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Abstract—The use of image mosaicing methods for underwa-
ter optical mapping has become very popular owing to the rapid
progress in obtaining optical data using robotic platforms. In
order to obtain globally consistent mosaics, one of the essential
steps is global alignment for finding best image registration
parameters, which employs non-linear optimisation methods to
minimise the error metric defined over correspondences detected
between overlapping image pairs. In this paper, we propose a
method that uses graph theory principles to reduce the total
number of overlapping image pairs used in the global alignment
process without degrading the final mosaic quality. This reduction
allows for obtaining image mosaics with reduced computational
cost and time. The method is validated through two experiments
that involve challenging underwater datasets.

I. INTRODUCTION

Although the oceans cover 70% of the surface of Earth,
our knowledge and understanding of processes happening
there has been very limited for a long time due to the lack
of imaging techniques. Over the last two decades, notable
progress in developing underwater robotic platforms has been
achieved. These achievements nowadays allow for obtaining
optical information, which is a rich source of information for
scientists working in various underwater research fields (e.g.,
geology [1], ecology [2] and archeology [3]).

Visual sensors provide much more detailed information
than acoustic sensors and have become less expensive, smaller
and lighter. As a result, their usage has increased considerably
even in commercially available small underwater platforms [4],
[5]. However, optical imaging in underwater environments
has to overcome several additional difficulties due to poor
visibility, light absorption, forward and back scattering, and
non-uniform illumination. These challenges force images to be
acquired in close range to the seabed. As a consequence, the
area of interest cannot be captured in a single image. Hence,
in order to have an overview of the area of interest, image
mosaicing (stitching) methods [6] have become a requisite.
Image mosaicing is a process of combining several relatively
smaller images to make one larger image, known as mosaic
and/or photo-mosaic. Image mosaicing has been extensively
studied and widely used in both computer vision and robotics
communities mainly for visual mapping purpose in aerial [7]
and underwater environments [8]. Most of the existing image
mosaicing approaches assume that time-consecutive images
can be properly registered [9]. Under this assumption, the rel-
ative displacement among pairs of images can be obtained by
cascading the motion parameters that relate time-consecutive

images [10]. However, in the absence of absolute orientation
and/or position information, the cascading of time-consecutive
motion estimates results in error growth, typical of dead-
reckoning positioning [10]. If the trajectory of a camera revisits
an area that has been imaged before, the trajectory provides
a loop closure, and it is called closed-loop trajectory. This
type of trajectories provide an overlapping area between non
time-consecutive images, which are essential to minimise the
dead-reckoning error by the use of global alignment methods.
Therefore, it is very important to identify overlapping image
pairs to get a globally coherent mosaics.

Global alignment can be defined as the problem of finding
the image-to-mosaic registration parameters that best comply
with constraints introduced by all overlapping image pairs.
Global alignment requires the minimisation of an error term,
which is defined on the positions of image correspondences.
Commonly, this minimisation employs nonlinear methods,
which incurs high computational cost [11] due to its iterative
structure. This computational cost is considerably high espe-
cially for large area surveys, which may contain from several
hundreds to thousands of images.

Several image mosaicing approaches have been presented
over the last two decades [6], [12], [13]. Sawhney et. al. [12]
proposed a complete solution for image mosaicing where the
topology (the trajectory of the camera and overlapping image
pairs) is iteratively estimated. Spatial consistency is improved
by identifying and registering non-time consecutive images.
They used the graph representation to denote the topology
where nodes are images and edges represent that there is an
overlapping area between nodes. They constructed the graph
taking into account image positions with respect to the chosen
global frame. This requires an initial position estimation of
the images which is obtained through the assumption that
time-consecutive images have an overlap. The initial estimate
is obtained by accumulating pairwise homographies. Potential
overlapping image pairs are generated and added by computing
a normalised distance on image positions and comparing to
their alternative path distance. This method performs well
for image sequences that are composed of relatively few
images and/or whose camera motion is very small and the
initial estimation is more likely to suffer less from error
accumulation. However it is not feasible for mapping large
area environments where time-consecutive images might not
have an overlap and/or suffering drastically trajectory drift. In
terms of edge quality in the graph, Ila et al. [14] proposed
a method to keep the most informative edges between robot

978-1-4799-0002-2/13/$31.00 ©2013 IEEE This is a DRAFT.  As such it may not be cited in other works. 
The citable Proceedings of the Conference will be published in 
IEEE Xplore shortly after the conclusion of the conference.



poses using Mutual Information (MI) within a Simultaneous
Localisation and Mapping (SLAM) context to maintain the
sparsity of the system. However, our problem considered in
this paper is to select a subset of overlapping image pairs to be
used in the global alignment process for a given all overlapping
image pairs, which is a different problem to that of performing
matches and keeping some of them from the most recent image
to all previous images as the robot moves.

