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This paper presents a novel approach for combining a set of registered images into a composite mosaic
with no visible seams and minimal texture distortion. To promote execution speed in building large area
mosaics, the mosaic space is divided into disjoint regions of image intersection based on a geometric cri-
terion. Pair-wise image blending is performed independently in each region by means of watershed seg-
mentation and graph cut optimization. A contribution of this work – use of watershed segmentation on
image differences to find possible cuts over areas of low photometric difference – allows for searching
over a much smaller set of watershed segments, instead of over the entire set of pixels in the intersection
zone. Watershed transform seeks areas of low difference when creating boundaries of each segment. Con-
straining the overall cutting lines to be a sequence of watershed segment boundaries results in significant
reduction of search space. The solution is found efficiently via graph cut, using a photometric criterion.
The proposed method presents several advantages. The use of graph cuts over image pairs guarantees the
globally optimal solution for each intersection region. The independence of such regions makes the algo-
rithm suitable for parallel implementation. The separated use of the geometric and photometric criteria
leads to reduced memory requirements and a compact storage of the input data. Finally, it allows the effi-
cient creation of large mosaics, without user intervention. We illustrate the performance of the approach
on image sequences with prominent 3-D content and moving objects.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Image blending is the final and often very important step in pro-
ducing high quality mosaics. Radiometric variations in overlapping
views and violation of certain scene assumptions commonly made
– rigidity, stationary, and (or) planarity – lead to geometric misa-
lignments and photometric differences. Upon blending, these usu-
ally result in degrading artifacts, such as blurry regions or artificial
seams.

In this paper, we are interested in developing an image blending
algorithm capable of producing seamless 2D mosaics and preserv-
ing the appearance and clarity of object textures while dealing
with misalignments resulting from strong 3-D content. A primary
motivation for this work is the creation of large-area underwater
habitat mosaics capable of being interpreted by a human expert.
This application stresses the need to preserve the consistency of
textures which are of large importance in the successful recogni-
tion of benthic structures. We favor blending using contributions
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from a single image for each mosaic point, while minimizing the
intensity discrepancies along the boundary lines of overlapping
images. Additionally, we are interested in obtaining and comparing
fast methods that could be applied in near real time.

The paper is organized as follows. The rest of this section over-
views relevant work on image blending and provides some back-
ground on two techniques that are central to this paper, the
watershed transform and graph cut optimization. Section 2 intro-
duces the watershed blending approach for the case of two images,
followed by the extension to multiple images. Section 3 illustrates
the application on selected data sets. Sections 4 and 5 present rel-
evant quantitative comparisons of our method against both pixel-
level and multi-label graph cut approaches. Section 6 extends the
method to the blending of textures over 3-D surfaces. Finally Sec-
tion 7 provides a summary and conclusions.

1.1. Related work and background

The approaches to image stitching in the literature can be
divided into two main classes [1]. Transition smoothing and opti-
mal seam finding.

Transition smoothing methods, commonly referred to as feath-
ering or alpha blending, take the locations of seams between
images as a given and attempt to minimize the visibility of seams
ing using watersheds and graph cuts, Image Vis. Comput. (2008),
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by smoothing. A traditional approach is multiresolution splining by
Burt and Adelson [2], where the images are decomposed into a set
of band-pass components, and joined using a weighted average
over a transition zone which is inversely proportional in size to
the band frequency. Multiresolution splining has been extensively
used for blending images in 2-D panoramas [3] and 3-D models [4].
Recent transition smoothing approaches include the multiresolu-
tion blending using wavelets [5] and the gradient domain blending
[1,6]. Gradient domain methods reduce the inconsistencies due to
illumination changes and variations in the photometric response of
the cameras since dissimilarities in the gradients are invariant to
the average image intensity. However, they require recovering
the blended image from a gradient description. For a general case,
there is no image that exactly matches the gradient field. A least-
squares solution can be found by solving a discrete Poisson equa-
tion, at a high computational cost.

