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Lately, underwater vehicles have become important tools for exploration, monitoring and creation of
maps of the seabed. Within mapping applications, the maps obtained from optical data are becoming
essential in different study areas such as biological, geological and archaeological surveys, or in
detection of benthic temporal changes. However, the underwater medium is very challenging for
optical sensors and does not allow the area of interest to be imaged in a single image. Therefore, image
mosaicing methods are necessary. Although recent advances in detection of correspondences between
images have resulted in highly effective image registration methods, global alignment methods are still
needed to obtain a globally coherent mosaic. In this paper, we propose a new global alignment method
which works on the mosaic frame and does not require non-linear optimisation. Additionally, a simple
image rectifying method is presented to reduce the down-scaling effect which might occur when
minimising errors defined in the mosaic frame. Moreover, this rectifying method can also be seen as an
alternative and straightforward way of incorporating different sensor information if available. The
proposed framework has been tested with underwater image sequences. The resulting method is faster

than its counterparts while providing the same level of registration quality.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Deep water surveys and seabed imagery have become avail-
able to the science community thanks to rapid developments in
underwater robotics (Escartin et al., 2008). Consequently, optical
underwater images are becoming an important tool to study the
structure and characteristics of the seafloor, enabling studies at
the level of biological communities.

The characteristics of the underwater environment often
present difficult challenges for the processing of optical images:
significant attenuation and scattering of visible light, lack of
image contrast and presence of non-rigid objects. As an example,
considering the case of benthic mapping below the photic zone,
the need of artificial illumination causes shadows that move in
opposite direction with respect to the motion of the camera.
Furthermore, light attenuation does not allow images to be taken
from a large distance (Pegau et al., 1997; Loisel and Stramski,
2000) and make image registration difficult, potentially leading to
inaccurate estimates of registration parameters and image mis-
alignments. Given the need for close range image acquisition, image
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mosaicing techniques are required to compose high-resolution maps
of the surveyed area to obtain a global perspective of the under-
water terrain (Gracias and Santos-Victor, 2000; Pizarro and Singh,
2003; Vincent et al., 2003; Leone et al., 2006; Richmond and Rock,
2006; Rzhanov et al., 2006).

This paper considers mission scenarios such as low cost diver
cameras for coastal surveying, low cost underwater robots and
swarms of small AUVs for distributed mapping relying on cam-
eras for positioning and navigation (e.g., see Fig. 1). We focus on
the case of when no any additional information is available apart
from the images. The underlying motivation is that it is possible
to develop efficient mosaicing methods even in this case.
Although most underwater survey platforms have multiple forms
of navigation sensing, there are scenarios where vision might be
the only sensor providing XY positioning with respect to the
bottom (for example when there are no Ultra Short Base Line
(USBL), Doppler Velocity Log (DVL) or Inertial Navigation System
(INS)). The least expensive sensors such as altitude and heading
are omnipresent, but provide very limited information to con-
strain the number of potential matches, which mainly requires a XY
position sensor. In this context, the quality constraints for building
image mosaics can be very strict, especially when the mosaic is later
used for the localisation of interest areas and the detection of
temporal changes (Delaunoy et al., 2008; Escartin et al., 2008). Hence,
highly accurate image registration methods are necessary.

Most image mosaicing approaches assume that time-consecu-
tive images can be properly registered (Pizarro and Singh, 2003;
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Fig. 1. Technical tests of Unmanned Underwater Vehicle developed by our group,
operating in the test pool of the Underwater Vision Lab (University of Girona). The
floor of the pool is covered by a poster of real sea floor as to simulate realistic sea
floor images for assessing algorithms.

Fig. 2. Example of error accumulation from registration of sequential images. The
same benthic structures appear in the different locations in the lower part of the
mosaic due to the error accumulation (trajectory drift).

Negahdaripour and Xu, 2002; Rzhanov et al., 2000). Under this
assumption, the relative displacement among pairs of images can
be obtained by cascading the motion parameters that relate time-
consecutive images (Garcia et al, 2001; Elibol et al., 2008).
However, in the absence of other sensor information capable of
providing absolute orientation and/or position information, the
cascading of time-consecutive motion estimates will result in
error growth (e.g., see Fig. 2), typical of dead reckoning position-
ing (Garcia et al., 2001). When the trajectory of the camera
provides an overlap between non-consecutive images (closed-
loop trajectory), then global alignment techniques can be applied
to reduce error accumulation. In the context of this paper, we
refer to the global alignment as the problem of finding the image
registration parameters that best comply with constraints
imposed by image matches. These matches can be time-consecu-
tive or not.

