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Abstract

This paper presents an ecology simulator for the
study of certain aspects of ecology and biology, such
as learning, evolution and population dynamics.
The simulator is an artificial world, where two
kinds of species can evolve: autotrophs and het-
erotrophs. Heterotrophic individuals, or critters, are
capable of moving, eating, fighting and mating.
They have a simple nervous system, a neural net-
work, with a retina input. Associative Hebbian
learning is used in the modification of synapses.
Nervous system structure and physiological charac-
teristics are coded in the critter’s genome. Autot-
rophs are static. They are born and grow according
to a definable geographic distribution and rate.
Simulations were carried out to study learning and
behaviour evolution, in an approach as close as pos-
sible to biological realit y. It was found that critter
learning was essentiall y phylogenetic, i.e., Hebbian
learning was limited to develop geneticall y defined
connections, and did not perform any significant
correlation between inputs and outputs. This sug-
gests that, for animals with very simple nervous
systems, behaviours evolve mainly through genetics,
as opposed to a possible emergent scheme of rein-
forcement learning.
Interspecific resource competition was also studied.
It was found that if two similar species were sowed
in the world, one of them won the competition. Sev-
eral explanations for this phenomena are presented.
A strong relation was found, between the geo-
graphic distribution of autotrophs and heterotrophs.
Limit cycles of the two populations were observed.

1. Introduction

Over the last decades, two apparently independent fields of
Biology, Evolution and Neurobiology became increasingly
closer. While Evolution studies the appearance and evolu-
tion of  species, on a time scale of hundreds of thousand of
years, Neurobiology studies the learning process at the cel-
lular level, on a time scale from seconds to a few years, i.e.
an individual’s life time.

However, these two fields are unquestionably close.
Without Evolution the nervous system would not appear.
Without nervous system, evolution would not have taken

the path it took. Nonetheless, neither is  evolution at the
level of the nervous system well known, nor is the role
played by the nervous system in natural evolution. And
although natural selection, the basic mechanism of evolu-
tion, is nowadays known, we only have a few clues about
how the structure and the physiology of the nervous system
is transmitted between generations.

The main goal of this work was to test the present
knowledge about learning and evolution. “Can the known
biological mechanisms explain the evolution of organisms
with a very simple nervous system?” , was the question we
tried to answer.

This work was inspired on a similar one, PolyWorld
(PW) by Larry Yaeger [1994]. Yaeger created a two dimen-
sional artificial world to simulate a simple ecosystem. He
inoculated it with growing food cell s and critters. The crit-
ters had a neural network to simulate the nervous system,
and were able to see, to move, to eat, to fight, and most
important, to reproduce. After some simulation time, the
critters were seeking their own food and assuring the spe-
cies continuity by mating.

The reproduction of Yaeger’s results was one of our
initial aims, but in our ecological simulator some features
not present in PW were added, in order to study population
dynamics and autotroph-heterotroph relationships. We gave
the name Gaia to our ecological simulator. Gaia is an an-
cient Greek goddess, representing Earth as a whole organ-
ism [Margulis & Sagan, 1986]. This does not necessaril y
mean that we totall y agree with Lovelock's Gaia Hypothe-
sis, but we think that some self regulation features should
appear in our artificial world.

2. Background

In the last decades several computer-based ecology systems
have been developed. The fundamental principles of evolu-
tion dynamics were explored in systems built by Conrad
[1985] and Packard [1989]. Strategy evolution on a group of
artificial ants was studied by Colli ns and Jefferson [1992] in
AntFarm, using Finite State Automata and Neural Net-
works. Population dynamics as the result of interactions
between individuals was studied by Taylor [Taylor et al,
1989]. New mechanisms on how evolution can guide
learning were studied by [Ackley & Littman, 1992]. Todd
& Mill er [1991] explored evolutionary selection on learning
algorithms, for controlli ng organisms with simple vision
and scent sensory devices.