Optimal seam finding methods, in contrast, place the seam
between two images where intensity differences in their area
of overlap are minimal [7,8]. The method proposed in this paper
fits in this class, and is therefore related to previous work. Davis
[8] describes an image blending method for sequences with
moving objects over a static background. It computes the rela-
tive photometric difference between two images, and searches
for the dividing boundary along the low intensity of the differ-
ence image using Dijkstra’s algorithm. No details are given on
how the starting and ending points of the boundaries are de-
fined. These points are required for the use of Dijkstra’s algo-
rithm. Uyttendaele et al. [9] search for regions of difference
(ROD) among images using thresholds over the image difference.
Each ROD is assigned to just one image by computing the min-
imum weight vertex cover over a graph representation of
weighted RODs. This is done exhaustively for 8 or less vertices,
and by a randomized approximation for more. However, there
is little control over the shape or sizes of the RODs, and it is
not clear how the quality of the results scales with the number
of RODs. Agarwala et al. [6] use graph cuts to find the contribu-
tion regions among several images where each pixel is treated
independently. Pixel labeling is performed in general terms, by
minimizing over all images at the same time. To find a solution,
an iterative alpha-expansion graph cut algorithm was used. The
application of multi-label graph cuts requires a potentially large
number of graph-cut iterations (which grows with the number
of labels). In contrast, our approach constrains the problem by
dividing the mosaic space into large disjoint regions using a geo-
metric criterion of distance to camera centers. We independently
solve a single binary labeling problem for each region, releasing
the need for iterative approximations. Since only one graph-cut
is performed per region, the total optimization time for our
method is in the order of a single graph-cut operation inside
each multi-label alpha-expansion iteration. Section 5 demon-
strates that our approach is more suited to the processing of
large sets of images, without user intervention.

1.1.1. Watershed transform
The watershed transform [10] is a region-based segmentation

approach whose intuitive idea is that of a topographic relief
flooded by water: watersheds are the divide lines of the domains
of attraction of rain falling over the region. The reader is referred
to [11] for an extended review of several existing definitions of
the watershed transform and associated algorithms, with both
sequential and parallel implementations.

The image processing literature provides a large number of
application examples of watersheds, such as 2-D/3-D region
and surface segmentation [4] and in contour detection [12,13].
Nguyen et al. [14] address the issue of lack of smoothness con-
trol of the segmentation result. The authors establish a connec-
Please cite this article in press as: N. Gracias et al., Fast image blend
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tion between the watershed segmentation and energy-based
segmentation methods. Using a distance-based definition for
the watershed line, they derive an energy function whose mini-
mization is equivalent to the watershed segmentation. The main
advantage is to take into account a priori knowledge of bound-
ary smoothness or shape. Li et al. [13], illustrated the advantage
of using clusters of pixels to reduce the algorithmic complexity
of finding approximate object contours in images, given a coarse
user input. Our paper aims at the same benefit, but in the differ-
ent domain of automated mosaic blending. In [15], an algorithm
is developed for the compositing of grayscale images based on
several morphological operators leading to the definition of wa-
tershed lines over a correlation image. As presented, the algo-
rithm is limited to the blending of 2 images, which restricts its
applicability. Related to this, Soille [16] proposes a method based
on the segmentation of the gradient intensity, which is suited to
process an arbitrary number of large multispectral images, pro-
vided that none of the image domains is completely included
in the union of the domains of all others. Both methods in
[15,16] use a marker-controlled segmentation approach to prop-
agate labels until a dividing line is found. The label propagation
paradigm uses local intensity or intensity gradients to guide the
dividing lines towards object contours. This condition promotes
sensitivity to strong radiometric differences, caused for example
by transient objects, non-rigid structure or inaccuracies in the
registration. It also stresses the relevance of removing spurious
or dynamic features [16], either automatically or through user
interaction. This contrasts with the approach in our paper where
we explicitly define the cost associated with the visibility of the
seam. A global minimum is found for each pair of overlapping
images, thus strongly reducing the sensitivity to radiometric
and registration artifacts. Additionally, we show that this
approach can be easily extended to deal with blending over
3-D surfaces.

1.1.2. Graph cuts
Many of the problems that arise in early vision can be naturally

expressed in terms of energy minimization. In the last few years, a
new approach to solving these problems has gained wide accep-
tance, based on graph cuts from combinatorial optimization. The
basic technique is to construct a specialized graph representing
for the energy function, such that the minimum cut on the graph
also minimizes the energy (either globally or locally). The mini-
mum cut, in turn, can be computed very efficiently by maximum
flow algorithms. These methods have been successfully used for
a wide variety of vision problems, including image restoration
[17,18], stereo and motion [19–21], image synthesis [22] and more
recently in image blending [6,23].

