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Abstract: Distributing the mapping problem over several vehicles provides the ability to survey
an area in fewer time than with a single one. However, the communications required to maintain
the vehicles in formation underwater are highly complex. We present a global alignment method
for multi-AUV trajectory optimization. We take advantage of the acoustic messages passed
between vehicles as well as of the further constraints posed by optical matches between images
in some of the vehicles in the formation, both within a single robot and from different ones.
By merging all these constraints, we can obtain both an optical georeferenced mosaic of the
surveyed area and a joint optimization of the poses of the vehicles in the formation at each
time. We present and discuss an application of the method on a real dataset collected within

the MORPH EU-FPT project.
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1. INTRODUCTION

The use of multi-robot systems for underwater mapping
operations are gaining popularity in recent years due to the
availability of acoustic modems and advances in control
mechanisms dealing with these complex configurations.
Obviously, having more than a single vehicle surveying an
interest area reduces the mapping time. Given the locality
of optical images, this is of special interest for large area

mapping.

The work presented in this paper has been developed
within the framework of the MORPH EU-FP7 project
(Kalwa et al., 2012). This project proposes a novel concept
of an underwater robotic system that emerges out of using
different mobile robot modules with distinct and comple-
mentary resources. The robots will navigate at a very close
range as a group, and will have the ability to change
the formation to adapt to changes in the terrain. The
project will provide efficient methods to map the under-
water environment with great accuracy in situations that
defy existing technology: namely on surveys over rugged
terrain and structures with full 3D complexity, including
walls with overhangs. Its applications cover a wide range
of scientific and commercial areas such as monitoring of
cold water coral reefs, oil and gas pipeline inspection, or
harbor and dam protection. The idea that concerns more
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this paper is that an underwater vehicle equipped with a
multibeam sonar profiler (LSV), advances at the forefront
of the formation, flying at a “safe” altitude from the sea-
floor, while two other vehicles (camera vehicles CV1 and
CV2) fly very close to the bottom, with a much higher risk
of collision, acquiring images. The communication vehicle
(GCV) is at the back with the main goal of keeping a good
communication channel with the surface vehicle (SSV).

Whereas the MORPH concept envisions application to
rugged terrain, the work of this paper addresses the
particular case of surveys over approximately flat areas.

2. RELATED WORK

Underwater optical mapping has been an intensively stud-
ied topic in the underwater robotics community. Due to the
common use of downward-looking cameras in the vehicles,
a widely extended methodology is that of 2D mosaicing.
Even if estimates for the robot pose are available at the
time of image capturing, the accuracy of the navigation
of the vehicle is orders of magnitude worse than the
ground resolution of the images provided by the camera.
In order to solve the misalignments between images in the
mosaic plane, we can deal with the mosaicing problem
as a pure image-based registration, as in Elibol et al.
(2013). However, it would be desirable to allow the poses
of the vehicles to be jointly optimized with the constraints
provided by the matches between images during the map
construction, as in Ferrer et al. (2007) and Pizarro et al.
(2009). Moreover, posing the problem as a point-based
bundle adjustment we can formulate the localization and
mapping as a pose-graph optimization, such as the one



discussed in Kunz and Singh (2013). New trends such as
the one proposed in Elibol et al. (2014) use strategies to
optimally deal with the creation of mosaics of the same
area as surveyed from different concurrent vehicles.

In our case, since we are taking into account at the same
time the creation of a map and the retrieval of a correct
navigation, the problem falls closer to simultaneous local-
ization and mapping (SLAM) methods. When more than
a single vehicle is used, the algorithms are usually referred
to as Cooperative Localization methods (Rekleitis et al.,
2001). These works are normally concerned with both
sequential and non-sequential odometry links between the
poses. Different estimation algorithms have been proposed
to solve this problem, such as the Extended Kalman Fil-
ter (Roumeliotis and Bekey, 2002) or the particle filter
(Howard, 2006). Obviously, the underwater application
of such algorithms has the burden of the communication
channel. The common procedure is to communicate rela-
tive measurements between vehicles in the formation using
acoustic modems. However, the quantity of data that can
be passed is restricted, its latency is very large, and it is
error prone (Paull et al., 2014). Most of the approaches
found in the literature are targeted to real time appli-
cation on-board the vehicles but, due to the mentioned
restrictions, we want to unify all these methodologies in an
off-line procedure to take advantage of all the information
available.