Several methods have been proposed in the literature to solve
the global alignment problem (Szeliski and Shum, 1997; Davis,
1998; Capel, 2004; Kang et al., 2000; Marzotto et al., 2004;
Sawhney et al., 1998; Pizarro and Singh, 2003; Gracias et al.,
2004; Can et al., 2002; Ferrer et al., 2007; Cervantes and Kang,
2006). Global alignment usually requires the minimisation of an
error term, which is defined from image correspondences. Global
alignment methods can be classified according to where the error
term is defined. Commonly the error term is defined either in the
image frame (Szeliski and Shum, 1997; Capel, 2004; Marzotto
et al., 2004; Ferrer et al., 2007) or in the mosaic frame (Davis,
1998; Kang et al., 2000; Sawhney et al., 1998; Pizarro and Singh,
2003; Gracias et al., 2004; Can et al., 2002). Szeliski and Shum
(1997) proposed to minimise distances between correspondences,
defining an error function on the image coordinate system.
Minimising this error term using non-linear least squares has
the disadvantage that the gradients have to be computed with
respect to the motion parameters. Davis (1998) proposed a
method based on solving a linear equation system obtained from
motion parameters between images. However, that formulation is
limited to the restrictive case of pure camera rotation, where
translation is not allowed. Sawhney et al. (1998) first and Pizarro
and Singh (2003) later defined an error function on the mosaic
frame and minimised the distances between correspondences
when they are mapped to the mosaic frame. Unfortunately, when
the minimisation is carried out on the mosaic frame, the solution
tends to reduce the size of the mosaiced images, since reducing its
size also decreases the error term. This bias towards the reduction
of the image size is referred as the scaling problem. In order to
avoid this problem, they introduced an additional term that
penalises changes on the image size when the images are mapped
to a mosaic frame. However, when the distance of the camera to
the scene is not constant, this penalty promotes misalignments
between images. Gracias et al. (2004) minimised the same error
term by linear recursive and batch formulation for the similarity
type of homographies by using all correspondences. However, the
proposed linear method cannot cope with projective homogra-
phies which are commonly required to build a mosaic from an
arbitrary moving camera. Similarly, Can et al. (2002) proposed the
linear joint estimation of two combined error terms. The first
term is to measure errors against feature locations in the image
frame which is chosen as a global frame and the second term
minimises the distance between correspondences when they are
mapped onto the mosaic frame. However, minimising those error
terms for projective homographies cannot be done linearly.
Therefore, the proposed method cannot be used for projective
homographies. Capel (2004) formulated the global alignment
problem using, as unknowns, both the absolute homographies
(i.e., the transformations between each image and the common
mosaic frame) and the location of point features in the mosaic
frame. As the error term is defined in image frame, it does not
suffer from the scaling problem. However, as the dataset grows,
the total number of unknowns dramatically increases. Kang et al.
(2000) and Marzotto et al. (2004) showed that using a grid of
points on the mosaic frame produces good results. Although this
strategy has the advantage of distributing the errors, it has some
disadvantages, such as: (1) the point location must be defined
very carefully so that every image and overlapping areas have
enough grid points to calculate the homography and (2) since the
points are distributed arbitrarily, they may fall in a textureless
area, making it difficult to match them in another image. More
recently, Ferrer et al. (2007) proposed a global alignment method
for creating large-scale underwater photo-mosaics that combines
image registration information and 3D position estimates
provided by navigation sensors available in deep water surveys,
but also requiring non-linear optimisation. Cervantes and
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Kang (2006) have presented a technique very similar to our
proposal in this paper. Their method modifies the accumulated
homographies according to the reappearance of feature positions.
They formulate the problem as a image-to-mosaic registration
with the aim of real-time mosaicing (known as “online mosai-
cing”). In this case, if an error occurs while mapping one image
onto the mosaic, future image-to-mosaic registrations are most
likely to fail.

Homographies that encode motion models that allow scale
changes are prone to introduce distortions on the image size (e.g.,
see Fig. 3). Several methods have been proposed in the literature to
deal with this distortion problem (Vercauteren et al., 2006; Wang
et al, 2005; Mohan et al., 2008). In Vercauteren et al. (2006), a
model of the relationship between the motion and the distortion
was proposed to reduce the distortions when using a laser scanning
device, namely in fibred confocal microscopy. Wang et al. (2005)
proposed a geometric correction of images of rectangular planar
patterns (e.g., documents, maps). In this case, a planar homography
is used to rectify images and reduce the geometric distortions. Their
method assumes that the image contains rectangular objects and
requires four corners of the object to be extracted manually which
precludes the application in natural or unstructured environments.
Recently, Mohan et al. (2008) proposed a similar approach that uses
a planar homography to rectify the selected part of the image.
However, a surface or an object to be rectified needs to be selected
manually and the camera intrinsic parameters have to be known.
These requirements make the method difficult to apply to images
that do not contain man-made structures.

In summary, a common bottleneck of the methods described
above is the computational cost required to provide a consistent
globally aligned mosaic. In this paper, we present a combined
method for global alignment and distortion reduction capable of
creating large-area image mosaics with low computational cost.
The method makes use of features tracked along the image
sequence and the minimisation is performed on the mosaic frame.
It avoids non-linear optimisation by alternating two iterative
linear steps. An initial estimation is obtained by accumulating
time-consecutive homographies. The error in the initial estima-
tion is modelled by propagating the uncertainty using the
methods described in Ochoa and Belongie (2006) and Haralick
(1998). Since covariances provide some information about error
distribution of the initial estimation, this uncertainty information is
used to reduce the total number of iterations required by the global
alignment method. In addition, regarding the distortion problem, we
propose a method to reduce the distortions associated with the
construction of mosaics which uses a projective model.

