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Abstract

This paper presents an emlogy smulator for the
study of certain aspeds of ealogy and biology, such
as learning, evolution and population dymies.
The simulator is an artificial world, where two
kinds of spedes can evolve: autotrophs and het-
erotrophs. Heterotrophic individuals, or critters, are
capable of moving, eating, fighting and mating.
They have a simple nervous g/stem, a neura net-
work, with a retina input. Assciative Hebhian
learning is used in the modification of synapses.
Nervous g/stem structure and physiological charac-
teristics are awded in the aitter’'s genome. Autot-
rophs are static. They are born and grow according
to a definable geographic distribution and rate.
Simulations were arried out to study learning and
behaviour evolution, in an approach as close as pos-
sible to hiological redlity. It was found that critter
learning was esentially phylogenetic, i.e., Hebhian
learning was limited to develop genetically defined
connedions, and dd not perform any significant
correlation between inputs and outputs. This g
gests that, for animals with very simple nervous
systems, behaviours evolve mainly through genetics,
as opposed to a posshle anergent scheme of rein-
forcement learning.

Interspedfic resource mmpetition was also studied.
It was found that if two similar spedes were sowed
in the world, one of them won the mmpetition. Sev-
eral explanations for this phenomena ae presented.
A drong relation was found, between the geo-
graphic distribution of autotrophs and heterotrophs.
Limit cycles of the two populations were observed.

1. Introduction

Over the last decades, two apparently independent fields of
Biology, Evolution and Neurohiology became increasingly
closer. While Evolution studies the appearance and evolu-
tion of spedes, on atime scale of hundreds of thousand of
years, Neurohiology studies the learning processat the cé-
lular level, on a time scale from semnds to a few years, i.e.
an individual’s life time.

However, these two fields are unquestionably close.
Without Evolution the nervous g/stem would not appear.
Without nervous g/stem, evolution would not have taken

the path it took. Nonetheless neither is evolution at the
level of the nervous gstem well known, nor is the role
played by the nervous g/stem in natural evolution. And
although natural seledion, the basic mechanism of evolu-
tion, is nowadays known, we only have a few clues about
how the structure and the physiology of the nervous g/stem
is transmitted &ween generations.

The main goal of this work was to test the present
knowledge abaut learning and evolution. “Can the known
biological mecdhanisms explain the evolution of organisms
with a very simple nervous g/stem?’, was the question we
tried to answer.

This work was inspired on a similar one, PolyWorld
(PW) by Larry Yaeger [1994]. Y aeger created a two dimen-
sional artificial world to simulate a smple eosystem. He
inoculated it with growing food cdls and critters. The ait-
ters had a neural network to simulate the nervous g/stem,
and were able to seg to move, to eat, to fight, and most
important, to reproduce After some simulation time, the
critters were seeking their own food and asauring the spe-
cies continuity by mating.

The reproduction of Yaeger's results was one of our
initial aims, but in our emlogical simulator some features
not present in PW were added, in order to study population
dynamics and autotroph-heterotroph relationships. We gave
the name Gaia to aur exlogical smulator. Gaia is an an-
cient Greek goddess representing Earth as a whole organ-
ism [Margulis & Sagan, 19864. This does not necessarily
mean that we totally agree with Lovelock's Gaia Hypothe-
sis, but we think that some self regulation features should
appear in our artificial world.

2. Background

In the last decades ®veral computer-based emlogy systems
have been developed. The fundamental principles of evolu-
tion dynamics were explored in systems built by Conrad
[1989 and Packard [1989. Strategy evolution on a group of
artificial ants was gudied by Colli ns and Jefferson [1997 in
AntFarm, using Finite State Automata and Neural Net-
works. Population dynamics as the result of interactions
between individuals was sudied by Taylor [Taylor et al,
1989. New medhanisms on how evolution can guide
learning were studied by [Ackley & Littman, 1993. Todd
& Miller [199] explored evolutionary seledion on learning
algorithms, for controlling organisms with simple vision
and scent sensory devices.