3. OVERVIEW AND CONTRIBUTIONS

This paper presents a global alignment method for multi-
vehicle trajectory estimation, with a twofold motivation.
On one hand, we target the creation of a multi-vehicle 2D
optical map of the area under exploration. On the other
hand, we also need to optimize the vague initial guess
for the navigation that we obtain from the raw messages
passed in a MORPH formation, thus generating a better
estimation for the pose of these vehicles throughout the
mission.

The multi-AUV  structure proposed in the MORPH
project allows for real-time control of the trajectory of the
vehicles using acoustic messages. The problem resides in
the fact that, with the exception of the surface vehicle, the
global trajectory of the AUVs is not stored. We may have
an internal estimation process for the trajectory for each
vehicle (e.g., based on the motion model of the robot, or
by integrating the output of sensors), but this trajectory
is not in agreement, nor has been corrected, with respect
to the rest of the vehicles in the formation.

Consequently, we introduce an off-line global alignment
optimization framework taking advantages of all the mes-
sages passed between vehicles in the MORPH concept
to recover this trajectory. While acoustic measures are
enough for the control architecture to maintain the for-
mation in real time, they are noisy and not precise enough
to use them to build an optical map. Thus, we add image-
based constraints in the form of homographies, which are
derived from the construction of a photomosaic from the
two camera vehicles (CVs). This provides further con-
straints to the global positioning of the other vehicles in
the formation. Note that the improved navigation provided
by our off-line approach may be useful for further mapping
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Fig. 1. Figure showing the different frames involved in
the mosaic optimization: the world frame {W}, the
mosaic frame { M}, and vehicle poses z¥, related with
the camera frames ¢} by a rigid transformation.

purposes, such as using it to map through the multibeam
sensor carried by the vehicle at the forefront of the forma-
tion (LSV).

We start by introducing the creation of the optical mosaics,
and the global alignment procedure involved, to then
extend this least squares minimization with further terms
coming from navigation and acoustic constraints.

4. OPTICAL MOSAICING

The two lower vehicles in the formation (CVx), are re-
sponsible for collecting imaging data in order to obtain
an optical survey of the area. For these seabed surveys,
and due to the downward-looking configuration of the
cameras, we take the common assumption of the seabed
being almost flat in order to create a photomosaic. We
assume that the area under consideration does not contain
enough relevant roughness to introduce parallax-related
problems during the photomosaic construction.

We start by explaining, with the help of the depiction
in Figure 1, all the frames and poses involved in the
optimization. We parametrize a pose zj of vehicle v at
time ¢ in the more general term using 6 degrees of freedom
(DOF), with rotations represented as unit quaternions. All
these vehicle poses are defined with respect to the frame
{W}. Furthermore, we also have the frame {M }, whose X-
Y plane frame comprises the 2D photomosaic frame where
all the images should be projected. Note also that the
camera pose/frame ¢} is located at a given transformation
with respect to the vehicle pose, which we consider to be
known for each CV. Given the fact that just known rigid
transformations separate x} from ¢} poses, we assume now
to work directly with ¢} and with respect to the {M}
frame.

When dealing with the creation of photomosaics, the
common assumption is that the vehicles have an altimeter
that relates its pose with respect to the seabed (Ferrer
et al., 2007). Nevertheless, in our case some of the vehicles
do not contain an altimeter or are too far away from
the seabed to compute a reliable altitude measure. Thus,
we decided to define our poses with respect to depth
measurements. This means that we do not have a reference
for the base plane where to project the mosaic. Thus, the
pose of {M} with respect to the world reference frame
{W} is another variable to optimize. Note that this allows
the mapping to happen on slanted terrains.



