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Abstract: This paper presents an approach for estimating the relative location and orientation between
two or more underwater vehicles operating in tight formation. One of the vehicles is equipped with a
camera of wide field of view. The other vehicle(s) are equipped with active light markers to enable the
use of computer vision for pose estimation. The pose estimation addresses two scenarios, which are
both important from the operational point of view. The first pertains to the availability of an acoustic
communication channel which allows for exchanging attitude data and acoustic ranging, and use it in
the pose estimation procedure. The second corresponds to the exclusive use of a set of 4 or more optical
beacons with no acoustic information exchange, which is a capability that has not been yet proposed
nor demonstrated in underwater vehicles. The contributions can be summarize as (1) a novel method of
estimating the pose of an autonomous underwater vehicle using light beacons and other sensors when
available, (2) an automated marker configuration analysis approach. Performance of the pose estimation
approach is evaluated using synthetic and real data.

Keywords: Robot navigation, Robot vision, Underwater vehicles, Cooperative navigation, Relative
localization, Active markers, Formation Control

1. INTRODUCTION

Present day oceanographic research relies heavily on the use of
remotely operated vehicles (ROV) and autonomous underwater
vehicles (AUV), specially in deep-water operation. AUVs are
becoming standard tools in applications as varied as environ-
mental surveying, geology, archaeology, cable inspection, and
several others relating to industry and the military. However,
the existing technology is still immature for close-range sur-
veying of rugged terrains, such as caves, narrow passages and
overhangs, due to limitations on the terrain sensing and on the
navigation accuracy.

The deployment of multiple AUVs in close formation has the
potential to significantly expand the coverage swath in mapping
missions that require close proximity to the seafloor, such opti-
cal or electromagnetic surveying. In areas of high topography,
rigid arrays of sensors cannot be used safely, whereas AUV for-
mations can provide the required degree of terrain compliance.
However AUV formations require the ability to acquire precise
estimates of the vehicle’s relative position, specially when the
vehicles are less than 10 meters apart. The existing techniques
for relative posotion estimation rely solely on acoustic ranging,
and are not accurate nor provide fast enough updated to ensure
safety under such close range operation.
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Under adequate visibility conditions, optical cameras can be
very effective for computing precise position estimates, in-
cluding full inter-vehicle poses. The effects of absorption and
scattering often preclude the use of standard feature detectors as
a solution to the problem of vision based formation sensing. To
improve the chances of detecting point features and to identify
individual vehicles, this paper proposes to endow the AUVs
with active light markers, blinking with distinctive patterns to
facilitate their recognition.

This paper focuses on the aspects of pose estimation and light
beacon placement. The pose estimation addresses two scenar-
ios, which are important from the operational point of view. The
first pertains to the availability of an acoustic communication
channel which allows for exchanging attitude sensor data and
acoustic ranging, and use it in the pose estimation procedure.
The second corresponds to the exclusive use of a set of 4 or
more optical beacons with no acoustic information exchange,
which is a capability that has not been yet proposed nor demon-
strated in underwater vehicles. This concept is illustrated in
Figure 1.

A related aspect, which is not addressed in this paper, is the
detection, identification and tracking of the individual beacons
in the image. This component is currently under development
and will be addressed in a forthcoming paper.

The present work has been developed within the framework of
the MORPH EU-FP7 project (2012-2015) described in Kalwa
et al. (2012). This project proposes a novel concept of an un-
derwater robotic system that emerges out of using different mo-
bile robot-modules with distinct and complementary resources.
These mobile robots navigate at a very close range as a group,



Fig. 1. Concept of the pose estimation using light beacons and
a wide field-of-view camera.

and have the ability to adapt the formation to changes in the
terrain. The most relevant concept with respect to this paper is
that an underwater vehicle equipped with a multibeam sonar
profiler, advances at the forefront of the formation, flying at
a “safe” altitude from the sea-floor, while two other vehicles
fly behind, very close to the bottom, acquiring images. As it
can be deduced, an accurate knowledge of the poses of all
robots during the missions is fundamental. The relative local-
ization between vehicles is done through acoustic ranging in
the case of medium to long distances. However for the case of
short distances, where acoustics can not provide updates with
enough precision and frequency to ensure safety, the vision-
based method proposed in this paper comes as a natural solu-
tion. In order to have a sensor with the widest possible field
of view, an omnidirectional underwater camera is used (Bosch
et al., 2015). The camera was integrated in the Girona500 AUV
(Ribas et al., 2012) which takes the role of the leader vehicle.