An example of computational emlogy is Tierra, devel-
oped by Ray [1993. Based on evolutionary programming.
Tierrais avirtual computer adapted for synthetic life, with
its own set of instructions and operating system. Ray's ap-
proach was to try to reaeate the complexity and dversity of
the Cambrian explosion, starting with hand-coded evolving
organisms.

There are few references to emlogical systems, intended
to come dose to their biological counterparts. PolyWorld
was originally direded towards the evolution of neural ar-
chitedures for complex behaviours, but the biologicaly
based reproduction and evolutionary medchanisms used
made it also a tod for studying emlogy and evolutionary
biology [Yaeger 1994. Lindgren et al [1993 studied food
webs resulting from artificial eclogies with external re-
source flows, and modelled the interactions between spe-
cies using game theory. Jonhnson [1994 created an em-
logical community with organism body-size nstraints and
studied the restihg community structure and dynamics.

3. Approach

We onsider that an emlogy simulator should work at
four levels, similarly to a natural ecosystem:

1. Apply physical lawsto arganisms, like physical restric-
tions to movement and energy use.

2. Apply biological laws to aganisms. sded in an im-
plicit or explicit way the most fit organisms, alow in-
teractions between individuals (reproduction or preda-
tion, etc.)

3. Implement the organisms nervous gstem and its
learning mechanisms.

4. Implement genome demding medhanisms, to simulate
embryo development, as well as genome recombination
mechanisms for reproduction.

These artificial easystem laws, mechanisms and struc-
ture should be as close as possble to hiological redlity.
Gaia tries to satisfy these requirements.

3.1 Overview

Gaiaisa two dimensional redangular world delimited by
walls. It can also have other obstacles read on the world
surface that may work as an allopatric spedation mecha-
nism [Curtis & Barnes, 1994. Gaia uses a meaningful col-
our code, so that inhabitants that are able to see @n easily
digtinguish its elements. Obstacles and walls are blue.
Autotrophs are red arftkterotrophs are green.

Two type of spedes can be sowed into Gaia: autotr oph
and heterotroph. Autotroph individuals work as food céls
for heterotroph beings and are the only energy source on
Gaia. Autotrophs are red toured.

Heterotrophs, or critters, play the most important role
in this artificial world, and logically, have the most com-
plex structure. They have a nervous g/stem and carry a
genome which defines sveral structural and physiological
characteristics. When a critter dies its remaining energy is
converted into a food cdl. Thisis not just a energy conser-
vation principle, but also a way to allow the emergence of

predator-prey and cannibalism relationships. Killing an-

other critter is a way of getting food. Critters have a trian-

gular shape, a geneticaly defined green colour intensity
and a genetically defined size. Their main functional
blocks are:

e Locomation: this block controls angular and linear
speed.

e Vision: alinear colour sensor array which is the only
source of information from the outside world.

* Genome: the genome has five ciromosomes, it is de-
coded at birth according to an ontogenetic develop-
mental program and is recombined in reproduction.

* Nervous g/stem: the nervous g/stem is a neural net-
work, with sensory neuronsin aretina, and with motor
neurons dedding what kind of actions the aitter will
engage in; synaptic dficacies are modified through as-
sociative Hebbian learning.

Critters also have internal variables, the state variables
and thewill variables. The state variables are:

e Health: represents the degreeof damage, deaeasing in
each collision or fight.

* Foad Value: represents the amount of energy reserves
that a critter has.

» Can Fight, Can Mate: expresssif acritter is ready to
fight or mate; thisimplements atime latency in mating
and fighting interactions; a predefined amount of time
isrequired until one @n mate (fight) again; new born
critters can not mate until they reach maturity.

The will variables are the outputs of the aitters’ nerv-
ous system motor neurons:

» Want to Eat, Want to Fight, Want to Mate: express
critter desire of eating, fighting and mating; when a
critter wants to mate, it changes its colour by adding a
red component to its green natural colour.

*  Moving, Turning : commands the Locomotion block.

The simulator was developed for a IBM/ AT based per-
sonal computer (PC), running the MS-Windows operating
system. For simulations with 40 critters, each time step

takes about 5 seconds on a 100 MHz Pentium based PC.