Some recent studies have used image-to-mosaic registra-
tion [15], [16] with the aim of real time mosaicing (known
as “online mosaicing”) to discard some images and to select
key frames [17], [18]. These approaches are mainly targeted
for creating panoramic mosaics from a video sequence, where
images have large overlapping areas, especially the cases
where the camera only rotates. In the case of online mosaicing,
if mapping one image onto the mosaic fails then the following
future image-to-mosaic registrations will most likely fail. On
the other hand in visual mapping with robotic platforms,
large overlapping areas between images cannot be assumed.
Moreover, large area surveys (usually taking several days to
complete) tend to have minimal overlap among images due to
the energy management of the acquisition platform.

In this paper, we discuss the importance of overlapping
pairs and propose a method based on a graph theory to reduce
the total number of overlapping image pairs used in the global
alignment process without compromising the final registration
quality of the mosaic, thus providing a huge saving on the
computational cost. We assume that all the overlapping image
pairs have been identified a priori. We present initial results
on real underwater images acquired by an underwater robot.

The remainder of the paper is organised as follows: sec-
tion II gives a brief summary about Feature-based Image
Mosaicing (FIM). Next, section III is devoted to detail the
proposed method to reduce the overlapping image pairs to
be used in the global alignment process. Some exploratory
results are illustrated in section IV and, finally, we present our
conclusions and future works in the last section.

II. OVERVIEW OF FEATURE-BASED IMAGE MOSAICING

(FIM)

FIM is based on finding consistent corresponding points
between image pairs to create a mosaic image. It can be divided
into two main steps: pairwise and global alignments. While
pairwise alignment is used to find the registration parameters
between two overlapping images, global alignment searches
for registration parameters for mapping to a common frame,
also known as the global frame, in order to have the global
view of the surveyed area.

Pairwise image alignment (or registration) is the process of
overlaying two views of the same scene taken from different
viewpoints. Several approaches exist to register images [19].
Feature-based methods rely on the detection of distinctive
points using feature detectors such as Harris [20], Hessian [21]
or Laplacian [22]. These features are found in the two images
to be registered, and then a cross-correlation or Sum of
Squared Differences (SSD) score is computed for each feature
involving geometric transformation of the image. This had
been the trend for a long time until the advent of Scale
Invariant Feature Transform (SIFT) algorithm [23], which has

taken feature-based methods to the forefront. Compared to all
previous schemes, SIFT and further developed methods such as
Speeded Up Robust Features (SURF) [24] perform much better
and show considerably greater invariance to image scaling,
rotation, robustness under change in both illumination and 3D
camera viewpoint. These methods solve the correspondence
problem through a feature description and descriptor matching.
After detecting features, feature descriptors exploiting gradient
information at a particular orientation and spatial frequencies
(see [25] for a detailed survey on descriptors) are computed.
Finally, the matching of features is generally done using
the Euclidean distance between their descriptors. In this way
corresponding points are detected in each pair of overlapping
images.

The initial matching usually provides some incorrect corre-
spondences, which are called outliers. Outliers must be iden-
tified and removed, typically by the use of a robust estimation
algorithm (e.g., Random Sample Consensus (RANSAC) [26]).
After outlier rejection, a homography can be computed from
the inliers through orthogonal regression.

The goal of global alignment is to minimise a cumulative
error and to build a globally coherent mosaic by aligning
images correctly. Let t−1Ht denote the relative homography
between tth and (t − 1)th images in a sequence. If the first
image of the sequence is chosen as the global frame, the global
projection of image t into the mosaic frame is denoted as
1Ht .

1Ht is known as the Absolute Homography, and it can
be calculated by composing (or cascading) the relative homo-
graphies 1Ht =

1H2 ·
2H3 · . . . ·

t−1Ht . However, the detected cor-
respondences between image pairs are subject to localisation
errors, and the accuracy of the resulting homography is limited.
Therefore, computing absolute homographies by cascading
noisy relative homographies leads to cumulative error. Thus,
global alignment reestimates the absolute homographies by
best satisfying geometric constraints arising from the matches
between overlapping image pairs. These matches result from
consecutive and nonconsecutive (closed loop) image pairs and
form an over-constrained set of equations. Global alignment is
usually done by minimising the error metric defined over corre-
spondences between image pairs. One of the well-established
and widely-used methods is Bundle Adjustment (BA) [27],
which minimises the following cost function below:

ε = ∑
k

∑
t

n

∑
j=1

‖ kx j −
1H−1

k · 1Ht ·
tx j ‖2 +

‖ tx j −
1H−1

t · 1Hk ·
kx j ‖2

(1)

where k and t are indices to a pair of images that were matched
successfully, n is the total number of correspondences between
the overlapping image pairs, and (1Hk,

1Ht) are the absolute
homographies for images k and t. The minimisation of the error
term in Eq. (1) requires the use of iterative nonlinear methods
operating over the Jacobian matrix of the cost function. This
implies a high computational cost, since the total number of
overlapping image pairs and the associated total number of
correspondences used during the minimisation have a direct
impact on the computational cost as one additional correspon-
dence requires the addition of 4 more rows to the Jacobian
matrix of the cost function in Eq. (1).