The classical use of graph cuts in computer vision is to solve
pixel-labeling problems. The input is a set of pixels P and a set of
labels L. The goal is to find a labeling f (i.e., a mapping from P to
L) which minimizes an energy function in the standard form

Eðf Þ ¼
X

p2P

DpðfpÞ þ
X

p;q2N

Vp;qðfp; fqÞ; ð1Þ

where N � P � P is a neighborhood system on pixels. DpðfpÞ de-
fines the cost of assigning the label fp to the pixel p, while
Vp;qðfp; fqÞ represents the cost of assigning the labels fp; fq to the
adjacent pixels p and q (used to impose spatial smoothness).
Graph cut techniques often provide solutions with important the-
oretical properties, namely the global minimum [17,24,25,20], or
a local minimum that is within a known factor of the global min-
imum. The later is also referred as a local minimum in a strong
sense [18]. For the case of binary labels, Eq. 1 is a particular case
of the Ising model, and the global minimum can be found over a
single graph cut computation [24].
ing using watersheds and graph cuts, Image Vis. Comput. (2008),
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2. Image blending with watersheds and graph cuts

The watershed/graph cut approach divides the regions of im-
age intersection into sets of disjoint segments then finds the
labeling of the segments that minimizes intensity differences
along the seam. By labeling we refer to the association of each
watershed segment to one of the images. By seam we refer to
the combined path that separates neighboring segments that
have different labels.

2.1. Segmentation of the intersection region

The watershed transform divides an input surface into a set of
disjoint regions around local minima. When used on a similarity
surface, created from the intersection of a given pair of images, it
aggregates the areas where the images are least similar. These
are the areas to be avoided when looking for the best seam be-
tween the images.

Direct application of the watershed algorithm to an image of
intensity difference generally results in over-segmentation, i.e.,
the creation of a large number of very small regions due to the
presence of many surface minima. To avoid over-segmentation
the image is smoothed prior to the application of the watershed
algorithm. For all the image sets of this paper, good results were
achieved using a Gaussian low pass filter with a standard deviation
r of 1.4 pixels. The effect of varying r on the performance of the
algorithm is presented and discussed in Section 4.

An example of watershed segmentation and blending using two
registered images from an underwater sequence of a coral patch is
shown in Figs. 1 and 2. Blending using simple geometric criteria is
inadequate; the average image (Fig. 1(c)) is blurry, and filling pix-
Fig. 1. Original images used for the watershed blending example (a and b) and exampl
image center (d).

Please cite this article in press as: N. Gracias et al., Fast image blend
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els with the contribution from the image with the closest center
produces a visible seam (Fig. 1(d)). Fig. 2 presents the absolute im-
age difference and the watershed result over the low pass filtered
difference. At this point we could blend the images by simply asso-
ciating each watershed segment to the closest image center
(Fig. 2(d)). Although not perfect, it improves greatly over the sim-
ple geometric algorithms (Fig. 1(c and d)).

2.2. Graph cut labeling

The visibility of the seams can be significantly reduced by
penalizing the photometric difference along the seams. A suitable
way to reduce such visibility is to cast the assignment of the wa-
tershed segments as an energy minimization problem and use
graph cuts to find a solution.

For the simple case of 2 images, we start by considering 4 re-
gions illustrated in Fig. 3(a), associated with the image domains
and their intersection. Let I1w and I2w be the images to be blended,
already warped into a common (mosaic) reference frame. Let R12

be the mosaic frame region were the pixels are closer to the center
of image 1 and secondly closer to image 2. Region R21 is defined as
the opposite. The union of R12 and R21 completely defines the inter-
section of I1w and I2w. We refer to R10 and R20 as the areas outside
the intersection region where the mosaic points are closer to the
center of image 1 and 2 respectively. All regions R12, R21, R10 and
R20 are mutually exclusive, i.e., have no intersection.

A given watershed segment i is represented by a binary image
mask Si. A possible labeling solution is represented by the vector
L of n binary labels (where n is the number of watershed seg-
ments), that associates each segment with one of the images.
Therefore we have the equivalences LðiÞ ¼ 0() Si 2 U1 and
es of purely geometric blending – average over intersection area (c) and closest to

ing using watersheds and graph cuts, Image Vis. Comput. (2008),



Fig. 2. Absolute value of the grey-level image difference (a), watershed segmentation over the inverted, low-pass filtered difference (b), and segmentation outline over the
closest-to-center blending (c). Simple watershed blending obtained by associating each segment to the closest image center (d).
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LðiÞ ¼ 1() Si 2 U2, where U1 and U2 represent the sets of seg-
ments that belong to image 1 and 2, respectively.