3.2 Gaia Physics

When designing Gaia we adapted Newton physical laws to
a simple two dimensional world. But the energy conserva-
tion principle is not verified because Gaia is not a closed
system. Autotrophs get their energy from a virtual energy
sourceé.

Mass M, was defined as being proportional to the
squared size. The moment of inertia, J, was defined as
being proportional to size. Finally kinetic energy was de-
fined by

! In Gaia only heterotroph beings disspate energy, through
collision, locomotion and metabolism.
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This formula is used for computing critter energy loss
through collision and movement.

3.3 Autotroph beings

Autotrophs do not have a nervous g/stem nor a genome
They are born at a constant hirth rate (until saturation) and
with a gaussan geographical distribution, with definable
mean and variance Becuse Gaia heterotroph beings are
monophagous predators, this acts as a limiting distribution
factor [Krebs, 1994

An autotroph energy value increases with its age by the
expression :

N
(FOCD_AN VALLE-FOCD IN_VALLE) [%-éwﬁ&mg FOCD IN_\VALLE

3.4 Heterotroph beings

Several similar spedes of heterotrophs can be sowed into
Gaia. At the beginning they al share the same genetic
pod, i.e, they are phenctipically and geneticaly identical
except for a random variation. However members of differ-
ent spedes do not interbreed, i.e., spedes are genetically
isolated. This all ows the study of interspedfic competition
and sympatric speciation [Krebs 1994

3.4.1 Vision

In Gaia, as in PW, vision is used as the only external
sensory mechanism and the most important for the guid-
ance of the basic behaviours required for survival.

The approach for the development of a vision system in
Gaia was to make it as close as posshle to a biological ret-
ina on a functional level, while taking great care with the
computational expenses. Each critter has a smulated retina
which feeads diredly to the neural network. All individuals
have equal retinas and therefore equal visual resolution.
Their visual evolution is carried out by an evolving, critter-
spedfic number of vision neurons that sample the retina
cells, and feed the information to threarnal layers.

As dated before, Gaia is a 2-dimensional world. All its
elements can be pictured as bidimensional planar shapes.
For this reason, it is not reasonable to use a vision meda-
nism more @mplex than smple linear vision, where the
rays of incoming light are projected along msie line.

In our smulation a pin-hole amera model was adapted
for circular retinas, which allows wide angle vision. Al-
though not very realigtic, the aitters can sense light over
360 dgrees. The images on the retinas are aeated using
raytracing. Each light ray that hits the sensing cdls is
traced to its origin in order to determine its intensity and
colour.

One of the biologically inspired feature is the aitters
ability to adjust their vision according to their will. They
can concentrate or expand the raytracing scanning. This
feature is a smple implementation of foveal vision and can
be roughly compared with the zooming of an optical cam-

era. This provides a way for the aitters to minimise the
effeds of low resolution retinas. By concentrating the scan
lines on the front of their “heads’ they can be more sensible
to the presence of objeds in the area they are heading to,
and can more esly identify them. On the other hand, if
they distribute them equally around their badies, they have
uniform vision and can deted any incoming attacker. The
vison “spread” can be danged dynamically during the
critters lifetime?. This could be used in a cyclic manner
although such a complex behaviour is highly unlikely to
emerge.

A good dstance perception of the surrounding objeds
can be an important competitive advantage for a critter.
With it, one @an guide itsdlf efficiently, and be able to col-
lead food near the obstacles without collision penalties.
However, low resolution retinas do not provide means to
acaurately measure the angular size of the nearby objeds,
which is the first step towards a corred evaluation of its
distance Therefore an additional source of distance infor-
mation was added to the vision system, which consists on
the attenuation of the light rays with increasing distances.
Dim stimuli can easily be associated with distant objeds,
and a growing stimulus with incoming critters or obstacles.
This attenuation makes Gaia afoggy world, where vision
decays with distance.

3.4.2 Nervous system

Gaia critters nervous g/stem is dmilar to the one used in
Yaeger's PW. It is a neural network, with a genetic en-
coded structure®. Genetic representation of the neural net-
work is based on Harp et al [1990 biological inspired
schema, which seems to capture much of the architedural
regularity of nervous systems in \antates.