III. MATCH ELIMINATION WITH CYCLE BASIS

Graph theory has been behind a large number of algorithms
successfully used in various science disciplines such as biol-
ogy [28], electrical engineering [29], operational research [29]
and several others [30].

A graph G = (V,E) consists of vertices (nodes) and the
edges (links) between vertices. V is the set of vertices while
E ⊂ V ×V represents the set of edges. The total number of
vertices n = |V | defines the order of the graph while the total
number of edges m = |E| is the size of the graph [31]. A graph
can be classified as either directed or undirected depending
on whether the edges are ordered pairs or not. A cycle in a
graph is defined as a subgraph in which every vertex has even
degree1. A cycle basis is a list of cycles in the graph, with
each cycle expressed as a list of vertices [32]. These cycles
form a basis for the cycle space of the graph, so that every
other cycle in the graph can be obtained from the cycle basis
using only symmetric differences. Commonly used methods to
compute cycle basis are based on spanning trees. The spanning
tree of a connected graph is a tree that connects all the nodes
together [31]. One graph can have several different spanning
trees. The Minimum Spanning Tree (MST) is a spanning tree
whose edges have a total weight less than or equal to the
total weight of every other spanning tree of the graph. The
cycle basis obtained by using the MST is called the minimum
weight spanning tree basis, which is computed through adding
an edge to the MST and removing the path connecting the
endpoints of the edge. The total number of cycles in the basis
for a connected graph is

tc =
(

m− (n− 1)
)

.

If the graph is not connected2 then total number of cycles in
the basis is computed as

(

m− (n− 1)+ (p−1)
)

,

where p is the number of connected components. Every cycle
that is not in the basis can be written as a linear combination
of two or more cycles in the basis.

We have modelled the topology as a graph where images
are vertices and successfully matched image pair represents an
edge between nodes in the graph. As there will only be one
edge between a pair of nodes, the graph is called a simple
graph. Cycles in this graph represent closed loops among
images. If homographies representing edges are multiplied
sequentially, one should expect to get identity mapping inside a
closed loop (e.g., Fig. 1). In practice, this becomes impossible
due to the error accumulation.

To compute the cycle basis through MST, weights must
be assigned to edges. From existing studies [14], [33], using
Observation Mutual Information (OMI) as weights is shown to
be effective and provides useful information about image pairs.
OMI provides how much the uncertainty of the parameters will
reduce when the observation is realized. Therefore, OMI [34]

1The degree of a vertex is defined as the total number of edges incident to
the vertex.

2In an undirected graph G, two vertices u and v are called connected if G

contains a path from u to v. A graph is said to be connected if every pair of
vertices in the graph is connected.

Fig. 1. Illustrative example of a cycle showing a closed-loop, which following
equality is expected to be hold. I = 1H2 ·

2H3 ·
3H4 ·

4H5 ·
5H1. However, this

equality does not hold due to error accumulation. The longer it gets, the more
error accumulates.

can be easily calculated from the information matrices as the
change in information as follows:

I(k,z(k)) =
1

2
ln

[

∣

∣Y(k | k)
∣

∣

∣

∣Y(k | k− 1)
∣

∣

]

(2)

where the Fisher Information matrix Y [35] is the inverse
of the covariance matrix of the parameters and z(k) is the
observation value. The notation (·)(k | t) refers to a value at k
given t (Further details can be seen in [33]). To compute the
OMI of an image pair, trajectory estimate and its uncertainty
are required [33]. Therefore, our proposal starts with an initial
step where the initial trajectory is estimated and its uncertainty
is propagated [33]. To have the initial estimate, each image
requires at least one edge that allows it to connect to other
images. This can be achieved by computing a spanning tree.
If the edges are weighted, then the MST can be computed to
establish the initial link between images. For each overlapping
image pair, the amount of overlap between images is computed
and used as a weight to compute the initial MST. While
computing the MST weights are inverted so that the resulting
edges in the MST are the ones that maximise the total amount
of overlap between images. With using the edges in the
initial MST, we estimate the initial trajectory by minimising
the reprojection error given in Eq. 1 and its uncertainty is
propagated by using the first order approximation [33]. After
having the initial trajectory estimate and its uncertainty, the
OMI of every edge in the graph is computed. The OMI values
are used as weights to obtain the (weighted) cycle basis based
on the newly computed MST with OMI values including the
most informative image pairs. Then for every cycle c in the
basis, the method checks whether all images that are in cycle
c have appeared in another cycle in the basis. If so, we keep
the longer cycle in the basis and remove the short one. The
longer the loop, the larger error accumulates. Therefore, we
keep the longer cycles, which encode more cumulative errors,
and allow reducing them in the global alignment process. The
overview of our proposal is illustrated in Fig. 2.