For simplicity, let us define the poses as separate 3 x 3
rotation matrices {;R, defining the rotation from mosaic
frame M to camera frame C, and translation matrices
Mp = (Mg, My, M¢), defining the translation with re-
spect to frame M. Using this notation, and assuming
the camera matrix K to be known (calibrated) for each
camera, we can then define the classic pinhole projection
model as follows:
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where (Mp,,Mp, ,Mp.) is the 3D point referred in { M}, and
{(pu, dv, ¢)T its 2D projection on the image frame i. From
(1), we can define an image-to-ground plane mapping by
projecting on the mosaic plane z = 0:
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Finally, we can define the absolute planar motion described
in (2) as an absolute homography with respect to the
mosaic frame M, representing a 3D point with respect to
the plane Mz = 0:
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Obviously, the relative planar motion between image
frames {i} and {j} can be computed by composing the

absolute ones: iH = //H - H .

With these components, we now have a way to determine if
the poses in z} are in agreement with homographies com-
puted at image pairs using feature matching. The following
section shows how we compute this minimization.

4.1 Global Alignment

Localization and mapping problems such as the one in-
troduced above are often modeled as a pose graph. This
intuitive definition of the problem consists of a graph
containing two types of nodes: poses and factors. Given
a front-end definition of the graph, many available solvers
can be used to deal with the non-linear minimization they
describe. In our case, we implemented the optimization by
extending the g2o framework (Kummerle et al., 2011).

It is important to notice that we are optimizing the xy

poses, as this is the connection with the larger definition

of the optimization to be described in subsequent sections.

Given our unknowns being poses z; and another 6 DOF

pose m referring to the mosaic frame {M}, the optimiza-

tion we seek is the following:
X", M* = arg min

X,M
v,W,ta,t
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where e(xf, z]) is the error measurement derived from the

homographies. From each pair poses a:ia , x{b having image
matches, and following the set of rigid transformations
and calculations described in the section above, we can

describe how well the image-computed homography agrees
with the image-to-image planar homography derived from
the poses:

e = pr —H - 'pi.

This function is basically computing how far a 2D point
y, in one image falls from its computed match p;, through
the homography ;H computed from the poses, with k& =
{1..m} being a determined number of correspondences per
pair. As presented in the second line in (5), we do this
bidirectionally. Thus, we have a 4-elements error vector
for each correspondence. The size of the error vector, and
its associated covariance matrix, depend on the number of
matches taken into account, which we fix to four in the
presented results.

Note that in (4), and in further terms to add in the
minimization later on, we use the Mahalanobis distance
||e||22, where ¥ represents the covariance matrix of the
measure.

5. EXTENSION TO PRIORS AND ACOUSTIC
MESSAGES

Once the mosaic has been built, we extend the proposed
minimization by adding terms corresponding to the acous-
tic messages passed for controlling the MORPH formation,
as well as some priors that may help in stabilizing the
resulting trajectories. This further restricted optimization
has the following terms:

X*,M*:argn;}n{H—&—A—i—O—FU%—R}, (6)

where H is the term already introduced in section 4.1, and
A, O, U, R are the new terms restricting the trajectory,
which will be introduced in the following sections.

5.1 Absolute Priors

Absolute priors imposes some knowledge on the absolute
measure for a pose vector. The minimization term has the
following form:

2
A=Yl - ally 0
v,t v,t

where aj is a pose vector. This type of terms may be
specially useful to define priors on the SSV vehicle, whose
GPS readings and its known zero depth can be used to an-
chor the optimization. In fact, using different covariances,
we can use absolute pose factors to define a prior uncer-
tainty on the initialization poses, i.e., those corresponding
to the trajectories we set at the beginning of the optimiza-
tion. For example, we can impose a large reliability on the
roll and pitch of the vehicles, as the robots used should be
more or less stable on those angles. Additionally, we can
impose reliability on the depth measures, while we let the
other parameters of the poses z} with a large uncertainty,
meaning that they will be freed on the optimization, which
will be the responsible of getting optimal values for them.



5.2 Relative Priors

Odometry (i.e., relative) constraints are used to keep a
sequence on the trajectory:
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where 0! is the relative pose measurement, and & is the 3D
version of the compounding operator as defined in Smith
et al. (1987).