We denote D1 and D2 as the n-vectors containing the costs of
assigning each segment to each image. Conversely, V is the n� n
matrix such that Vði; jÞ contains the cost of having Si and Sj associ-
ated with different images. We define Ddiff ðSi; SjÞ as the vector of
intensity differences between I1w and I2w along the common bound-
ary of regions Si and Sj. For color images, each element of Ddiff con-
tains the largest difference over all channels. If Si and Sj are not
neighbors (i.e., no common boundary) then Ddiff ðSi; SjÞ is null.

Having introduced the notation, we define the cost as follows.
The assignment costs penalize the segments that are neighbors
to R10 and are attributed to image 2 and vice-versa, whereas the
interaction costs penalize the dissimilarity along common
boundaries,

D1ðiÞ ¼ kDdiffðSi;R20Þkp

D2ðiÞ ¼ kDdiffðSi;R10Þkp

Vði; jÞ ¼ kDdiffðSi; SjÞkp

where k � kp is the p-norm. We define a cost function as

CðLÞ ¼
X

i

ðD1ðiÞ � LðiÞ þ D2ðiÞ � LðiÞÞ þ
X

i;j

Vði; jÞ � ðLðiÞ � LðjÞÞ ð2Þ

where LðiÞ ¼ 1� LðiÞ and � is the exclusive OR.
The cost function above is in the form of Eq. 1. An efficient algo-

rithm exists based on a max-flow approach, which guaranties glo-
bal minimization [26]. The condition for applicability and
guarantee of global minimum is that the cost function be regular,
defined as

Vijð0;0Þ þ Vijð1;1Þ 6 Vijð0;1Þ þ Vijð1;0Þ
Please cite this article in press as: N. Gracias et al., Fast image blend
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where Vijðli; ljÞ; li; lj 2 f0;1g refers to the costs of each combination
of having segments i and j attributed to each of the images. Our cost
function is regular since Vijð0;0Þ ¼ Vijð1;1Þ ¼ 0, Vijð0;1ÞP 0 and
Vijð1;0ÞP 0 for all i, j.

Fig. 3 illustrates the outcome of the process using p ¼ 1. Com-
paring to the simple watershed blending result from the previous
section (Fig. 2(d)), two main improvements are noticeable: (1)
photometric criterion helps to preserve the most prominent scene
features such as the sponge on the right; (2) use of boundary con-
ditions defined by R10 and R20 eliminated the seams at the limits of
the image intersection areas.

2.3. Dealing with multiple images

Sections 2.1 and 2.2 described the watershed/graph cut algo-
rithm operating on a pair of images. Extension to any number
of images assumes known image-to-mosaic coordinate transfor-
mations, and requires dividing the mosaic space in disjoint re-
gions of image intersection (ROII). These regions are obtained
from the first and second closest maps. We refer to the first closest
map as the two-dimensional array that, for each element ðu; vÞ,
contains the index of the image whose center is the closest to
ðu; vÞ. Conversely, the second closest map contains the indices to
the second closest image. Fig. 5 (top left and top center) provides
a graphical representation of these regions for one of our test
sequences.

Let Rij denote the mosaic region where, simultaneously, image i
is the closest image and image j is the second closest. Every pair of
overlapping images i and j will create a ROII, which is defined as
ROIIi;j ¼ Rij [ Rji. Both closest maps and the ROIIs are defined only
by geometric (registration) parameters and can be computed very
ing using watersheds and graph cuts, Image Vis. Comput. (2008),



Fig. 3. Example of graph cut labeling over the watershed segments – regions involved in computing the cost function (a), optimal labeling (b) and resulting blending (c).

Fig. 4. Four of the original images from the outdoor panoramic sequence (top row) and watershed blending result (bottom image), cropped over the area containing moving
people.
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efficiently. Once the ROIIs are defined, then pair-wise image blend-
ing is performed independently in each region, as described previ-
ously for the case of two images.