The rest of the paper is organised as follows: Section 2 sum-
marises some image mosaicing and global alignment aspects. Next,
Section 3 is devoted to detail the proposed method to solve the

Fig. 3. First 15 images of an underwater dataset. Distortions on the image size are
introduced by accumulating projective homographies. The sequence starts on the
left and moves to the right. It can be observed that from left to right distortion on
the images grows.

global alignment problem. Then, distortion reduction based on four-
point warping is described in Section 4. Some results are illustrated
in Section 5 and, finally, we present our conclusions in the last
section.

2. Feature-based image mosaicing

Feature-based image mosaicing is accomplished through two
main steps: spatial alignment of the images, also known in the
literature as image registration and image intensity blending for
building the final mosaic. Spatial alignment of the images is
normally solved by first finding the motion between pairs of
images in the sequence (pairwise alignment). Next, global align-
ment is applied to deal with the errors occur while representing
pairwise motions onto common frame obtain globally coherent
mosaics. Finally, image intensity blending methods are needed to
deal with intensity differences between images and obtain a
seamless mosaic.

2.1. Feature-based image registration

2D image registration is the process of overlaying two or more
views of the same scene taken from different viewpoints. Several
approaches exist to register images (Zitova and Flusser, 2003). In
this paper, we follow a feature-based approach, which is detailed
below. The processing pipeline is illustrated in Fig. 4. Feature-based
registration methods rely on the detection of salient features using
Harris (Harris and Stephens, 1988, Hessian Beaudet, 1978) or
Laplacian (Lindeberg, 1998) feature detectors. These features are
detected in the two images to be registered, and then a correlation
or SSD (sum of squared distances) measure is computed around each
feature for each assumed geometric transformation of the image.
This had been the trend for several years, until recent proposal of the
SIFT (scale invariant feature transform) algorithm by Lowe (2004).
The satisfactory results of this method have greatly speeded up the
development of salient point detectors and descriptors, taking
feature-based matching techniques to the forefront. Compared to
all formerly proposed schemes, SIFT and subsequent developed
methods such as SURF (Bay et al., 2006) demonstrate considerably
greater invariance to image scaling, and rotation, and robustness
under change in illumination and 3D camera viewpoint. These
methods solve the correspondence problem through a pipeline that
involves (1) feature detection, (2) feature description and (3) descrip-
tor matching. Feature detection is based on either Hessian or
Laplacian detectors (the “Difference of Gaussians” of SIFT is an
approximation to the Laplacian, and SURF uses an approximation to
the Hessian). Feature description exploits gradient information at a
particular orientation and spatial frequencies (see Mikolajczyk and

Feature-Based Image Registration

Imigek Ingei
Feature Feature
Extraction Extraction
I_, Feature ._,
Matching
v
Outlier
Rejection
)

Homography
Estimation

Fig. 4. Pipeline of feature-based image registration between an overlapping image
pair.
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Schmid, 2005 for a detailed survey on descriptors). Finally, the
matching of features is normally based on the Euclidean distance
between their descriptors. In this way corresponding points are
detected in each pair of overlapping images.

The initial matching frequently produces some incorrect cor-
respondences, which are called outliers. Outliers need to be
identified and removed, typically with a robust estimation algo-
rithm (e.g., RANSAC Fischler and Bolles, 1981 or LMedS Meer
et al.,, 1992). These algorithms are used to estimate the dominant
image motion, which agrees with the largest number of points.
Outliers are identified as the points that do not follow that
dominant motion. After outlier rejection, a homography can be
computed from the inliers through orthogonal regression.

2.2. Global alignment

The aim of global alignment is to overcome cumulative error
and build a seamless mosaic obtained from correctly aligned
images. Let ‘" 'H, denote the relative homography between tth
and (t—1)th image in a sequence. If the first image of the
sequence is chosen as the global frame, the global projection of
image t into the mosaic frame is denoted as 'H,. 'H, is known as
the absolute homography, and it can be calculated by composing (or
cascading) the relative homographies 'H,="H, -*H; -...-"'H,.
Unfortunately, the estimated correspondences between image pairs
are subject to localisation errors due to noise, and the accuracy of
the resulting homography is affected. Therefore, computing absolute
homographies by cascading noisy relative homographies results in
cumulative error. Thus, global alignment reestimates the absolute
homographies by best satisfying geometric constraints arising from
the matches between overlapping image pairs. These matches result
from sequential and non-sequential (closed loop) image pairs and
form an over-constrained set of equations.