An example of computational ecology is Tierra, devel-
oped by Ray [1992]. Based on evolutionary programming.
Tierra is a virtual computer adapted for synthetic li fe, with
its own set of instructions and operating system. Ray’s ap-
proach was to try to recreate the complexity and diversity of
the Cambrian explosion, starting with hand-coded evolving
organisms.

There are few references to ecological systems, intended
to come close to their biological counterparts. PolyWorld
was originall y directed towards the evolution of neural ar-
chitectures for complex behaviours, but the biologicall y
based reproduction and evolutionary mechanisms used
made it also a tool for studying ecology and evolutionary
biology [Yaeger 1994]. Lindgren et al [1993] studied food
webs resulting from artificial ecologies with external re-
source flows,  and modelled the interactions between spe-
cies using game theory. Jonhnson [1994] created an eco-
logical community with organism body-size constraints and
studied the resulting community structure and dynamics.

3. Approach

We consider that an ecology simulator should work at
four levels, similarly to a natural ecosystem:
1. Apply physical laws to organisms, li ke physical restric-

tions to movement and energy use.
2. Apply biological laws to organisms: select in an im-

pli cit or expli cit way the most fit organisms, allow in-
teractions between individuals (reproduction or preda-
tion, etc.)

3. Implement the organisms nervous system and its
learning mechanisms.

4. Implement genome decoding mechanisms, to simulate
embryo development, as well as genome recombination
mechanisms for reproduction.
These artificial ecosystem laws, mechanisms and struc-

ture should be as close as possible to biological  realit y.
Gaia tries to satisfy these requirements.

3.1 Overview

Gaia is a  two dimensional rectangular world delimited by
walls. It can also have other obstacles spread on the world
surface, that may work as an allopatric speciation mecha-
nism [Curtis & Barnes, 1994]. Gaia uses a meaningful col-
our code, so that inhabitants that are able to see can easil y
distinguish its elements. Obstacles and walls are blue.
Autotrophs are red and heterotrophs are green.

Two type of species can be sowed into Gaia: autotroph
and heterotroph. Autotroph individuals work as food cell s
for heterotroph beings and are the only energy source on
Gaia. Autotrophs are red coloured.

Heterotrophs, or critters, play the most important role
in this artificial world, and logicall y, have the most com-
plex structure. They have a nervous system and carry a
genome which defines several structural and physiological
characteristics. When a critter dies its remaining energy is
converted into a food cell . This is not just a energy conser-
vation principle, but also a way to allow the emergence of

predator-prey and cannibali sm relationships. Killi ng an-
other critter is a way of getting food. Critters have a trian-
gular shape, a geneticall y defined green colour intensity
and a geneticall y defined size. Their main functional
blocks are:
• Locomotion: this block controls angular and linear

speed.
• Vision: a linear colour sensor array which is the only

source of information from the outside world.
• Genome:  the genome has five chromosomes, it is de-

coded at birth according to an ontogenetic develop-
mental program and is recombined in reproduction.

• Nervous system: the nervous system is a neural net-
work, with sensory neurons in a retina, and with motor
neurons deciding what kind of actions the critter will
engage in; synaptic eff icacies are modified through as-
sociative Hebbian learning.

Critters also have internal variables, the state var iables
and the will variables. The state variables are:
• Health: represents the degree of damage, decreasing in

each collision or fight.
• Food Value: represents the amount of energy reserves

that a critter has.
• Can Fight, Can Mate: expresses if a critter is ready to

fight or mate; this implements a time latency in mating
and fighting interactions; a predefined amount of time
is required until one can mate (fight) again; new born
critters can not mate until they reach maturity.

The will variables are the outputs of the critters’ nerv-
ous system motor neurons:
• Want to Eat, Want to Fight, Want to Mate: express

critter desire of  eating, fighting and mating; when a
critter wants to mate, it changes its colour by adding a
red component to its green natural colour.

• Moving, Turning : commands the Locomotion block.

The simulator was developed for a IBM/ AT based per-
sonal computer (PC), running the MS-Windows operating
system. For simulations with 40 critters, each time step
takes about 5 seconds on a 100 MHz Pentium based PC.