From an implementation point of view it should be noted that
we are using geometric and photometric criteria separately – the
initial computation of the ROIIs is purely geometric while the pos-
terior watershed blending is purely photometric. This separation
allows for a very compact memory usage. All the required input
data for the watershed blending is stored in just four arrays: the
Please cite this article in press as: N. Gracias et al., Fast image blend
doi:10.1016/j.imavis.2008.04.014
first and second closest maps, and their corresponding image tex-
ture mosaics. These arrays have the dimensions of the final mosaic.
Such compact storage is of major importance when processing
large data sets and large mosaics.

3. Results

The performance of the approach is illustrated on two distinct
sequences.
ing using watersheds and graph cuts, Image Vis. Comput. (2008),
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The first data set is a panoramic sequence of an outdoor scene,1

captured under rotation, with multiple moving pedestrians. It was
initially used by Uyttendaele et al. [9] and more recently by Agarw-
ala et al. [6]. The sequence is available as a stack of seven images, al-
ready warped into the mosaic frame. Since the location of the image
center was not readily available for computing the closest and sec-
ond closest maps, it was estimated by computing the homography
that un-warps each image domain into a standard image rectangle
of 3:2 proportions. The central point of the rectangle was considered
as the image center. Alternatively one could use a distance transform
directly over the binary mask of the image domain, for the same pur-
pose. Fig. 4 contains a sub-set of the original images and the result-
ing watershed mosaic. The mosaic shows no visible cuts over the
people, except for the cases where a cut is unavoidable. An example
of this is the area over the feet of a man on the lower right, for which
there is no possible cut that could either include or exclude him
totally.

The second sequence contains 10 underwater images of a coral
reef patch. The motion between pairs of images was estimated
based on a planar model for the environment [27,28]. The use of
this model resulted in registration inaccuracies over the areas of
strong 3-D structure. The first closest map, second closest map
and the watershed blending contribution map are shown in the
upper row of Fig. 5. The lower row shows the mosaics resulting
Fig. 5. Underwater sequence – first closest map (top left), second closest map (top cente
contribution (bottom left) and mosaic from watershed blending (bottom right). The are

Please cite this article in press as: N. Gracias et al., Fast image blend
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from the closest contribution and watershed segmentation. The
watershed/graph cut blending provides a realistic rendering of
the scene, by cutting around the prominent benthic structures
(such as rocks and coral heads). The areas where the improvement
is most visible are the center and lower left regions.

4. Comparison to pixel-level binary graph cut blending

A central idea in this paper is that watershed segmentation
greatly reduces the search space for finding contribution bound-
aries without affecting the seam quality, when compared to
searching over all individual pixels in the intersection zone.
Searching over individual pixels would allow for an arbitrarily
shaped seam, whereas our method imposes the seam to be formed
by the boundaries of the watershed segments. Therefore, it is rele-
vant to compare both approaches in terms of execution speed and
image difference along the seams. For this purpose, a pixel-level
equivalent of our method was implemented, using 8-connectivity
to compute the neighboring costs for each pixel.

Using the mosaic of Fig. 5 of 1172� 795 pixel, comparative
results were obtained for several values of r (the standard devia-
tion of the low pass Gaussian filter), in the range r 2 ½0:85� pixel.
Fig. 6 shows the effect of r on the number of watershed segments
and their average size. The curves are related by their product
r) and the watershed blending contribution map (top right). Mosaic from the closest
as of most visible improvement are over the center and lower left.

ing using watersheds and graph cuts, Image Vis. Comput. (2008),
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being equal to the size of the mosaic. The size of the watershed
segments grows approximately linearly with r and ranges from
46 to 920 pixels.

Fig. 7 illustrates the effect of varying the average segment size
on the seam costs and total execution times for both methods.
The seam cost is defined as the sum of absolute image differences
along the seam. As a base-line for comparison, we consider the cost
associated with using the closest-contribution (Fig. 5, lower left),
and normalize the results by it. The seam cost is approximately
6% higher for segments less than 100 pixels and grows up to 18%
for segments around 900 pixels.

The execution time for the watershed blending decreases signif-
icantly with increasing segment sizes up to 100 pixels and is
approximately constant above that value, where it is roughly 6
times faster than the pixel-level blending. For segments less than
80 pixels the computation of the cost terms is the dominant term.
This term primarily depends on the accumulated length of the
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watershed boundaries, which in turn depends on the number of
segments and their smoothness. The combined computation time
for low pass filtering, watershed segmentation and graph cut opti-
mization is approximately constant and invariant with the seg-
ment size.