3. Iterative global alignment

Our approach is inspired by the method proposed by Capel
(2004) that tries to simultaneously minimise both the homographies
and the position of features on the mosaic image. In this method, the
same feature point correspondences need to be identified over all
views, requiring feature tracking. Let 'x; denote the coordinates of
the ith interest point defined on the coordinate system of image t. 'x;
is the image projection of point ™x; which is called the pre-image
point and is also usually projected in different views. In Capel
(2004), all the image points that correspond to the projection of the
same pre-image point are called N-view matches. The cost function
to be minimised is defined as

M

er= > > I%="H, ™, M

j=1%en;

where M is the total number of pre-image points, #; is the set of N-
view matches and "H,, is a mosaic-to-image homography,' and Il - Il
corresponds to the Euclidean norm. In Eq. (1), both the homogra-
phies and the pre-image points are unknowns. The total number of
unknowns is (DOFs? of homography) x (number of views)+2 x
(number of pre-image points). Eq. (1) can be minimised by applying
non-linear least square methods. The residues inside the error term
&1 are measured in the image frame, but parameterized with points
defined on the mosaic frame (see Fig. 5(a)). This formulation avoids

! m stands for the mosaic frame. This frame can be one of the image frames or

a different arbitrary coordinate frame. In this work, we have chosen the first image
frame as a mosaic frame therefore, m is equal to 1. In order to keep the generality,
we have used m in the notation.

2 DOF stands for degrees of freedom.

the image scaling bias that occurs when the residues are measured
on the mosaic frame.

In this paper, we propose an alternative approach that avoids
non-linear optimisation. For this, we first transfer ¢; to the mosaic
frame by means of the following equation:

M

g2= > > IM™x="H, X, )

j=1%en;

where ™H, is equal to (‘H,,)”!. Direct minimisation of the error
term in Eq. (2) biases the estimation towards small image sizes
since smaller images lead to smaller differences between ™x; and
™H, - 'x;. If we analyse the error term in Eq. (2), we can observe
that the minimisation can be divided into two linear sub-pro-
blems (sub-steps): the first step is to minimise the error by
considering the homography values to be constant. Therefore,
they are not taken into account as unknowns. The problem is then
reduced to a special case (one free point) of the quadratic place-
ment problem (Boyd and Vandenberghe, 2004). This special case
has an analytic solution which is the average of the coordinates of
all image points after being reprojected onto the mosaic frame
under the Euclidean norm (see Fig. 5(b)). The coordinates of the
pre-image points (Mx)) in the mosaic frame can be found as the
mean of the position of each point multiplied by the correspond-
ing absolute homography. In the first step, as homographies are
constant, the ™H, - x; term in Eq. (2) is known and the equation
can be rewritten as follows:

M

g2= Y > IMx;="x{l; 3)

j=1%en;

where ™x! ="™H, - 'x;. An estimate of Mx; is given by minimising
(3), which leads to

. 1
mxj = Z ("x}) @

T
T e,

where n; is the total number of images in which feature point ™%;
appears. The second step is to recalculate new absolute homo-
graphies using the new point set (fx,-,m)?j) which is computed
linearly and independently for each homography.

The error accumulates as the sequence gets longer. This means
that tracked feature positions are getting farther from their real
positions as they are getting farther away from the chosen global
image frame. This knowledge can be introduced into the mini-
misation process as weights, while calculating the position of
features on the mosaic frame during the first step of the first
iteration. In order to choose the weights adequately, we propose
to propagate the uncertainty of the initial estimation and use it as
weights.

As initial estimation, the absolute homography of image i, 1H,»,
is calculated by cascading the relative homographies, given in the
following equation:

'H;="H;_, - "'H; (5)

where i=2,...,N. The uncertainties of relative homographies,
H):,,, are calculated from matched points by using the method
described in Haralick (1998). Covariance matrices of initial
absolute homographies, 12,. for i=2,...,N are propagated by using
the first order approximation of Eq. (5), assuming that covariances
of time-consecutive homographies are not correlated (Ochoa and
Belongie, 2006; Eustice, 2005):

DT RS VIR ES RIS V1 B (6)

where i=2,...,N,J,, andJi., are the Jacobian matrices of Eq. (5)
with respect to the'parameters of 'H; ; and "'H;,. As the first
image is chosen as a global frame, its covariance matrix, 'X,, is set
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4
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Fig. 5. Capel’'s method vs our proposal (iterative method). Comparative example. (a) Capel’s method: Consider the scene point X which has been matched in four
different images. Capel’s method tries to minimise the sum of distances between the projection of the scene point onto image frames and its identified position on the
image frame by simultaneously estimating the position of the scene point and mosaic-to-image homography parameters. (b) Iterative method: The position of the scene

point, mxj,

is unknown but its projections onto the images are known. Once these points are mapped onto the mosaic frame then problem reduces to quadratic placement

problem. The position is the one where sum of distances to the other points is minimum.
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Fig. 6. Selected corner points of the mosaic computed based on Euclidean transformation (steps 1 and 2).

to zero. Then, the uncertainty of the initial estimation is used as a
weight in Eq. (4) while calculating the position of features on the
mosaic frame during the first step of the first iteration:

]l

X €1

where w; = \/| )Z | and p;= th e Wee The inclusion of the
weighting factors allows for reachmg the final result faster (see
Fig. 11) as the uncertainty estimation provides some information
about error in the initial estimation.