3.2 Gaia Physics

When designing Gaia we adapted Newton physical laws to
a simple two dimensional world. But the energy conserva-
tion principle is not verified because Gaia is not a closed
system. Autotrophs get their energy from a virtual energy
source1.

Mass M, was defined as being proportional to the
squared size. The moment of inertia, J, was defined as
being proportional to size. Finall y kinetic energy was de-
fined by

                                                       
1 In Gaia only heterotroph beings dissipate energy, through

collision, locomotion and metabolism.
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This formula is used for computing critter energy loss
through collision and movement.

3.3 Autotroph beings

Autotrophs do not have a nervous system nor a genome
They are born at a constant birth rate (until saturation) and
with a gaussian geographical distribution, with definable
mean and variance.  Because Gaia heterotroph beings are
monophagous predators, this acts as a limiting distr ibution
factor  [Krebs, 1994].

An autotroph energy value increases with its age by the
expression :
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3.4 Heterotroph beings

Several similar species of heterotrophs can be sowed into
Gaia. At the beginning they all share the same genetic
pool, i.e., they are phenotipicall y and geneticall y identical
except for a random variation. However members of differ-
ent species do not interbreed, i.e., species are geneticall y
isolated. This allows the study of interspecific competition
and  sympatric speciation [Krebs 1994].

3.4.1 Vision

In Gaia, as in PW, vision is used as the only external
sensory mechanism and the most important for the guid-
ance of the basic behaviours required for survival.

The approach for the development of a vision system in
Gaia was to make it as close as possible to a biological ret-
ina on a functional level, while taking great care with the
computational expenses. Each critter has a simulated retina
which feeds directly to the neural network. All i ndividuals
have equal retinas and therefore equal visual resolution.
Their visual evolution is carried out by an evolving, critter-
specific number of vision neurons that sample the retina
cells, and feed the information to the internal layers.

As stated before, Gaia is a 2-dimensional world. All it s
elements can be pictured as bidimensional planar shapes.
For this reason, it is not reasonable to use a  vision mecha-
nism more complex than simple linear vision, where the
rays of incoming light are projected along a simple line.

In our simulation a pin-hole camera model was adapted
for circular retinas, which allows wide angle vision. Al-
though not very reali stic, the critters can sense light over
360 degrees. The images on the retinas are created using
raytracing. Each light ray that hits the sensing cell s is
traced to its origin in order to determine its intensity and
colour.

One of the biologicall y inspired feature is the critters
abilit y to adjust their vision according to their will . They
can concentrate or expand the raytracing scanning. This
feature is a simple implementation of foveal vision and can
be roughly compared with the zooming of an optical cam-

era. This provides a way for the critters to minimise the
effects of low resolution retinas. By concentrating the scan
lines on the front of their “heads” they can be more sensible
to the presence of objects in the area they are heading to,
and can more easil y identify them. On the other hand, if
they distribute them equally around their bodies, they have
uniform vision and can detect any incoming attacker. The
vision “spread” can be changed dynamically during the
critters li fetime2. This could be used in a cycli c manner
although such a complex behaviour is highly unli kely to
emerge.

A good distance perception of the surrounding objects
can be an important competiti ve advantage for a critter.
With it, one can guide itself eff iciently, and be able to col-
lect food near the obstacles without colli sion penalties.
However, low resolution retinas do not provide means to
accurately measure the angular size of the nearby objects,
which is the first step towards a correct evaluation of its
distance. Therefore an additional source of distance infor-
mation was added to the vision system, which consists on
the attenuation of the light rays with increasing distances.
Dim stimuli can easil y be associated with distant objects,
and a growing stimulus with incoming critters or obstacles.
This attenuation makes Gaia a foggy world, where vision
decays with distance.

3.4.2 Nervous system

Gaia critters’ nervous system is similar to the one used in
Yaeger’s PW. It is a neural network, with a genetic en-
coded structure3. Genetic representation of the neural net-
work is based on Harp et al [1990] biological inspired
schema, which seems to capture much of the architectural
regularity of nervous systems in vertebrates.