The neural network is organized by areas (neuron lay-
ers) with an unidimensional structure. It has five sensory
areas (input layers), three starting from the retina (one
dedicated to each vision colour component), one receving
the value of critter’s energy, and another (optional) recev-
ing a random value. It has $x motor areas (output layers),
one for each possble behaviour: moving, turning left,
turning right, eating, mating and fighting. Finally, it has a
genetically defined number of internal areas. Each inter-
nal area can be inhibitory or excitatory, meaning that
synapses garting from that area ae excitatory (Synaptic
efficacy greater than zero) or inhibitory (synaptic dficacy
lessthan zero). Each area can have projedions (a group of
synapses) to any other area (the network can be fully reaur-
rent), including to itself.

Ontogenetic developmental program

To trand ate the genome representation to a “living” neural
network, Gaia uses an ontogenetic developmental program
that is applied to a critter at the time of birth.

The genes that make up the neural network representa-

2 At this moment this feature is disabled.

% Structure is not modified during the critter lifetime, only
synaptic efficacies, and these ae not genetically coded. In Gaia
there is no inheritance of acquired characteristiasn@rckism).



tion are: number of internal neuron areas (NINA), number
of neurons in each internal area (NN)), initial bias in each
neuron area (I1B;), bias learning rate for each neuron area
(BLR), connedion density between each pair of neuron
areas (CDj)), topological distortion between each pair of
neuron aress (TDj;), learning rate between each pair of ar-
eas [R;).

Connedion density determines the number of connec
tions between two areas in the following way:

NC,; =CD,; X NN, x NN,

where NC;j; is the number of synapses between the source
areai and the target arga

Topological distortion determines the degreeof disorder
of a projedion, i.e., the average receptive radius of the on-
nedions. That is, for a TD of 100%, synapses are mapped
in a completely random fashion. For a TD of 0%, synapses
connect contiguous stretches of neurons.

The ontogenetic developmental program can be
stated as foll ows. We start by building a matrix of the num-
ber of synapses between each area. This matrix is used in
the verification of network blueprint abnormaliti es. There
are two kind of abnormales [Harpet al, 1990]:

» fatal abnormaliti es: there is no pathway from input
to output
* minor abnormaliti es. some areas don’t have input or
output projections
Critters with fatal abnormaliti es are alled out from the
population, and in critters with minor abnormalities the
abnormal areas are ignored in the network instantiation. In
this case, genetic information about abnormal aress is pre-
served, acting like “introns” in the genofne
The following step in the developmental program is the
synaptic mapping. For each source area and for each target
area the projedions are built acocording to the TD parame-
ter. Finally the synaptic dficacies are initialized between a
definable minimum and maximum value, and neuron bias
is initialized with the values gedfied by the aitter
genome.

Network dynamics and learning

During the aitter lifetime, and at each pattern presentation,
activations are calculated as followsj, i a sensory neon

a1k+1:|: - zak EW__+§_D
e % O aferent neugons} ! I %
otherwise
k+1 — D k D
a‘t = F% Zaj [w;
0 aferent neurons}

where & isthe activation of neuron i at local time step k,
¢; istheinput a unit i (matched retina value, health value

“1t should be noted that these introns can result from an unde-
sired mutation. Their preservation provides a way for the later
recovering of the original information.

. is the connedion weight® between
neurong andi, Fensory andF are the following funtions’;

tan™ () 1
Foary () = o —
sensory —a X

wherea is a specifiable logistic slope (typically 0.5).

Activations are @lculated by areas, going from the sen-
sory areas through the motor areas. At each area, activa-
tions are updated synchronoudly. Each time a new area is
calculated a new time step is considered (k=k+1). That
way, we asaure that at each global time step’ (at each pat-
tern presentation) the signal presented at network input
propagates to the output. It should be noted that for each
area, the activations o, of afferent connedions coming
from the abowve areas or from the area itsdlf, are the activa-
tions of the previous global time step, which gives
“memory” to the network.