These two linear steps can be executed iteratively until a selected
stopping criterion is fulfilled. A typical stopping criterion is to set a
threshold on the decrease rate of error term &;. It should be noted
that this approach has two main advantages over existing methods.
First, it avoids non-linear optimisation by iterating two linear steps.
This is relevant in the case of large-area mosaics. As non-linear
optimisation is not used, the computational cost is much lower, and
therefore, minimisation is faster. Both Gauss-Newton and Leven-
berg-Marquardt methods are frequently used for solving the non-
linear least square problems. Those methods use the (augmented)
normal equations in their central step (Hartley and Zisserman, 2004).
The computation cost of solving the normal equations has complex-
ity n® in the number of parameters and it is repeated several times
until it converges. Minimising a cost function with respect to a large
set of unknowns becomes computationally very expensive.
Although there are some improvements for sparsely constructed
systems (Hartley and Zisserman, 2004; Lourakis and Argyros, 2008),
computational cost can still be prohibitive for large problems.

The main computational cost of the proposed method comes
from the second step, which involves computing a set of inde-
pendent homographies. We have used the Direct Linear Transfor-
mation (DLT) algorithm (Hartley and Zisserman, 2004) which uses
Singular Value Decomposition (SVD) to compute each homogra-
phy. For a given p x r matrix A, the computational cost of the SVD
to solve the A - b=0 system is 4pr®+8r> (Hartley and Zisserman,
2004), and is linear with the number of rows. This computational
cost is lower than those of non-linear least square minimisation
methods. The second advantage of our proposal with respect to
the state of the art is that it requires much less memory to process
data, when compared to non-linear methods. One of the major
inconveniences of non-linear methods is the memory require-
ment to store the Jacobian matrix at each iteration. Therefore, the
proposed method can be easily applied to large datasets without
requiring high-end computation platforms.

4. Reducing image size distortions

As mentioned before, the cascading of sequential motion
estimates leads to an error accumulation. This cumulative error
affects the size of images. We propose a simple method to reduce
those scale distortions. If there is no other information on image
positions (e.g., from navigation sensors such as USBL, DVL or
INS), our approach initially aligns the images with Euclidean
homographies which have 3DOF (1D rotation plus 2D transla-
tions) so that there are no changes on the image size. This
provides a good approximation in the cases where an underwater
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Fig. 7. Corner points of the original mosaic as computed from projective transformation (steps 2 and 3).
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Fig. 8. Final mosaic after applying the four-point homography (step 6).

Table 1
Four-point warping algorithm.

Compute the projective homography between mosaics obtained in steps 1 and 3

Step 1 Align images using Euclidean homographies

Step 2 Extract the coordinates of corners of the mosaic

Step 3 Align images using projective homographies

Step 4 Repeat step 2 for the mosaic obtained in step 3

Step 5

Step 6 Update the absolute homographies and build the final mosaic

Table 2
Characteristics of the datasets.

Data Total number Image size in Total number of Total number of Total number of Mapped area
of images pixels overlapping pairs correspondences tracked features (m?)

Dataset 1 860 384 x 288 22,116 4,028,557 93,515 400

Dataset 2 263 3008 x 2000 4746 239,431 18,614 300

robot carries a down-looking camera has small changes in roll and
pitch, and keeps approximately constant distance to the seafloor.
The coordinates of the four corners of the resulting mosaic aligned
through an Euclidean transformation are extracted by using the
absolute homographies of the first and last image.> Then, images are

3 They are not necessarily the first and last image, but can be the images
located at the borders of the mosaic, corresponding to the maximum and
minimum coordinates along the x and y axes (see Fig. 6).

aligned with projective or affine homographies. The coordinates of
the corners of the aligned mosaic are extracted. These corners are
used as correspondences of the corners obtained from the Euclidean
model. An example can be seen in Figs. 6 and 7. The projective
homography between the two mosaic images is calculated. Next, the
projective homographies are then multiplied by this four-point
homography so that absolute homographies with less distortion
are obtained (Fig. 8). The algorithm is summarised in Table 1.

The homography between four corners of two mosaics is
comparable to the rectification homography in Liebowitz and
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Zisserman (1998) which is used to reduce the distortions on the
image size. In their work this homography is decomposed into
three different matrices which account for similarity, affine and
pure projective transformations. Each of them is calculated by
taking into account the metric properties of the scene such as
angles and length ratios, which need to be known, thus reducing
the application scenarios. This contrasts with our approach where
we have computed this homography without computing the each
matrix explicitly as we do not have any information about the
properties of the scene. Four correspondences are the minimum
number of matched features required to compute the projective
homography. This means that the four corners of the mosaic are
mapped onto the same position as the ones of the Euclidean
mosaic. Therefore, in the final mosaic, the length between mosaic
corners and the angles between lines will be same as those of the
Euclidean mosaic.