The neural network is organized by areas (neuron lay-
ers) with an unidimensional structure. It has five sensory
areas (input layers), three starting from the retina (one
dedicated to each vision colour component), one receiving
the value of critter’s energy, and another (optional) receiv-
ing a random value. It has six motor areas (output layers),
one for each possible behaviour: moving, turning left,
turning right, eating, mating and fighting. Finall y, it has a
geneticall y defined number of internal areas. Each inter-
nal area can be inhibitory or excitatory, meaning that
synapses starting from that area are excitatory (synaptic
eff icacy greater than zero) or inhibitory (synaptic eff icacy
less than zero). Each area can have projections (a group of
synapses) to any other area (the network can be full y recur-
rent), including to itself.

Ontogenetic developmental program

To translate the genome representation to a “ li ving” neural
network, Gaia uses an ontogenetic developmental program
that is applied to a critter at the time of birth.

The genes that make up the neural network representa-

                                                       
2 At this moment this feature is disabled.
3 Structure is not modified during the critter li fetime, only

synaptic eff icacies, and these are not geneticall y coded. In Gaia
there is no inheritance of acquired characteristics (Lamarckism).



tion are: number of internal neuron areas (NINA), number
of neurons in each internal area (NNi), initial bias in each
neuron area (IBi), bias learning rate for each neuron area
(BLRi), connection density between each pair of neuron
areas (CDij), topological distortion between each pair of
neuron areas (TDij), learning rate between each pair of ar-
eas (LRij).

Connection density determines the number of connec-
tions between two areas in the following way:

NC CD NN NNi j i j i j, ,= × ×
where NCij is the number of synapses between the source
area i and the target area j.

Topological distortion determines the degree of disorder
of a projection, i.e., the average receptive radius of the con-
nections. That is, for a TD of 100%, synapses are mapped
in a completely random fashion. For a TD of 0%, synapses
connect contiguous stretches of neurons.

The ontogenetic developmental program can be
stated as follows. We start by building a matrix of the num-
ber of synapses between each area. This matrix is used in
the verification of network blueprint abnormaliti es. There
are two kind of abnormalities [Harp et al, 1990]:

• fatal abnormaliti es: there is no pathway from input
to output

• minor abnormaliti es: some areas don’ t have input or
output projections

Critters with fatal abnormaliti es are culled out from the
population, and in critters with minor abnormaliti es the
abnormal areas are ignored in the network instantiation. In
this case, genetic information about abnormal areas is pre-
served, acting like “introns” in the genome4.

The following step in the developmental program is the
synaptic mapping. For each source area and for each target
area the projections are built according to the TD parame-
ter. Finall y the synaptic eff icacies are initiali zed between a
definable minimum and maximum value, and neuron bias
is initiali zed with the values specified by the critter
genome.

Network dynamics and learning

During the critter li fetime, and at each pattern presentation,
activations are calculated as follows, if j  is a sensory neuron
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where ai
k  is the activation of neuron i at local time step k,

ξ i  is the input at unit i (matched retina value, health value

                                                       
4 It should be noted that these introns can result from an unde-

sired mutation. Their preservation provides a way for the later
recovering of the original information.

or random value), wij  is the connection weight5 between
neurons j and i, Fsensory and F are the following functions6:
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where α is a specifiable logistic slope (typically 0.5).
Activations are calculated by areas, going from the sen-

sory areas through the motor areas. At each area, activa-
tions are updated synchronously. Each time a new area is
calculated a new time step is considered (k=k+1). That
way, we assure that  at each global time step7 (at each pat-
tern presentation) the signal presented at network input
propagates to the output. It should be noted that for each
area, the activations ai

k  of afferent connections coming
from the above areas or from the area itself, are the activa-
tions of the previous global time step, which gives
“memory” to the network.

At the end of each global time step t, the synaptic eff i-
cacies are updated according to a Hebb rule:

( )( )s s a aij
t

ij
t

sl tl i
t

j
t+ = + − −1 05 05η , . .

where η sl tl,  is the learning rate between the area of the
source neuron and the area of the target neuron.