5.3 USBL Measures

USBL messages are passed between the SSV and the
GCV/LSV vehicles, and basically provide a relative trans-
lation constraint at a given time. This relative translation
is in UTM, and with respect to another vehicle:

w2
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where u;"" is the 3-element vector describing the measured
relative displacement, and u(z,, xp) is the translation part
of the compounded pose x, D xp.

5.4 Range Measures

We also have simpler range measurements between all the
vehicles in the formation, acquired through time-of-flight
computation among messages passed between vehicles,
and with the assumption of known speed of sound on
water. They provide just a distance restriction between
poses:
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d(xq,xp) being the Euclidean distance between the two
poses, and 7, being the measured scalar.

6. INITIALIZATION

Starting this minimization from raw data and a vague
trajectory estimation is very unlikely for it to converge
near the global optimum. Thus, we split the processing in
two steps.

First, we build the multi-vehicle 2D optical map. We
search for consecutive and non-consecutive image feature
correspondences using SURF (Bay et al., 2008) for fea-
ture detection/description, and a RANSAC-based proce-
dure (Fischler and Bolles, 1981) for the robust projective
homography estimation. The trajectory is initialized using
the in-vehicle pose estimation (an EKF filter integrating
DVL, IMU and preassure sensors), and then optimized us-
ing just the restrictions in Section 4.1. For the initialization
of the mosaic frame {M}, we take advantage of the CVx
vehicles being close to the seafloor and carrying an altime-
ter. Thus, we can take the initial on-vehicle navigation
estimation, and their depth plus altitude measurements to
construct a set of candidate points being at the seafloor.
From this point set, we fit a PCA plane whose normal
serves to create an orthonormal vectors initializing {M}.
Once we have the mosaics built for each camera vehicle,

we then search for image matches defining relative ho-
mographies between image frames from different vehicles,
and perform a joint optimization, which finally renders the
multi-vehicle mosaic.

Using the constrained estimation of poses obtained by the
mosaicing strategy, we then add the acoustic measure-
ments. The trajectory of the SSV is quite reliable, as this
is the only vehicle in the formation keeping GPS fixes.
Consequently, it is given a low variance in the optimiza-
tion. For the GCV and LSV case, their initial translation
with respect to the world is directly estimated by com-
posing USBL readings and the SSV poses. Note however
that these messages are not error-prone, and we may find
outliers among them. Luckily, they are easy to detect,
and we can filter them using a simple approach. This
naive method consists in extrapolating the next pose in
the trajectory given the last two already computed: if the
new compounded USBL-based pose is within a given radial
neighborhood from the predicted one, we accept it as valid,
disregarding this USBL measure otherwise. Regarding the
rotation part of the poses, we use the internal sensors of
each vehicle.

Finally, we jointly optimize all the measurements. Note
that the different restrictions are not synchronized in time.
Thus, we augment the number of pose nodes in the graph
for each new measure to include in the optimization.
The initialization of these new poses is computed by
interpolation.

7. RESULTS

We validate our method on a real dataset collected during
the MORPH trials of September 2014 in the city of Horta,
in the island of Faial (Azores, Portugal).

The vehicles involved in these experiments where 3 Medusa
AUVs, playing the role of SSV, LSV and GCV in the
MORPH formation, and Seacat AUV and Sparus IT AUV,
used as CV1 and CV2 respectively.

The survey performed consisted of a series of six loops
(zero-shaped), whose central point is shifted incrementally
in one direction parallel to the seafloor. The two CVs were
required to keep a constant altitude of 2.5m with respect
to the seabed, while the rest of the vehicles were keeping
a constant depth. Since the CV vehicles are located at
left /right positions with respect to the LSV vehicle in the
formation, after a set of loops, the area surveyed by the two
vehicles will overlap. Furthermore, we decided to start the
trajectory with a straight transverse path in the middle of
the surveyed area, so that more non-consecutive matches
are found each time we cross these parts within the loops.