This approach can also be used when information about image
positions on the mosaic frame is available from navigation
sensors and/or a number of world points with known x and y
coordinates may be available and they could be used for rectify-
ing. As the projective homography, rectifying homography, calcu-
lated from four correspondences is an exact mapping of points,
therefore, after applying this homography, four points in both
mosaic have the same coordinates. Furthermore, due to this exact
mapping property, multiplying all absolute homographies of

Fig. 9. Snapshot of our Unmanned Underwater Robot ICTINEUAYY, operating in the
Mediterranean Sea during acquisition of the first dataset. The robot carries a
down-looking camera mounted on a bar. The 3D relief of the scene is negligible
compared to the altitude of the camera.
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Fig. 11. Change in the average reprojection error with (Eq. (7)) and without
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iterations and the vertical axis shows the average reprojection error in pixels in
logarithmic scale.

Fig. 12. Initial estimation of the first dataset.
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images with this rectifying homography does not cause any
change on the local alignment between images while globally
reducing the distortion on the image sizes.

5. Experimental results

We have tested our method using large-area underwater
image sequences. The main characteristics of the datasets are
summarised in Table 2. The first dataset covers a large area of the

Fig. 13. Resulting mosaic of the proposed method.

Fig. 14. Resulting mosaic of the Capel’s method.

Fig. 15. Mosaic obtained through the bundle adjustment approach described in
Ferrer et al. (2007). Fig. 17. Resulting mosaic with the proposed method.

Table 3
Results of the tested methods.

Data Measure Initial estimation Capel’'s method Proposed method Bundle adjustment®
Dataset 1 Avg. rep. error in pixels 34.79 4.76 5.04 5.15

Total time in seconds 99,876.70 22,652.10 44,988.30
Dataset 2 Avg. rep. error in pixels 673.56 37.18 35.79 41.04

Total time in seconds 9080.40 1397.20 8084.90

2 In this work, n in Eq. (8) is chosen as five (Sawhney et al., 1998; Gracias et al., 2003). This method was not totally implemented in MATLAB™ environment. It makes
use of some C code through MEX files. Hence, the time reported here cannot be used to compare with the other two methods accurately but it provides an idea about
required time.
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Table 4
Distortion measures of the final mosaics for the second dataset.

Initial Capel’s method, Iterative method, Euclidean corners, Image centres, Bundle adjustment,
estimation Fig. 16 Fig. 17 Fig. 18 Fig. 19 Fig. 20

Max/min ratio 1.258 1.490 1.569 1.258 1.312 1.297

Deviation (%) to bundle 3.053 14.811 20.910 3.053 1.110 0.000

adjustment

seafloor that was acquired by the ICTINEUAYY underwater robot
(Ribas et al., 2007) during sea experiments in Colera on the
Mediterranean coast of Spain (see Fig. 9). Although the hydro-
dynamics of open frame vehicles is known to be less efficient than
that of closed hull type robots, ICTINEUAYY is suitable for applica-
tions not requiring movements at high velocities, but requiring
travelling close to the seabed. The acquired dataset comprises
860 low-resolution images (384 x 288 pixels) and covers approxi-
mately 400 m?. Before applying our method, the camera was
calibrated and images were compensated for radial distortion.
Features are detected and matched between images by using
SIFT (Lowe, 2004). Then, RANSAC (Fischler and Bolles, 1981) is
used to reject outliers and estimate the motion between images.
The total number of overlapping image pairs is 22,116. Features
are tracked along the images using the initial estimation of the
topology. The total number of tracked features is 93,515 and the
number of correspondences among all overlapping image pairs is
4,028,557.

In order to illustrate the advantages of our approach with
respect to the closest method in the literature, we implemented
Capel’s Method. The minimisation of the cost function in Eq. (1)
was carried out using the MATLAB™ [sqnonlin function for large-
scale methods. The optimisation algorithm requires the computa-
tion of the Jacobian matrix containing the derivatives of all
residuals with respect to all parameters. The Jacobian matrix
has a clearly defined block structure, and the sparsity pattern is
constant (Capel, 2004). In our implementation, analytic expres-
sions were derived and used for computing the Jacobian matrix.
We have compared the performance of our method with Capel’s
method and the bundle adjustment approach proposed in Ferrer
et al. (2007). Our performance criterion corresponds to the
average reprojection error over all correspondences, i.e.:

1 - k g-1 1 g-1 1 k
.s3=5222n xi— Hi ' TH -5l 4 1% =TH - TH - %50 (8)
j=

where k and t are a pair of images that were successfully matched,
n is the total number of correspondences between the over-
lapping image pairs, s is the total number of correspondences and
(1H,<,1Ht) are the absolute homographies for images k and t,
respectively.

It should be noted that this error measure does not depend on
the selected global frame as it uses absolute homographies to
compute a relative homography. Therefore, if all the absolute
homographies are mapped to any other arbitrary frame, the repro-
jection error will remain the same. Hence, the first image frame is
chosen as a global frame. The evolution of the uncertainty of the
initial estimation is illustrated in Fig. 10. The error accumulates as
the sequence gets longer and the uncertainty rapidly grows.