As Yaeger states, this simple “summing and squashing”
neuron and Hebbian update rule are coarse abstractions of
the complexities present in natural nervous system, but they
may capture their main information processing attributes.
Linsker’s [1988] work on self-organisation in the visual
system gives us a good hope on this subject.

3.4.3 Reproduction & Genetics

Gaia, li ke other artificial li fe simulators, is based on
Genetic Algorithms (GA). The main difference to a tradi-
tional GA is that reproduction is not based on an explicit
fitness function. Reproduction needs two critters at the
same time, at the same place and both expressing the re-
production will . Thus it is almost certain that initial popu-
lations, created at random, will quickly be led to extinction.
To perform an adaptation of  this population we introduced
the Steady State Genetic Algorithm (SSGA). The SSGA
assigns an explicit fitness to each li ving critter, rewarding
the number of eatings, matings and age.

When the population size drops below a predefined
criti cal limit , SSGA reproduces artificially according to the
fitness function, to restore the population size. This mode
should eventually be turned off during simulation. If a
simulation leaves SSGA then it is considered that a Suc-
cessful Behaviour Strategy (SBS) has been reached [Yaeger
1994].

                                                       
5 The connection weight is equal to synaptic efficacy if the

synapse is excitatory, and equal to − synaptic efficacy if the syn-
apse is inhibitory.

6 Sensory neurons are excitatory. The only way to provide
negative output to other layers is using an output range from -1 to
+1.

7 For a given critter a global time step is equal to numAreas
local time steps (numAreas is the number of network areas).



The genetic code is composed by five chromosomes, and
each chromosome can hold a variable set of  eight bit genes.
Each gene is scaled to use all it s dynamic range and then it
is converted to Gray code.

The genetic operators used are only mutation and cross-
over. Mutation works at bit level, while crossover works at
gene level, i.e., the crossover operator can not disrupt a
gene. The control parameters of these operators such as
mutation rate or number of crossover points, are coded in
the critter’s own genetic data. Although, in nature, this is
not entirely true, we hoped it would work as a self tuning
GA.

The genetic code also holds physical characteristics, li ke
size, and neural characteristics. And, being the size of cog-
niti ve structure variable, so is the genetic code. Chromo-
some 0 holds tuning parameters and physical aspects.
Chromosome 1 holds the neural network main description.
Chromosomes 2 to 4 hold area-to-area dependency ma-
trixes.

Chromosome  0 Mutation Rate
Crossover Rate
Crossover Points
Size
Secondary Size
Colour ID
Life Spawn
Fraction of Energy to Offspring

Chromosome 1 Number of input neurons devoted to green
Number of input neurons devoted to red
Number of input neurons devoted to blue
Number of  neural areas
Array of number of neurons per area
Array of each area bias learning rate
Array of each area initial bias

Chromosome 2 Connection density matrix
Chromosome 3 Topological distortion matrix
Chromosome 4 Areas learning rate matrix

Table 1 - Genetic structure

3.4.4 Metabolism & Interactions

One of the main characteristics of  li ving beings is their
abilit y to modify and interact with the  environment. An-
other characteristic of li fe is metabolism, i.e., the work of
all i nternal systems with the purpose of keeping the entire
system ali ve. In Gaia, interactions can be expressed as en-
ergy (or health) exchanges between a critter and the envi-
ronment.

At each time step a critter loses internal energy (called
food value) by moving and by thinking (called vital me-
tabolism). The first is computed by the kinetic energy for-
mula, the second is proportional to the neural network size.
A critter can also gain or lose energy or health by interact-
ing with the environment. Next we describe the basic inter-
actions. However, more complex interactions such as can-
nibali sm may appear as combinations of these interactions

and behaviours.
Critter-critter fight interaction: Occurs when at least one

wants to fight. The combat results in a decrease of  health
proportional to the opponent size. In this case there is an
advantage for being bigger than the opponent.