At the time of writing this article, we decided to start
validating our method with the initial part of this tra-
jectory, that is, the transverse segment plus one and a
half loop. The photomosaic, constructed from 1168 images
(584 images for each CV) can be seen in the left-hand
side of Figure 2. Moreover, on the right-hand side of the
same figure we can observe the corrected trajectory with
the detected consecutive, non-consecutive, and between-
vehicles matches conforming the restrictions that guided
the non-linear minimization proposed in Section 4.1. The
shape of this last set of trajectories can be compared to



(a) Mosaic

+ Nodes
Consecutive k‘
— Non-consecutive
— Inter-vehicle

(b) Trajectory and matches

Fig. 2. Mosaic of the first loop of both camera vehicles in the dataset of Horta 2014. On the left figure, we find
the constructed mosaic. Due to illumination changes, we can differentiate between the trajectories of CV1 (outer,
darker loop) and CV2 (inner, brighter loop). On the right figure, we show the optimized trajectory, with consecutive
matches marked in green, non-consecutive in red, and inter-vehicle in blue.
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Fig. 3. Top view of the trajectories (UTM coordinates). On one hand, in (a) we find the initialization of the trajectories
of each vehicle, as suggested in Section 6. On the other hand, in (b) we show the final optimized trajectories

that of Figure 3 (a), containing the raw navigation mea-
sures used to initialize the optimization. Due to changes
in illumination conditions and camera configurations, we
can clearly distinguish in Figure 2 (a) the part surveyed
by CV1 (i.e., Seacat AUV, the darker outer loop) and CV2
(i.e., Sparus IT AUV, the brighter inner loop). Note that,
while no pre-processing was needed to create the presented
mosaic, we should consider compensating for these differ-
ences in illumination as a further step after creating the
mosaic. Furthermore, we can see in Figure 2 (b) that there
is overlap between the trajectories of both CV vehicles
thanks to the transverse transect, thus ensuring that the
two initial rough trajectories are jointly optimized.

After the construction of this multi-vehicle map, we join
the rest of the information to further constraint the trajec-
tories of the non-camera vehicles using the acoustic mea-
surements. In Figure 3 we can see the differences between

the non-optimized trajectories on the left (constructed as
explained in Section 6) and the optimized ones on the
right. Note how the in-vehicle trajectories of the CVs are
moved to be consistent with the the rest of the vehicles in
the formation, thus improving the overall georeferencing
of the system. Table 1 summarizes the numbers of nodes
and factors in the optimized graph.

To conclude, Figure 4 shows a slanted version of the
optimized trajectories in 3D, with a deliberately exagger-
ated Z. One can see the two CV trajectories being some-
how slanted and intersecting with LSV/GCV trajectories,
which kept constant depth. This suggests that the terrain,
while being close to planar, had some slope and was far
from parallel to the sea surface. Given the optimization of
the mosaic frame {M} inside our framework, we are also
able to measure this slope.
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Fig. 4. Slanted view of the optimized trajectories (UTM
coordinates), with exaggerated Z.

Table 1. Number of nodes and factors in the
final optimized graph. Note that there is one
additional node/factor in the total to account
for the mosaic frame node and prior respec-

tively.
l Nodes ] l Factors ]
Vehicle | Num. Type Num.
SSV 6498 Optical 3519
LSV 1963 Ranges 2939
GCV 2350 USBL 1027
CV1 2146 Relative 15057
Cv2 2105 Absolute | 15062
Total 15063 Total 37605

8. CONCLUSIONS

We presented a global alignment off-line optimization
procedure to compute the joint trajectory estimate of a
set of vehicles surveying the seabed within the formation
described in the MORPH EU-FP7 project. The system
is generic enough to allow the augment/decrease of the
number of vehicles to take into account, thus being usable
in other multi-vehicle configurations.

We validated our method by testing it in a real envi-
ronment. The results obtained show that the mosaicing
pipeline renders smooth multi-vehicle mosaics, and also
that the joint optimization with acoustic messages pro-
vides a coherent global alignment of all the trajectories of
the vehicles in the same frame. Moreover, the deliberate
abstraction in depth for the vehicle poses is not only useful
to render the joint optimization with vehicles not having
an altimeter, but also to compute the possible slope that
the area under consideration may contain.

As future work, we want to study the inclusion of outlier-
robust measures in the system. Range or USBL measures
are likely to contain outliers, which the current framework
could not deal with. Consequently, we want to study the
possible integration of outlier-robust methodologies, such
as those surveyed in Siinderhauf and Protzel (2013).
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