2. SELECTED RELATED WORK

The use of easily identifiable light sources for pose estimation
has gained momentum in recent years in applications involving
micro aerial robots. Recent examples are the work of Censi
et al. (2013) and Faessler et al. (2014) where favorable visibility
conditions allow the use of fast cameras and infrared LEDs
to provide very fast pose updates. However, in underwater
applications, where the detection and identification of the light
sources is far more challenging, such capability has not been
demonstrated yet.

In the context of underwater docking, Krupinski et al. (2009)
designed an object pose estimation algorithm by fusing vi-
sion, a Doppler Velocity Logger (DVL), and a Fiber Optics
Gyroscope (FOG) in an Extended Kalman Filter (EKF), using
also passive and active optical markers. The passive marker
based system relied on extracting SIFT (Scale-invariant feature
transform) point features on the docking system. Conversely,
the active marker system used LEDs on the docking station
blinking at a fixed frequency. Although efficient in autonomous
docking, the proposed approach for detection and recognition
is not suitable in the context of formation sensing for multiple
AUVs. The main reason is the use the SIFT descriptors for
point features, which lead to poor performance under turbidity
(Garcia and Gracias (2011)) and requires adequate illumination
of the vehicles, which may not be feasible in deep underwater
settings.

Lu et al. (2000) designed a fast and globally convergent pose
estimation algorithm titled Orthogonal Iteration (OI) or LHM
by reformulating the definition of pose estimation, as that of
minimizing the object-space collinearity error. The algorithm is

flexible because the rotation matrix R can be initiated manually.
Lepetit et al. (2009) designed a faster non-iterative solution to
the problem where the n 3D points are expressed as a weighted
sum of four virtual control points, thereby reducing the problem
to estimating the coordinates of these control points. More-
over, experiments suggest that the algorithm performs similar
to LHM or OI. However it is faster and more stable. Li et al.
(2012) recently proposed a non-iterative solution to the prob-
lem by solving a seventh order polynomial system where the
reference points are divided into 3-point subsets which results
in a series of forth order polynomials. The algorithm is efficient,
stable, faster and can deal with planar case and non-planar case.

3. BEACON-BASED POSE ESTIMATION

The following notation is used in this paper.
n= Number of observed light beacons
ρ= Acoustic range measurement
φ= Roll angle
θ= Pitch angle
ψ= Yaw angle
s= Follower AUV reference frame
g= Earth or geo-reference frame
l= Leader AUV reference frame
c= Camera reference frame

Rb
a= Rotation matrix of frame a with respect to b

tb
a= vector of 3D translation of frame a with respect to b

K= Intrinsic camera parameter matrix
Θ

b
a=[tb

a φθψ] vector of 6DOF pose parameters

We consider two AUVs equiped with Fiber Optic Gyroscopes
(FOG) which may communicate using acoustic modems. The
leader vehicle is equipped with a panoramic camera. The cam-
era in the leader vehicle acquires an image of the follower AUV
and establishes n correspondences [Xs

1, Xs
2, . . ., Xs

n] 7→ [x1,
x2, . . ., xn] on the vehicle. Concurrently, the leader measures
the acoustic range ρ l

s , acquires its own orientation information
φ

g
l , θ

g
l , ψ

g
l from the on-board FOG, and also receives acoustic

message containing the follower AUV’s orientation information
φ

g
s , θ

g
s , ψ

g
s . Their respective rotation matrices are Rg

l and Rg
s .