Critter-critter mating interaction: This only occurs when
both express mating desire and both belong to the same
species. The result is the birth of one offspring close to its
parents, and a decrease of the parents’ food value. This
energy is transferred to offspring in the amount defined in
the genetic code.

Critter-food eating: In order to eat a food cell , a critter
must express its will t o do so. After eating, the food value
and health are increased proportionally to the cell energy.

Critter-wall (colli sion): The critter gets its health de-
creased by the colli sion energy. Small critters lose less en-
ergy. For collisions there is an advantage in being small.

Critter’s birth: When a critter is created by mating, it is
placed in the parents’ neighbourhood. If it is created by the
SSGA, it is placed at random.

Critter’s death: A critter dies when its food value or
health becomes negative, or when it ages reaches its li fe
span. If a critter dies with any food energy left, its carcass is
turned into a food cell . This enables hunting and cannibal-
ism interactions.

4. Results

It was important to verify the reproducibilit y of Yaeger's
results. The first simulations had only one initial species
li ke in PolyWorld and, even with very different world set-
tings, some common individual and group behaviour pat-
terns were present. After this, we started studying inter-
specific competition, predator prey dynamics and sexual
selection.

4.1 Group Behaviour

The first successful group behaviour was the reproduction
niche. It was characterised by a large group of critters being
concentrated in a small portion of the world, rotating
around a patch of food, li ke a spiral galaxy. This group
behaviour reaches a high reproduction rate, and has success
when the autotroph have an high birth rate and a small
variance distribution. Otherwise critters die of starvation,
because the group does not explore eff iciently the sur-
rounding space. It was found that if the world dimensions
were changed (for instance to take a very narrow shape)
critters regulated their linear speed to be able to rotate
without colli ding. This group behaviour is somehow a mix
of Yaeger´s “frenetic joggers” and “edge runners”.

In some simulations where autotrophs had large distri-
bution variances (at least along one of the axis), the niches
started moving li ke flocks. The motion made possible a
more eff icient world exploration, allowing a longer li fetime
for the individuals. Figure 1 shows an example of this be-
haviour.



Figure 1 - Example of flocks in Gaia. Circular objects are food cells, triangular ones are critters.

A very interesting and beautiful behaviour emerged be-
tween reproduction niches,  the mating synchronization
behaviour. It happened when two overlapping rotating
niches, forming an eight, synchronized their movement and
mating latency. This maximized their reproduction rate
with a strong selective advantage.

4.2 Individual Behaviour

PolyWorld known individual food related behaviours were
observed (and also the basic PolyWorld behaviour
“responding to visual stimuli by speeding up” ). New and
more complete individual behaviour strategies were found.

The two main individual behaviour strategies observed
where:

• food seeking
• obstacle avoidance

Individuals presenting good food seeking strategies were
fairly common in some simulations. Typicall y they were
also able to reproduce, thus transmitting this behaviour
through generations. Food seeking strategies could be gen-
erall y described as follows: increasing linear speed when
seeing food, decreasing speed and turning when not. It is
advantageous to eat as fast as possible in the presence of
food, because in a group of critters, the faster eats the most.
If there is no food in sight, an energy saving strategy is
adopted, which consists of turning in small circles, and
scanning the surroundings for newly grown food.

Obstacle avoidance strategies were of two kind:
• simple obstacle avoidance: critters slowed down and

turned when seeing an obstacle.
• wall -following: critters moved along the walls, keep-

ing a constant distance to the wall , and turning in the
corners.

These strategies were not so common as food seeking
strategies, although also being of selective advantage.
Nonetheless they appeared more often in narrow shaped
worlds.

Most of this behaviours can be establi shed by simple
colour associations, li ke increasing speed when seeing red
food elements (excitatory connection from red sensory neu-
rons to linear moving motor neuron).