At the end of each global time step t, the synaptic €fi-
cacies are updated according to a Hebb rule:

5 = § +1, (3 ~05)a! -08)

where I14y is the learning rate between the area of the
source neuron and the area of the target neuron.

As Yaeger states, this smple “summing and squashing”
neuron and Hebbian update rule are marse abstractions of
the complexities present in natural nervous g/stem, but they
may capture their main information processng attributes.
Linsker's [1983 work on sdlf-organisation in the visua
system gives us a good hope on this subject.

3.4.3 Reproduction & Genetics

Gaia, like other artificial life smulators, is based on
Genetic Algorithms (GA). The main difference to a tradi-
tional GA is that reproduction is not based on an explicit
fitness function. Reproduction needs two critters at the
same time, at the same place and bath expressng the re-
production will . Thus it is amost certain that initial popu-
lations, created at random, will quickly be led to extinction.
To perform an adaptation of this population we introduced
the Steady State Genetic Algorithm (SSGA). The SSGA
asdgns an explicit fitnessto each living critter, rewarding
the number of dangs, matings and age.

When the population size drops below a predefined
critical limit, SSGA reproduces artificially acoording to the
fitness function, to restore the population size. This mode
should eventualy be turned off during smulation. If a
simulation leaves SSGA then it is considered that a Suc-
cesgul Behaviour Strategy (SBS) has been reached [Y aeger
1994].

or random value), vv;;

F(x) =

® The connection weight is equal to synaptic efficacy if the
synapse is excitatory, and equal to — synaptic efficacy if the syn-
apse is inhibitory.

® Sensory neurons are excitatory. The only way to provide
negative output to ather layers is using an output range from -1 to
+1.

" For a given critter a global time step is equal to numAreas
local time stepsnumAreasis the number of rtevork areas).



The genetic code is composed by five chromosomes, and
each chromosome an hold a variable set of eight bit genes.
Each geneis galed to use all its dynamic range and then it
is converted to Gray code.

The genetic operators used are only mutation and cross
over. Mutation works at bit level, while aossover works at
gene levd, i.e, the aosover operator can not disrupt a
gene. The mntrol parameters of these operators such as
mutation rate or number of crosover points, are wded in
the aitter's own genetic data. Although, in nature, this is
not entirely true, we hoped it would work as a sdlf tuning
GA.

The genetic code also holds physical characteristics, like
size, and neural characteristics. And, being the size of cog-
nitive structure variable, so is the genetic code. Chromo-
some 0 holds tuning parameters and physical aspeds.
Chromosome 1 holds the neural network main description.
Chromosomes 2 to 4 hold area-to-area dependency ma-
trixes.

Mutation Rate

Crossover Rate

Crossover Points

Size

Secondary Size

Colour ID

Life Spawn

Fraction of Energy to Offspring

Number of input neurons devoted to gree
Number of input neurons devoted to red
Number of input neurons devoted to blue
Number of neural areas

Array of number of neurons per area
Array of each area bias |edmg rate

Array of each area initial bias
Connection density matrix

Topological distortion matrix

Areas learning rate matrix

Chromosome 0

Chromosome 1

=]

Chromosome 2
Chromosome 3
Chromosome 4

Table 1 - Genetic structure

3.4.4 Metabolism & Interactions

One of the main characteristics of living beingsis their
ability to modify and interact with the ewvironment. An-
other characteritic of life is metabdism, i.e., the work of
al internal systems with the purpose of keeguing the entire
system alive. In Gaia, interactions can be expressed as en-
ergy (or health) exchanges between a critter and the envi-
ronment.

At each time step a critter loses internal energy (called
food value) by moving and by thinking (called vital me-
tabdism). The first is computed by the kinetic energy for-
mula, the seand is proportional to the neural network size.
A critter can also gain or lose energy or health by interad-
ing with the environment. Next we describe the basic inter-
actions. However, more cmplex interactions guch as can-
nibalism may appear as combinations of these interactions

and behwgiours.

Critter-critter fight interaction: Occurs when at least one
wants to fight. The cmbat results in a deaease of health
proportional to the opponent size. In this case there is an
advantage for being bigger than the ampgnt.