3.1 Initialization

The pose estimation method is based on the minimization of a
cost function comprising error terms from light beacon repro-
jection, plus range and attitude measurements when available.
Depending on the number of beacons observed, the minimiza-
tion is initialized using one of the following two methods.

Multi-sensor Initialization This initialization uses the atti-
tude sensors of both vehicles and the inter-vehicle range mea-
surement ρ l

s . The 3D location Xc of a single light beacon in the
camera frame is approximated by

Xc = ρ
l
sK−1x (1)

from where an estimate of tc
s can be obtained as

tc
s ini = Xc−Rc

sXs (2)
The matrix Rc

s is obtained by simple rotation composition as

Rc
s = (Rg

l ·R
l
c)

T ·Rg
s (3)

where Rg
l and Rg

s are rotations matrices obtained directly from
the attitude sensors of the vehicles, and Rl

c is a known rotation



matrix relating the camera frame and the leader AUV frame.
The initial pose of the follower AUV is,

Θ
c
s ini = [tc

s ini
T

φ
c
s θ

c
s ψ

c
s ]; (4)

This initialization is used when n < 4. When more than one
light beacon is available, then a single beacon is selected.

Optical-only Initialization LHM can provide a pose estimate
when n≥ 3. However, to avoid the issues arising from ambigu-
ous solutions under noisy data, it is only used to provide an
initialization when n≥ 4 and no other sensor data is available.

3.2 The Non-linear Cost Function

The non-linear cost function comprises the following three
terms.

Light beacon image reprojection error Given a pose param-
eter vector Θc

s , the image projection of a light beacon can be
predicted using a perspective pinhole camera model

xpred = K[Rc
s | tcs ]Xs (5)

where Xs is the 3D location of the beacon (described in the
follower’s reference frame), xpred is the predicted image pro-
jection, and Rc

s and tcs are obtained from Θc
s . The uncertainty

on the observed points xobs is modelled as additive zero-mean
Gaussian noise with covariance ∑im. Using the Cholesky de-
composition ∑im = LLT, the weighted error term is:

eim = L−1(xpred−xobs) (6)

Range error Assuming a standard deviation σρ for the range
sensor, the weighted range error is

ρpred =
√

tx
c
s

2 + ty
c
s

2 + tz
c
s

2

eρ =
ρpred−ρ l

s

σρ

(7)

Attitude error The weighted orientation error is computed
similarly as eim, where ∑ f og = LLT is covariance matrix of the
attitude sensor.

e f og = L−1([φ c
s θ

c
s ψ

c
s ]

T− [φ c
s θ

c
s ψ

c
s ]

T)
(8)

The cost function is the sum of the squared weighted residues:
cost = eim

Teim + eρ
2 + e f og

Te f og (9)
and is minimized using the Levenberg-Marquardt algorithm
(Moré (1978)).

4. AUTOMATED MARKER CONFIGURATION
ANALYSIS

The correct placement of the active markers on the follower
AUV plays an important role in the estimation of its pose. A
given marker configuration can be adequate for a certain range
of poses, but might lead to large innacuracies for some other
range. This section details a conceptually simple method which,
given a certain marker configuration, analyzes the placement
of the markers and studies their impact on the accuracy and
effectiveness in optical formation sensing. It is also used to
automatically optimize the configuration of markers in a vehicle
through an iterative process.

A selected marker configuration is analyzed considering dif-
ferent AUV poses. A simple Monte Carlo Simulation (MCS),
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Fig. 2. Volumes of the error ellipsoids for a set of 8 poses, as a
function of the number of MCS iterations.

is used to obtain an uncertainty estimate for each pose. The
procedure is the following:

(1) These different poses are chosen randomly taking into
account the typical distances and orientations of the AUV
during a MORPH mission. The AUV orientation will
typically have its [Roll,Pitch,Yaw] angles varying inside
[±10◦,±10◦,±90◦], and the position [X ,Y,Z] varying in-
side [±5,±5,(6−11)]m.