4.3 Learning

It was found that emerged behaviours were not the result of
associative learning during critters li fetime, but instead it
was the result of "natural" selection of network structures
able to develop well adapted behaviours. Hebbian learning
does not seem to provide significant knowledge to the crit-
ters. It seems that in Gaia Hebbian learning is limited to

developing genetic pre-establi shed connections, i.e., learn-
ing occurs over generations and not during a generation (a
study of this is presented in [Pereira, Lima & Gracias,
1995]).

One of the most unexpected phenomena was the ap-
pearance (and survival) of many non-reactive critters. This
happened mainly in simulations where a reproduction niche
emerged. These critters were born with high values of ini-
tial bias for the several layers, and with very low connection
densities. As a result, they presented constant activation
values at motor neurons, determined by bias weights. So,
the motor neuron activations were in practice static and
inherited from the parents.

Recurrent neural networks did not perform better than
non-recurrent neural networks. Simulations were carried
out with non-recurrent networks, and with general recur-
rent networks. The same behaviours emerged in both types
of simulation.

An interesting phenomena observed was some “senilit y”
in the reactive critters. It seems that sometimes, after some
age, Hebbian learning saturates synaptic eff icacies. This
clear deserves further study8.

4.4 Intraspecific competition and speciation

In Gaia, critters species compete for the same resource:
food. Two competing species were studied. Two different
things could be expected to happen:
• species populations reaching an equili brium through

competition: a constant ratio between the two species
(for instance 1:1) could emerge, when birth rate
equalled death rate.

• speciation to different energy gathering strategies: one
species could speciate in a greater energy gathering
(greater size), and in consequence slower exploring
speed, and the other one in a smaller energy gathering
and greater exploring speed.

The time scales for these two phenomena would be
fairly different, the last one should be several times greater.

Only the first phenomena was observed. It could be ex-
pected that, starting from the same genetic pool, and the
two species being, by this fact, almost equal, the system
would have fixed points in any population ratio between the
two species, as predicted by the Lotka-Volterra equations
for competition [Krebbs, 1994]. But what happened was
that one of the species won the competition, and the other
extinguished (see Figure 2). This is also the most common

                                                       
8 Oja et al [1991] proposed a stable Hebian learning rule for

non-linear neurons. Biological plausibilit y of this new learning
rule is not yet clear, but may eventually solve this problem.



phenomena in nature [Curtis & Barnes; 1994].
The first explanation for this result comes from the fact

that Gaia populations are finite (as in Nature). The system
can jump from one fixed point to another as a result of a
small disturbance. Because the populations are finite, the
accumulation of this disturbances can lead to the extinction
of one of the species.
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Figure 2: Competing species evolution in a typical Gaia simula-
tion

The second explanation, and the most important is that
critter reproduction is "sexual"9. Somehow, the reproduc-
tion rate of a species (and in consequence the birth rate) is
proportional to the probabilit y of critters meetings. In turn,
this probabilit y is proportional to the number of critters of
that species. So, when one of the species suffers a casual
disturbance, and its population is slightly reduced, its birth
rate is also diminished. This works as a positi ve feedback,
and the population is easil y led to extinction. On the other
hand, the other species gets more food and increases its
population, which increases the birth rate, and also acts as a
positive feedback.

4.5 Predator-prey dynamics

Autotroph and heterotroph population sizes shows an
highly correlated evolution (see Figure 3). Heterotroph
population reaches a steady state when birth rate equal
death rate. Birth rate is proportional to available food den-
sity, i.e., to autotroph population size. In turn, autotroph
population grows at constant rate. Equili brium is reached
when this number equals the number of autotroph individu-
als eaten, which is proportional to heterotroph population
size. Somehow the “food birth constant” defines the envi-
ronment support value for heterotroph populations. When
the food birth constant was increased, heterotroph popula-
tion average size naturally rose in direct proportion.

Other phenomena observed in autotroph-heterotroph
dynamics was stable limit cycles of autotroph and het-
erotroph numbers (see Figure 3). A period of autotroph
population growth is followed by heterotroph population
growth, and in consequence autotroph population starts to
decrease, which also leads to heterotroph population de-
crease. So, populations of autotrophs and heterotrophs pres-

                                                       
9 With "sexual" we mean that it is necessary the mating of two

critters for reproduction. There’s no vegetative reproduction.

ent periodic oscill ations, which are relatively stable in
Gaia.