IV. EXPERIMENTAL RESULTS

Our proposal has been tested over two real datasets. The
first dataset was obtained from a tank experiment using a



Fig. 2. Pipeline of the proposed framework.

custom-built, hover-capable Autonomous Underwater Vehicle
(AUV). The vehicle was equipped with a down-looking camera
and it was controlled to navigate keeping constant altitude,
with the optical axis of the camera being orthogonal to the floor
of the tank during the experiment to relieve any 3D effects.
The dataset has 149 images of 3648×2736 resolution and the
total number of successfully registered overlapping image pairs
is 4621. The second dataset is composed of 2751 images. A
total number of 486 key frames providing approximately 70%
of overlap between time-consecutive images were selected out
of the complete set. The dataset was acquired with using a
Phantom XTL Remotely Operated Vehicle (ROV) operating
at a distance of 2.5m from the seabed during a survey of a
patch reef located in the Florida Reef Tract (depth 7-10m) near
Key Largo in the U.S. [2]. Images have 512×384 resolution.
The total number of successfully registered overlapping image
pairs is 3225. We model the image-to-mosaic motions using
similarity homographies [26] since they have enough Degrees
of Freedom (DOFs) to model the trajectory of the camera under
constant altitude and perpendicular optical axis to the scene.
The motion has four DOFs (1-D rotation (θ ), 2-D translation
(tx and ty), and 1-D scaling (s)) and it has the following form:

H =





s · cos(θ ) −s · sin(θ ) tx
s · sin(θ ) s · cos(θ ) ty

0 0 1





Since our problem is batch mosaicing, it can be assumed that
all images are available at the beginning of the process and can
be registered using image registration algorithms (e.g., using
SIFT [23]). For global alignment, we used BA [27], which
minimises the error given in Eq. 1. The error was minimised
using large-scale nonlinear least squares methods. We have
derived analytic expressions for computing the Jacobian matrix
containing the derivatives of all residuals with respect to all
trajectory parameters. The average reprojection error over all
correspondences was compared since this error does not de-
pend on the selected global frame. The reprojection error will
remain the same regardless of the selected global coordinate
frame. Hence, the first image frame is chosen as a global frame.
Tests were performed in a server with a four Quad-Core AMD

Opteron
TM

2.4Ghz processor, 128 GB RAM and with a 64-bit

operating system, running on MATLAB
TM

environment.

Table I summarises the results that compare the original
and the elimination algorithm applied. The third column shows
the total number of image pairs that were used to minimise
the error metric defined on Eq. (1). The fourth column
represents the average reprojection error computed over all
correspondences while the fifth includes the standard deviation

of the error. The last column shows the required computational
time for the minimisation process measured by the cputime()
function of MATLAB.

From the results, it can be observed that performing global
alignment with the reduced number of overlapping image pairs
provides similarly satisfactory trajectory accuracy as the one
using all overlapping pairs, but with significant time saving.
The obtained mosaics are visually quite similar, as they can
be seen in Figs. 3(a) and 3(b).

V. CONCLUSIONS AND FUTURE WORK

High-resolution optical maps (mosaics) of the seabed have
been very important tools for marine scientists. Data collection
in areas beyond human reach has been one of the main
bottlenecks. This issue has been mainly resolved owing to
the recent developments in robotic platforms. However, optical
imaging in underwater environment does not allow a large
area to be seen in a single image due to the difficulties
(e.g., scattering, absorption). This increases the necessity of
methods to combine several images into a one common image,
which is known as image mosaicing. One of the crucial steps
of image mosaicing is global alignment, which refers to the
process of finding optimal image-to-mosaic motion parameters
for each image by taking into account the constraints imposed
by correspondences. Global alignment is usually accomplished
through nonlinear minimisation of an error metric defined on
the positions of correspondences. Therefore, global alignment
directly depends on the total number of overlapping image
pairs and thus the total number of correspondences. In this
paper, our work is aimed to reduce the computational resources
and time needed for the global alignment process by leaving
some overlapping image pairs out of this process without
disturbing the resulting mosaic quality. We present a method
that keeps the longer cycles in the computed cycle basis. The
cycle basis is computed using OMI values as edge weights. The
method does not require any heuristics for parameter tuning.

Future directions will be on computing and assigning
different weights for each edge on the graph and finding
different weighted cycle bases for further improvements.
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TABLE I. SUMMARY OF RESULTS FOR THE TESTED DATASET.
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Fig. 3. Final mosaics of the first dataset. Mosaics are approximately 10,000×9800 pixels and they were blended by using the method in [36].
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