(2) For each pose the MCS is performed. A new instance
of image noise was generated for each MCS iteration,
considering the same image noise model as defined by ∑im
and only with visual information.

(3) The covariance matrices of the pose parameters, and their
associated error ellipsoid volumes, are computed using
150 runs. The volume of the largest ellipsoid was used
to rank the marker configuration.

Figure 2 shows the stability of the pose estimation algorithm
for the selected marker configuration, considering 8 different
poses. This graph is useful to experimentally determine the
number of MCS runs that are required to have a meaningful
statistic for the error covariance matrix. From the graph it can
be seen that more than 150 runs does not bring additional ben-
efit. The reason for choosing the volume of the position error
ellipsoid to evaluate the quality of the beacon configuration
comes from the fact that errors in orientations are not as critical
as errors in position, from the formation safety standpoint.

An simple algorithm was implemented to find the best config-
uration of beacons. We assume that a CAD model of the the
follower AUV is available, which defines the positions where
the light beacons can be installed on the surface of the vehicle.
The idea is as follows:

(1) The user defines the number of markers k to be placed on
the object, and n configurations to be analysed.

(2) A set of n configurations of k markers are randomly
selected from the surface of the AUV.

(3) A score is given to each configuration, according to the
analysis method detailed previously. The configuration
with the highest score is selected.



Fig. 3. Setup for the marker placement algorithm. Blue points
represent the possible location of the markers.

5. POSE ESTIMATION RESULTS

A comparison of the sensor fusion and vision-based object
pose estimation algorithms was performed using a Monte Carlo
simulation. The method of analysis was adopted from Li et al.
(2012). Given a virtual perspective camera with image size
1616 × 1232 pixels, focal length of 860 pixels and zero skew,
a set of 3D points were randomly generated in the camera
reference frame. The 3D points were uniformly distributed in
a 3D volume defined by the limits: [1, 0] × [-0.25, 0.25] × [-
0.25, 0.25] (in meters). This volume represents approximately
the space where the beacons could be located in the Sparus II
AUV. In every iteration the relative pose of the virtual AUV
was randomly generated in a location visible from the virtual
camera taking into account the most typical poses during real
missions. Three independent simulations were performed and
some of their primary statistics - mean, and standard deviation
are highlighted. The statistics were based on 500 test runs
which were randomly generated based on the simulation type.
The following simulations were conducted:

• Varying the number of observed beacons, with image
noise of 2 pixels and vehicle distance roughly 9 meters
(Figure 4).
• Varying the image noise level, considering 4 observed

beacons and vehicle distance roughly 9 meters (Figure 5).
• Varying the vehicle’s distance to the camera coordinate

frame, considering 4 observed beacons and image noise
of 2 pixels standard deviation (Figure 6).

In these simulations the standard deviation of the range sensor
noise is σρ = 30cm whereas the covariance of the FOG (attitude
sensor) noise is assumed to be ∑ f og = diag(25,25,25) deg2.
The simulations indicate that the set Vision+FOG+Range pro-
vides the most accurate pose estimates. This is due to the trans-
lation and orientation being constrained by the range data and
the orientation respectively. This becomes more evident from
the results of Vision+FOG and Vision+Range. It can be seen
in figure 4 that the position error of Vision+Range is similar
to Vision+FOG+Range, whereas the orientation is significantly
noisier. Similarly, the orientation error of Vision+FOG is com-
parable to that of Vision+FOG+Range. Figure 4 also indicates
that both the position and orientation errors reduce with the
increase of the number of beacons observations.

Figure 5 shows that the uncertainty of the pose parameters
grows approximately linearly with the level of noise on the
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Fig. 4. Performance of the pose estimation with varying number
of observed beacons considering σim = 2 pixel (image
noise), σ f og = 5◦, σρ = 0.5m (range noise) at a distance
of approximately 9m with 500 iterations.

beacon image projections. An exception is the case of position
estimate using acoustic ranging, where the estimates are rel-
atively unaffected. Figure 6 shows, as would be expected, that
the position uncertainty grows with the distance of the AUV and
that the orientation estimate are highly unreliable except when
using the attitude sensors. Regarding computation effort, the
pose estimation requires less than 40ms when using 4 beacons
in Vision+FOG+Range.