All execution times refer to a 3.0 GHz Intel Pentium processor
running Matlab 6.5. The components of the watershed/graph cut
blending method were implemented in C, with the exception of
the low pass filtering and the watershed segmentation for which
efficient implementations exist in Matlab. C++ code for construct-
ing the graphs and finding the minimal cuts is available on the
internet [26].

A good compromise between execution times and seam cost is
obtained for watershed segments of around 100 pixels. This is
achieved without any noticeable effects on the seam quality.
Although the threshold for detecting visible seams may vary from
person to person, in this example the seams only became apparent
for normalized costs of more than 80%. In conclusion, the speed in-
crease of the graph-cut minimization easily offsets the added com-
putational cost of the watershed segmentation, even for small
segments of tens of pixels.

One may ask if the final boundary from pixel labeling is gener-
ally somewhere near the watershed result. Having studied this is-
sue, we have determined that the watershed boundary can be close
to the pixel-level boundary for some cases and relatively far away
for others. However, for all cases, the cost function of the wa-
tershed seam pixel labeling is typically flat in the vicinity of the
minimum, suggesting the presence of different solutions with rel-
atively similar costs for the seam placement problem.

5. Comparison to multi-label graph cut blending

In the context of image blending, the use of multi-label graph
cuts was introduced recently by Agarwala et al. [6]. Pixel labeling
is performed by optimizing simultaneously over all images.

This section presents a comparison of our method against mul-
ti-label graph cut optimization. For this comparison we build upon
an efficient implementation recently used for comparing and eval-
uating methods for energy minimization in Markov random fields
[29,30]. Source code is available on the web [29]. The required
adaptation dealt only with the definition of the assignment and
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interaction costs. These costs mirror the”seam objective of match-
ing colors” as described in [6]. This objective assigns a cost based
on the sum of absolute color intensity differences along the seam,
and attributes a large penalty to pixels from invalid images. Simi-
larly, an alpha-expansion algorithm was employed, which termi-
nates when no expansion is able to reduce the cost.

To illustrate the performance of both approaches under similar
conditions, we conducted experiments using the two image se-
quences of Section 3. The results of each approach were similar
for both sequences. Due to space limitations, we present detailed
quantitative results only for the underwater sequence, since it
comprises a larger number of images. The test consisted of running
the four different methods (closest blending, pixel-level binary
graph cut, multi-label graph cut and our approach) over subsets
ranging from 3 to 10 images. The results were evaluated in terms
of cost and execution time.

The results regarding normalized cost are plotted on the left
hand side of Fig. 8. The multi-label graph cut method obtains the
best results with an average slightly above 30%, followed by the
pixel-level binary graph cut (39%) and the watershed method
(44%). This is due to the fact that the optimization over multiple
labels is less constrained than the other two methods, which opti-
mize over the 2 closest images. All three methods are significantly
below the empirical visibility threshold of 80%.

The right hand side plot in Fig. 8 presents the total execution
times which are normalized by the area of the mosaic. The execu-
tion times for the pixel-level binary graph cut and for our approach
include the creation of the closest and second closest maps, since
these are pre-requisites of both methods.

The most distinctive feature is the steep increase of the compu-
tation time for the multi-label graph cut method. This is justified
by the fact that the increase on the number of images (labels) re-
sults in the increase of the number of required alpha-expansions.
For N labels, each expansion implies solving N elementary graph
cut operations [26]. Since each label competes against all others,
the elementary graph cut operations are performed in large graphs,
proportional to the area of the mosaic. This contrasts with the pro-
posed scheme of using binary graph cuts (both watershed and pix-
el-level), where the increase of the execution time is significantly
lower. For the 10 image case, the ratio of execution speeds between
the multi-label graph cut and the watershed graph cut method is
more than ten fold. This example illustrates the appropriateness
Please cite this article in press as: N. Gracias et al., Fast image blend
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of the proposed method for dealing with the blending of large im-
age sets.

6. Extension to image blending in 3-D

The approach in this paper can be suitably extended to image
blending over 3-D surfaces. This section describes an extension,
and provides an illustrative example using a 3-D relief model of
a coral colony.

The surface model was estimated from matched point projec-
tions over a set of six underwater images, using standard struc-
ture-from-motion techniques. This resulted in a planar patch
approximation to the real surface, comprising 273 triangles
(Fig. 9, top).