The initial estimation and the resulting mosaics are represented
in Figs. 12-14. The average reprojection error of the initial estima-
tion is 34.79 pixels. Capel’s method has 93,515 x 2+860 x 8=
193,910 unknowns and the Jacobian matrix is 1,383,878 x
193,910. Since Capel’s and the proposed method use different error
terms, the selected stopping criterion might not have the same
meaning for both approaches. Therefore, we have set a threshold of

Fig. 18. Resulting mosaic with the proposed method and the distortion reduction
approach explained in Section 4.

6 pixels on the average reprojection error in order to compare the
computational time of Capel’s and the proposed method with and
without the use of weights. Capel’s method required 31,525 s to
obtain an average reprojection error of 5.72 pixels. The proposed
method without using uncertainty weights needed 8443s to
achieve an average error, 5.79 pixels, smaller than the threshold.
On the other hand, using the uncertainty weights, the same method
required 4087 s to reach an average reprojection error 5.77 pixels.

We have also tested the performance of the methods for the
same running time of 19,150s.* Capel's method provided an
average reprojection error 8.65 pixels. The proposed method
without weights provided an error 5.31 pixels and using weights
the average reprojection error was 5.08 pixels. From the results,
the use of uncertainties as a weight in the first iteration allowed
us to reach the stopping criteria in less iterations, thus reducing
the computational cost. Capel’s method required 99,876 s to reach
a point where the error was not decreasing anymore and the
average reprojection error was 4.76 pixels. The proposed method
with uncertainty weighting required 22,652 s and the average
reprojection error was 5.04 pixels.

The method described in Ferrer et al. (2007) required 44,988 s
and the average reprojection error was 5.15 pixels. The resulting
mosaic of this last approach can be seen in Fig. 15.

The second dataset is composed of 263 images of size
3008 x 2000 and covers approximately 300 m?2. The dataset has
been acquired in the Mediterranean Sea, close to Pianosa Island.
The total number of overlapping image pairs is 4746. The number
of correspondences between overlapping pairs is 239,431 and the

4 This running time was chosen as an approximate mean of the running times
of the previous experiment, respectively, 31,525 and 8443 s and was tuned
according to Capel’s method in order not to stop the method without completing
its current iteration.
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Fig. 19. Resulting mosaic with the proposed method and incorporating four image
centres framework.

Total Number of Features

A. Elibol et al. / Ocean Engineering 38 (2011) 1207-1219

number of tracked features is 18,614. Therefore, the number of
unknowns is 18,614 x 24263 x 8=39,332. The average reprojec-
tion error of the initial estimation is 673.56 pixels. Capel’s method
required 9080 s and the average reprojection error was 37.18
pixels. The proposed method required 1397 s and average error
was 35.79 pixels. Table 3 presents the computational time (in
seconds) and average reprojection error (in pixels) calculated by
using all correspondences for the tested methods over the
datasets. All testings were performed in a desktop computer with
an Intel Core™2 2.66 GHz processor, 3 GB RAM and a 64-bit
operating system, running MATLAB™,

The resulting mosaics are illustrated in Figs. 16 and 17. It can
be noted that both Capel’s and the proposed method caused
noticeable distortions to the image size. To quantify the amount
of distortion, we have computed the max-min distance ratio (Liu
et al., 2008) between the corners of the final mosaics. This
criterion requires the knowledge of the true size and/or the ratio
of the certain object in the image. However, as our scene is not a
man-made environment, it is difficult to define a certain number
for this ratio (e.g., if a mosaic has a shape of a square, this ratio
must be equal to 1). Therefore, we have used the ratio of the
resulting mosaic obtained with bundle adjustment as a compar-
ison baseline. For each mosaic, max-min distance ratios are given
in the first row of the Table 4 while the second row shows the
deviations of other methods in percentage from the bundle
adjustment. From the table and as well as the resulting mosaics,
it can be noticed that both Capel’s method and the proposed
method have caused some distortions on the image size. This is
mainly due to the initial estimation. Moreover, in Fig. 17, it can be
seen that images which are in the outer transects suffer from
higher distortion than the ones located in inner transects in order
to get better aligned. This effect is due to the fact that inner
images have more overlapping area and contain more tracked
features, and during the execution of the first step, the mean
position of the tracked features is somewhere closer to the inner
images. Therefore, outer images tend to move the most during the
optimisation process in order to get better alignment. Alignment
in Fig. 17 is better than that of Fig. 16 as the reprojection error is
smaller. However, the distortion on the image size is bigger. The
proposed method is working on the mosaic frame. Therefore, the
resulting mosaic depends on the initial positioning of the images.
This is also true for the other methods that require non-linear

Total Number of Tracked Features in Images

L 1 ]
H 10 15 20 25 30 35
Images

Fig. 21. Initial estimation and number of tracked features of the underwater sequence. (a) Mosaic with the accumulated homographies and (b) distribution of tracked

features along images.
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Fig. 23. Resulting mosaics of the underwater image sequence and ground-truth mosaic obtained by registering each image to the poster. (a) Capel’s method, (b) proposed
method and (c) ground-truth.
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optimisation as they need an initial estimation and they might fall
into a local minimum which does not provide a correctly aligned
mosaic.