The algorithm has been tested with preliminary data from
sea trials of the MORPH project in the Azores archipelago.
The Girona500 AUV was at the front of a formation that
included a Sparus II AUV and the Seacat AUV, both equipped
with light markers. During the mission, the estimated distance
between their modems along with the navigation of all the
vehicles and images from the omnidirectional camera captured
from the Girona500 were recorded for further analysis. Figure
7(a) shows a real undistorted image from the omnidirectional
camera used to test the algorithm, while figure 7(b) shows
the reconstructed pose of the follower vehicle computed only
taking account the 4 markers position.

Table 1 shows a comparison of the relative orientation and
translation of the follower AUV with respect to the leader AUV.
The data available from the vehicles were their heading and the
distance between their modems. Even though they are valuable
in order to compare them with the estimated results, they cannot
be trusted as ground truth, due to the inaccuracy of the FOG
used and the fact the ranges between the vehicles were received
at a very low rate of a sample per second. The results between
the different methods analyzed are coherent between them, as
well as the graphical reconstruction of the pose.



(a) (b)

Fig. 7. Pose estimation example from sea trial data. Input image (with four beacons marked by the red circles) (a), and a 3D view
of the AUV formation, created from the estimated relative pose (b).

Table 1. Comparison between the orientation and translation between the AUV frames computed with
the different methods proposed for one sample image (Fig. 7).

Parameter Rotation Translation Range
Vehicles sensors [-0.0003,-0.1735, -0.166] Not available 5.26
3 Lights + Range [0.0907, -0.2179, -0.0891] [-2.5289, 3.8772, 2.3316] 5.18
4 Lights (LHM) [-0.0199, -0.1598, -0.0594] [-2.2943, 3.5756, 2.2374] 4.81

4 Lights (Refinement) [0.0424, -0.1919, -0.0746] [-2.4121, 3.7300, 2.2862] 5.0
4 Lights + Range [0.0841, -0.2143, -0.0794] [-2.5205, 3.8672, 2.3291] 5.17

6. RESULTS OF THE AUTOMATED MARKER
PLACEMENT

The automated marker placement approach was tested with a
run of 500 different marker configuration of 4 beacons. The
algorithm ranked each one of these configurations according
to the largest error ellipsoid, computed for 8 different poses in
a MCS of 500 runs. The histogram of the results for the 500
configurations is shown in figure 8. The best configuration is
illustrated in figure 9. The final volume of the error ellipsoid is
0.0231 m3. Simulation is performed considering an image noise
covariance matrix of ∑im = diag(3,3) pixel2. The case below is
for the best configuration found and its worst pose case studied.
The theoretical (ground truth) pose (in meters and radians) of
the follower AUV is,

[−1.552 3.4329 9.7106 −1.4760 0.8848 1.563 ]

The mean pose of the MCS (in meters and radians) of the
follower AUV is,

[−1.5574 3.4698 9.8192 −1.6715 0.4556 1.15683 ]

The small volume of the ellipsoid error illustrates the reliability
and adequacy of the marker configuration.

7. CONCLUDING REMARKS AND FUTURE WORK

This paper presented a vision-aided pose estimation approach
for AUVs, based on multi-sensor fusion comprising vision,
attitude and range sensors. An important aspect of the approach
is the possibility of performing the pose estimation with just
light markers and no acoustic communication.

Given a possible marker configuration, either defined manually
of obtained from an the CAD model of an AUV, the paper
also presents a conceptually simple method to analyze the
placement of the active light markers on the vehicle, and
study their impact on the accuracy and effectiveness in optical
formation sensing.

Current work is addressing the automatic detection and identifi-
cation of the light markers through the use of signature temporal
patterns. Such patterns are designed to allow the tracking and
identification under low frame rates, and possibly large inter-
frame motions.
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