Two images were selected to provide texture (Fig. 9, middle
row). Prior to blending, the images were independently projected
into the 3-D surface. The two resulting textured surfaces were flat-
tened [31] by orthographic projection onto a plane (Fig. 9, bottom
row). This plane was defined as being perpendicular to the optical
axis of the most central image (from the set of six), and passing
through the centroid of the 3-D points. The resulting flattened tex-
tures are close approximations to ortho-rectified views since, for
this dataset, the plane is approximately parallel to the average
plane of the sea bottom.

Watershed segmentation was applied to the difference of the
flattened textures, as described in Section 2. The normal of the 3-
D surface was computed at the centroid of each segment.

The 3-D blending problem was cast an optimization problem, to
balance both geometric and photometric criteria. The chosen geo-
metric criterion was the minimal angle between the normal of the
surface at the centroid of each segment and the vector uniting the
centroid to the camera optical center. It promotes minimum tex-
ture distortion, by choosing the least slanted image to contribute
to each segment. As a photometric criterion, the difference of
intensities along common borders of the segments was used.

Fig. 10 shows the results of blending over the 3-D surface and
the improvement obtained by combining both criteria. The top
row illustrates the assignment using the geometric criterion alone.
The roughness of the surface results in a small number of faces
being separated from the two main regions and in visible seams.
It can be argued that the sharp edges and the relatively small
amount of triangles contribute to the visibility of the seam. To test
ing using watersheds and graph cuts, Image Vis. Comput. (2008),



Fig. 9. Image blending over a 3-D model – the upper figure illustrates the 3-D faceted surface displayed as an oblique view. The faces are color-coded according to the
geometric criterion of minimum angle between face normals and the two camera centers (marked as C1 and C2). Two images were selected to provide the texture (middle
row). Prior to blending, the textures were flattened onto a common planar surface, which approximates ortho-rectified views (lower row).
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this, the blending result in the middle row was created, using wa-
tershed segments to break down the size of the triangles. Similarly
to the top row, only the geometric criterion was used to assign the
segments to each image. Although the visibility decreases consid-
erably, the seams are still noticeable in the top right part of the tex-
ture maps and on the central region of the coral colony. In the
lower row, the visibility of the seams is eliminated by combining
both criteria.

7. Conclusions

This paper presented a new approach for automated blending of
registered images to create a mosaic. A novel aspect is the use of
watershed segmentation and graph cuts in the context of image
blending. Instead of optimizing over the entire set of pixels in
Please cite this article in press as: N. Gracias et al., Fast image blend
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the intersection zone, preprocessing with the watershed transform
led to a reduction of the search space for finding the boundaries be-
tween images while still ensuring that the boundaries of each seg-
ment would be along low difference areas. Results were presented
for 2 challenging image sets, with moving objects and unaccounted
3-D structure.

A central idea in this paper is that watershed segmentation
greatly reduces the search space for finding contribution
boundaries, when compared to searching over all individual
pixels in the intersection zone. To support this we presented
quantitative comparisons of this method against pixel-level
blending, for both cases of binary or multi-label graph cut
optimization. Our approach compares very favorably in terms
of time complexity, without noticeable degradation of the seam
quality.
ing using watersheds and graph cuts, Image Vis. Comput. (2008),



Fig. 10. Example of image blending over a 3-D model – the upper row shows the result of applying the only the geometry criterion over the original faceted model. The
middle row also uses the geometric criterion alone, but the common area visible in both images was further divided using watershed segmentation applied to the image
difference. The lower row contains the graph-cut solution combining geometric and photometric criteria. For all results, the diagrams of segment assignments are shown on
the left and the corresponding blending results on the right.
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An extension of the approach was proposed for the case of im-
age blending over 3-D surfaces. A result using 3-D structure illus-
trated the versatility of the method for integrating distinct
geometric and photometric criteria.

The proposed method has several advantages for automated
mosaic creation. The division of the mosaic space into ROIIs, where
each pair of images can be treated independently, makes the algo-
rithm suitable for parallel implementation. The use of graph cuts
over image pairs guarantees an optimal solution over each inter-
section region. Finally, the separated use of the geometric and pho-
tometric criteria leads to a very compact memory usage. All the
input data for the watershed graph cut blending is stored in just
four arrays (closest and second closest image index, and corre-
sponding texture maps). Such memory efficiency associated with
execution speed, enables this technique to scale to large mosaics.
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