,
and to have some statistical results, 500 runs of the GA were
made.

A. The Integer Linear Programming Problem
This combinatorial problem may be stated mathematically as:

 min a xj j
j

N

⋅
=

−

∑
0

1

(37)

subject to:

b x Bj j
j

N

⋅ ≥
=

−

∑
0

1

,  x j is an integer.  (38)

In this example x was restricted between 0 and 9. And N was
set to 10, resulting in a1010 dimention search space.

B. The Best Path Finding Problem
In this problem a two dimensional grid is used. The grid has a
starting point and a goal point. It can also have obstacles.
Each string  is defined by 20 instruction sequence. The
available instructions are: Up, Down, Left, Right and Nop1.
The distance to goal is the cost used to evaluate strings.

C. The Best Path Finding Problem With Obstacles
A more difficult problem can be created by adding obstacles
in an alley shape to the previous one. This can be seen in
figure 1. The cost is increased by a penalty for each obstacle
crossed.

                                                          
1 Nop stands for No Operation.



Figure 1 - The deceiving problem. Goal is inside an alley

(Goal is the square, the starting point is on centre.)

V. Results
For each example, 500 runs of the GA with a population of
40 strings and for 100 generations were made for the three
scaling functions.
The tuning of the scaling functions parameters were done
empirically for each example2.
In the ILP  example a mutation rate of 2% and a crossover
rate of 80% was used. The fitness functions were:

Linear 100 5− ⋅ c
Static Selectivity e c− ⋅0 1.

Dynamic Selectivity
e

c c

c c
ln( . ) min

min
0 1

−
−

Table 1 - Fitness functions for ILP problem

The cost value, c, is given by

c a x b x Bj j
j

N

j j
j

N

= ⋅ ⋅ ≥
=

−

=

−

∑ ∑   if 
0

1

0

1

,

otherwise    c a j
j

N

= ⋅
=

−

∑10
0

1

(maximum cost)

Figure 2 shows the average of all best results for the 500 runs
of the GA

                                                          
2 After several tests, the ones that achieved better results were chosen.
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Figure 2 - ILP (Best of  population)

A histogram of the average population in the 100th generation
for the IPL problem can be seen in figure 3.
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Figure 3 - IPL: Histogram of average population after 100
generations

In the BPF problems the mutations rates were 1% for the BPF
and 10% for the BPF with obstacles. Both had a crossover
rate of 80%.The fitness functions used were:

Linear 20 4− ⋅ c
Static Selectivity e c− ⋅3

Dynamic Selectivity
e

c c

c c
ln( . ) min

min
0 005

−
−

Table 2

The cost, c, is just the distance to goal, increased by 2 for
each obstacle bumped (in the BPFWO case). Figures 4 and 5
show the average of best of population for these two
problems. Note the deceiveness in this last example.
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VI. Conclusions
In this paper a class of scaling functions were presented. Both
are translation invariant, being the dynamic also scaling
invariant.
On the tests presented, exponential based scaling functions
achieved better results than linear scaling function.
Convergence was always faster and, for the same generation,
exponential scaling presented better solutions than linear
scaling.
Dynamic scaling achieved slightly better results than the
static scaling. On the other hand, the dynamic scaling requires
more computation time. This suggests that for large
populations the static scaling may be more suitable.
The results of the three examples suggest that exponential
scaling functions have good potentialities and should be
tested on other kind of problems.
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