Critter-critter mating interaction: This only occurs when
bath express mating desire and bath belong to the same
spedes. The result is the birth of one offspring close to its
parents, and a deaease of the parents food value. This
energy is transferred to dfspring in the amount defined in
the genetic code.

Critter-food eating: In order to eat a food cdl, a critter
must expressits will to do so. After eating, the food value
and health are increased proportionally to the cell energy.

Critter-wall (callision): The citter gets its health de-
creased by the llision energy. Small critters lose less en-
ergy. For collisions there is an advantage in being small.

Critter’s birth: When a critter is created by mating, it is
placed in the parents neighbourhood. If it is created by the
SSGA, itis placed at random.

Critter’s death: A critter dies when its food value or
health becomes negative, or when it ages reaches its life
span. If acritter dieswith any food energy l€ft, its carcassis
turned into a food cdl. This enables hunting and cannibal-
ism interactions.

4. Results

It was important to verify the reproducibility of Yaeger's
results. The first simulations had only one initial spedes
like in PolyWorld and, even with very different world set-
tings, some cwmmon individual and group behaviour pat-
terns were present. After this, we started studying inter-
spedfic competition, predator prey dynamics and sexual
selection.

4.1 Group Behaviour

The first successul group behaviour was the reproduction
niche. It was characterised by alarge group of critters being
concentrated in a small portion of the world, rotating
around a patch of food, like a spiral galaxy. This group
behaviour reaches a high reproduction rate, and has siccess
when the autotroph have an high birth rate and a small
variance distribution. Otherwise aitters die of starvation,
because the group does not explore dficiently the sur-
rounding space It was found that if the world dmensions
were changed (for instance to take a very narrow shape)
critters regulated their linear speed to be able to rotate
without calliding. This group behaviour is smehow a mix
of Yaeger’s “frenetic joggers” and “edgenners”.

In some simulations where autotrophs had large distri-
bution variances (at least along one of the axis), the niches
started moving like flocks. The motion made posshle a
more dficient world exploration, allowing a longer lifetime
for the individuals. Figure 1 shows an example of this be-
haviour.
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Figure 1 - Example of flocks in Gaia. Circular objects are food cells, triangular ones are critters.

A very interesting and beautiful behaviour emerged be-
tween reproduction niches, the mating synchronization
behaviour. It happened when two owerlapping rotating
niches, forming an eight, synchronized their movement and
mating latency. This maximized their reproduction rate
with a strong selective advantage.

4.2 Individual Behaviour

PolyWorld known individual food related behaviours were
observed (and also the basic PolyWorld behaviour
“responding to visual stimuli by spealing upg’). New and

more complete individual behaviour strategies were found.

The two main individual behaviour strategies observed
where:

« food seeking
» obstacle avoidance

Individuals presenting good food seeking strategies were
fairly common in some smulations. Typicaly they were
also able to reproduce thus transmitting this behaviour
through generations. Food seeking strategies could be gen-
erally described as follows: increasing linear speed when
seang food, deaeasing speed and turning when not. It is
advantageous to eat as fast as posshle in the presence of
foad, because in a group of critters, the faster eats the most.
If there is no food in sight, an energy saving strategy is
adopted, which consists of turning in small circles, and
scanning the swoundings for newly grown food.

Obstacle avoidance strategies were of two kind:

» smple obstacle avoidance critters dowed down and
turned when seeing an obstacle.

 wall-following: critters moved along the walls, keg-
ing a constant distance to the wall, and turning in the
corners.

These strategies were not so common as food seeking
strategies, although also being of sdedive advantage.
Nonetheless they appeared more often in narrow shaped
worlds.

Most of this behaviours can be established by smple
colour associations, like increasing speed when seeng red
food elements (excitatory connedion from red sensory neu-
rons to linear moving motor neuron).

4.3 Learning

It was found that emerged behaviours were not the result of
asciative learning duing critters lifetime, but instead it
was the result of "natural” seledion of network structures
able to develop well adapted behaviours. Hebhian learning
does not seem to provide significant knowledge to the ait-
ters. It seams that in Gaia Hebbian learning is limited to

developing genetic pre-established connedions, i.e., learn-
ing ocaurs over generations and not during a generation (a
study of this is presented in [Pereira, Lima & Gracias,
1995]).