It should be noted that the distortion on the image size can be
reduced by using the approach detailed in Section 4, which
provides the result illustrated in Fig. 18. If some fiducial points
and/or navigation data of the robot are known, the available
information can be easily incorporated in the proposed approach
in Section 4 as well. Fig. 19 shows the resulting mosaic of the
proposed framework applied under the knowledge of the real
coordinates of the four image centres that are at the top-left, top-
right, bottom-left and bottom-right of the mosaic. We have also
applied the method proposed in Ferrer et al. (2007) to the dataset.
This method takes into account not only image correspondences
but also other sensor information when available. Fig. 20 shows
the resulting mosaic by using image correspondences and addi-
tional sensor information about four image centres that are in the
corners of mosaic. From Figs. 19 and 20, one can verify that the
resulting mosaics are very similar. Our proposed image rectifying
method allows to incorporate the fiducial point information in an
easy way, without requiring a non-linear optimisation.

The last image sequence was acquired with remotely operated
vehicle develop by our group under controlled conditions, to
allow for obtaining positioning ground-truth. For this, a large
poster with seafloor texture was placed at the bottom of a test
pool. In particular, since the floor of the pool is planar and the
robot performs movements in 3D space, camera motion can be
adequately described by 2D planar transformations. This image
set consists of 159 images of size 376 x 280 and covers approxi-
mately 18 m?. Additional images of a checkered board were
acquired for camera calibration.® Before applying our method,
the images were compensated for radial distortion. An example of
original and rectified images are given in Fig. 22. Thirty-two key-
frames were selected by calculating at least 50% overlap. Then,
non-time-consecutive overlapping image pairs were found. The
total number of overlapping image pairs between key-frames is
150. This number later refined by choosing image pairs that have
at least 20% of overlap. Final total number of overlapping image
pairs is 85. Fig. 21(a) shows the initial estimation calculated by
accumulation. Average reprojection error is 56.50 pixels com-
puted over 32 100 correspondences. If a feature has appeared in
three or more images, it is added to the list of tracked features.
The total number of tracked features is 1116 and their distribu-
tion with the images is given in Fig. 21(b).

The resulting mosaics are depicted in Fig. 23(a) and (b). In both
mosaics, some misalignments can be seen because the distribution
of tracked features is not close to being uniform. Some images
contain very few tracked features, e.g., the 19th image has only five
features. The average reprojection error calculated over 32 100
correspondences is 6.79 pixels for Capel’s method and 6.83 for the
proposed method. The running time for 20 iterations is 34.08 s for
Capel’'s method and 6.95 s for the proposed method.

In order to compare the trajectories obtained by the tested
methods, we have registered individual images to the image of
the poster and the resulting trajectory was used as a ground-
truth. Resulting trajectories can be seen in Fig. 24. Maximum drift
between the ground-truth trajectory with the one obtained by the
proposed method is 31.01 pixels while it is 61.60 pixels for the
trajectory obtained by Capel’s method.

5 The accuracy of the calibration was limited by the fact that only fronto
parallel images of the grid were possible to obtain.
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Fig. 24. Solid (red) line shows the ground-truth trajectory obtained by registering
individual images to the image of the poster. Dashed (green) line denotes the
trajectory obtained by the proposed method while the dotted (blue) line shows
the trajectory of Capel’s method. Top left corner of the first image is chosen as an
origin of the mosaic frame. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

6. Conclusions

Over the past few years, underwater imagery has become one
of the major data sources in different studies of the seabed owing
to the impressive development in underwater robotics. However,
the underwater medium does not allow images to be taken from a
high altitude with respect to the seabed. As a result, a surveyed
area cannot be imaged by a single high-resolution image as opposed
to the situation in land cartography. This increases the need for
image mosaicing methods specially suited to deal with large image
sets, as the area of interest in underwater mapping is often quite
large. In this work, an iterative global alignment method has been
proposed to overcome some of the limitations of current state of the
art techniques in image mosaicing. Normally, global alignment
requires the minimisation of an error term, which is defined from
image correspondences. This error term can be defined either in the
image frame or in the mosaic coordinate system. In both cases, non-
linear minimisation is required. This new approach provides similar
results without the need of non-linear optimisation. We propagate
the uncertainties of the initial estimation and use them as a weight
during the first iteration. As this models the error of the initial
estimation, using the uncertainties as a weight significantly reduces
the running time.

The proposed method has been tested with different under-
water image sequences covering a large area and comparative
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results have been presented to illustrate its performance. As the
proposed method is not demanding in terms of computational
effort and memory, it makes an important contribution opening
up the possibility to deal with very large mosaicing problems
using off-the-shelf computing hardware. The results in this paper
illustrate that our proposal is faster than its counterparts, while
attaining the same level of registration quality. We also introduce
a simple rectifying method to overcome the possible distortions
that might appear on the image size due to error accumulation
and lens distortions. This new method can also be used to quickly
fuse any additional navigation data of the robot if available.
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