It was also observed a kind of genetic drift. When autot-
roph population dropped to very low values, critters started
to lose their abilit y to eat. This can be explained by the fact
that knowing how to eat was no longer of selective advan-
tage. These critters would die of starvation. Being this
characteristic out of selection pressure, harmful mutations
would not be rejected.
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Figure 3: Autotroph heterotroph populations evolution in a typical
Gaia simulation

4.6 Self-Tuning GA

Although this was a promising method, we observed that
the mutation rate always converged to the minimum al-
lowed value. This can be explained by a selfish attitude of
the mutation gene [Dawkins, 1976]. If a gene is carrying a
high mutation rate, it is carrying a high chance of being
destroyed by a mutation. On the other hand, if it is carrying
a low mutation rate, it is carrying a lower change of dis-
ruption. This leads to the lowest value of mutation, i.e., a
higher chance of gene survival. In fact, this tuning structure
does not optimise the GA itself, but the survival of the low
mutation allele.

Crossover rate and crossover points, never seemed to
converge to a particular value, making us wonder if there
was any tuning at all.

4.7 Sexual selection

A kind of “sexual selection” emerged in Gaia. When SSGA
maintained the simulation, there was no significant sexual
selection and critters evolved to the minimum possible size,
as a strategy of energy saving. But when the population
went out of SSGA, the abilit y to reproduce started to be
very important, and big critters become common. They re-
produced easil y, due to the bigger reproduction radius. It is
interesting to see how the reproduction abilit y pressure is
higher than the low metabolic rate pressure.

5. Conclusions

Results suggest that learning in animals with very simple
nervous systems is mainly phylogenetic. Associative Heb-
bian learning, seems to play a minor role when compared to
the natural selection of genetic structures of nervous sys-
tems. It also seems that, Hebbian learning in neural net-
works with the topologies and sizes used in Gaia, cannot



explain higher associative learning mechanisms.
It was found a deep connection between the complexity

of behaviours emerged and the diff iculties posed by the
world. In worlds where was very easy to survive, only dumb
critters appeared. But if worlds were diff icult (li ke having
few food elements), intelli gent beings appear. Nature al-
ways goes the simpler way.

The behaviour study showed that the most important
feature was the reproduction abilit y. Any interesting be-
haviour, such as obstacle avoidance, can only “survive” if is
connected with a good reproduction strategy. This differs
from classical GA. In GA every new feature is expressed in
fitness. In Gaia, even if one presents a good eating strategy,
this feature will disappear if one cannot reproduce.

For competing species with sexual reproduction, the
importance of reproduction abilit y can also explain the
typical natural "winner takes all " competition result. A
competing species that suffers a decrease in population size,
also suffers a global decrease in reproduction abilit y (the
probabilit y of finding a mate decreases), which acts as a
positive feedback until species extinction.

This work shown that some ecology features can be
studied in an artificial system. Nonetheless, ecology simu-
lators still have many limitations.

6. Future Work

In such a complex system as nature, it is actuall y impossi-
ble to produce what might be considered a complete simu-
lator. There is a never ending number of features that can
be added to make it more close to its biological counterpart.
But Gaia itself is a very complex system and a more care-
full y analysis on the effects of some parameter variations is
the first step.

For new versions of Gaia we are considering the use of
alternative cogniti ve structures, such as reinforcement
learning, conditioned leaning with modulatory synapses
and systems leaving for the GA the choice of the best
learning structure.

Another future direction is the improvement of bio-
physics by introduction of temperature. Critters metabolism
loss would raise temperature, zones without critters would
decrease temperature. Food should have an optimal growth
temperature. With this, we expect to see self-regulation
features at extra-organism level.

The inclusion of diploidism and dominance relation-
ships is another idea for Gaia. We are now studying a new
diploidism method and testing it in very simple experi-
ences.
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