One of the most unexpeded phenomena was the ap-
pearance (and survival) of many non-reactive aitters. This
happened mainly in simulations where a reproduction niche
emerged. These caitters were barn with high values of ini-
tial bias for the several layers, and with very low connedion
densities. As a result, they presented constant activation
values at motor neurons, determined by bias weights. So,
the motor neuron activations were in practice static and
inherited from the parents.

Reaurrent neural networks did not perform better than
non-reaurrent neural networks. Simulations were @rried
out with non-reaurrent networks, and with general rear-
rent networks. The same behaviours emerged in bath types
of simulation.

An interesting phenomena observed was ssme “senilit y”
in the reactive aitters. It seems that sometimes, after some
age, Hebhian learning saturates g/naptic dficacies. This
clear deserves further stifdy

4.4 Intraspecific competition and spatibn

In Gaia, critters gedes compete for the same resource
food. Two competing spedes were studied. Two different
things could be expected to happen:

» gpedes populations reaching an equili brium through
competition: a constant ratio between the two spedes
(for instance 1:1) could emerge, when birth rate
equalled death rate.

e gpedation to different energy gathering strategies: one
spedes could spedate in a greater energy gathering
(greater size), and in consequence slower exploring
spedl, and the other onein a smaller energy gathering
and greater exploring speed.

The time scales for these two phenomena would be

fairly different, the last one should be several times greater.

Only the first phenomena was observed. It could be -
peded that, starting from the same genetic pod, and the
two spedes being, by this fact, aimost equal, the system
would have fixed pointsin any population ratio between the
two spedes, as predicted by the Lotka-Volterra equations
for competition [Krebbs, 1994. But what happened was
that one of the spedes won the mmpetition, and the other
extinguished (seeFigure 2). Thisis also the most common

8 Oja @ al [1997 proposed a stable Hebian leaning rule for
non-linea neurons. Biologcal plausibility of this new leaning
rule is not yet clear, but may eventually solve this problem.



phenomena in nature [Curtis & Barnes; 1994].

The first explanation for this result comes from the fact
that Gaia populations are finite (as in Nature). The system
can jump from one fixed point to another as a result of a
small disturbance Because the populations are finite, the
accumulation of this disturbances can lead to the extinction
of one of the species.

g

Number of critters

8B 8 88 8383 88

5

o

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ
mmmmmmmmmmmmm

Time (iterations * 5)

5
2
§
%
4]
g
4

Figure 2: Competing species evolution in a typical Gaia simula-
tion

The second explanation, and the most important is that
critter reproduction is "sexual"®. Somehow, the reproduc-
tion rate of a spedes (and in consegquence the birth rate) is
proportional to the probability of critters medings. In turn,
this probebility is proportional to the number of critters of
that spedes. So, when one of the spedes auffers a casua
disturbance, and its population is dightly reduced, its birth
rate is also diminished. This works as a positi ve feedback,
and the population is easily led to extinction. On the other
hand, the other spedes gets more food and increases its
population, which increases the birth rate, and also actsas a
positive feedback.

4.5 Predator-prey dynamics

Autotroph and heterotroph population sizes sows an
highly correlated evolution (see Figure 3). Heterotroph
population reaches a steady state when birth rate ejual
death rate. Birth rate is proportional to available food den-
sity, i.e., to autotroph population size. In turn, autotroph
population grows at constant rate. Equili brium is reached
when this number equals the number of autotroph individu-
als eaten, which is proportional to heterotroph population
size. Somehow the “food birth constant” defines the evi-
ronment support value for heterotroph populations. When
the food birth constant was increased, heterotroph popula-
tion average size naturally rose in direct proportion.
Other phenomena observed in autotroph-heterotroph
dynamics was gable limit cycles of autotroph and het-
erotroph numbers (see Figure 3). A period of autotroph
population growth is followed by heterotroph population
growth, and in consequence autotroph population starts to
deaease, which also leads to heterotroph population de-
crease. So, populations of autotrophs and heterotrophs pres-

® With "sexual" we mean that it is necessary the mating o two
critters for reproduction. There’s no vegetatigeroduction.

ent periodic oscill ations, which are reatively stable in
Gaia.

It was also olserved a kind of genetic drift. When autot-
roph population dropped to very low values, critters garted
to lose their ability to eat. This can be explained by the fact
that knowing how to eat was no longer of sdedive advan-
tage. These «itters would de of starvation. Being this
characterigtic out of seledion presaure, harmful mutations
would not be rejected.
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Figure 3: Autotroph heterotroph populations evolution in a typical

Gaia simulation

4.6 Self-Tuning GA

Although this was a promising method, we observed that
the mutation rate always converged to the minimum al-
lowed value. This can be eplained by a selfish attitude of
the mutation gene [Dawkins, 1976. If a geneis carrying a
high mutation rate, it is carrying a high chance of being
destroyed by a mutation. On the other hand, if it is carrying
a low mutation rate, it is carrying a lower change of dis-
ruption. This leads to the lowest value of mutation, i.e., a
higher chance of gene survival. In fact, this tuning structure
does not optimise the GA itsdlf, but the survival of the low
mutation allele.

Crosver rate and crosover points, never seaned to
converge to a particular value, making us wonder if there
was any tuning at all.

4.7 Sexual selection

A kind of “sexual seledion” emerged in Gaia. When SSGA
maintained the simulation, there was no significant sexual
seledion and critters evolved to the minimum posshble size,
as a strategy of energy saving. But when the population
went out of SSGA, the ahility to reproduce started to be
very important, and big critters become mmmon. They re-
produced easily, due to the bigger reproduction radius. It is
interesting to see how the reproduction ability presaire is
higher than the low metabolic rate gsare.

5. Conclusions

Results suggest that learning in animals with very smple
nervous gstems is mainly phylogenetic. Associative Heb-
bian learning, seemsto play a minor role when compared to
the natural seledion of genetic structures of nervous s/s
tems. It also seans that, Hebbian learning in neural net-
works with the topologies and sizes used in Gaia, cannot



explain higher associative learning matisms.

It was found a degy connedion between the mmplexity
of behaviours emerged and the difficulties posed by the
world. In worlds where was very easy to survive, only dumb
critters appeared. But if worlds were difficult (like having
few food elements), intelligent beings appear. Nature al-
ways goes the simpler way.

The behaviour study showed that the most important
feature was the reproduction ability. Any interesting be-
haviour, such as obstacle avoidance, can only “survive” if is
conneded with a good reproduction strategy. This differs
from classcal GA. In GA every new feature is expressd in
fitness In Gaia, even if one presents a good eating strategy,
this feature will disappear if one cannot i@hrce.

For competing spedes with sexual reproduction, the
importance of reproduction ability can also explain the
typical natural "winner takes all" competition result. A
competing spedes that suffers adeaeasein population size,
also suffers a global deaease in reproduction ability (the
probability of finding a mate deaeases), which acts as a
positive feelback until species extinction.

This work shown that some ewology features can be
studied in an artificial system. Nonetheless emlogy smu-
lators still have many limitations.

6. Future Work

In such a complex system as nature, it is actually imposs-
ble to produce what might be mnsidered a complete smu-
lator. There is a never ending number of features that can
be added to make it more dose to its biological counterpart.
But Gaia itsdlf is a very complex system and a more are-
fully analysis on the dfeds of some parameter variationsis
the first step.

For new versions of Gaia we are mnsidering the use of
dternative @gnitive structures, such as reinforceament
learning, conditioned leaning with modulatory synapses
and systems leaving for the GA the doice of the best
learning structure.

Ancther future diredion is the improvement of bio-
physics by introduction of temperature. Critters metabdism
losswould raise temperature, zones without critters would
deaease temperature. Food should have an optimal growth
temperature. With this, we eped to see sdf-regulation
features at extra-organism level.

The inclusion of diploidism and dominance relation-
shipsis another idea for Gaia. We are now studying a new
diploidism method and testing it in very smple eperi-
ences.
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