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Abstract—3D object recognition is an active research area
in computer vision and robotics. The integration of spatial
information with semantic knowledge has become an important
task for robots in order to successfully perform autonomous
intervention missions. This paper presents an approach for the
recognition and pose estimation of underwater objects, with the
goal of enabling autonomous underwater intervention in man-
made structures. The methods are developed to be used with raw
data consisting of 3D colorless point clouds collected by a fast
laser scanner. The proposed approach contains two main phases:
Object recognition from range data, and feature-based semantic
SLAM. The first goal consists of recognizing different objects
present in the scene. For this purpose, a recognition and pose
estimation pipeline was developed enclosing different steps such
as segmentation, identification, and estimation of the position
and orientation for each targeted object. The second goal aims at
improving the AUV navigation in an underwater environment by
using the result of the recognition and pose estimation pipeline to
feed a feature based SLAM algorithm. As the AUV moves along
the trajectory, the SLAM algorithm builds a map, recognizes
targeted objects and integrates them into this map, and localizes
its position with respect to it. Compared to previous experimental
results performed in a water tank, this paper emphasizes the
importance of estimating the pose of the objects (namely the
orientation), as a way of promoting the accuracy of the robot
localization.

Index Terms—3D object recognition, 3D global descriptor,
simultaneous localization and mapping (SLAM), Ensemble of
Shape Functions (ESF), laser scanner, autonomous underwater
vehicles (AUVs).

I. INTRODUCTION

The current state of the art in autonomous mobile manipu-
lation is dominated by applications in indoor settings, such as
home environments [1]–[3]. Robots have been demonstrated to
be able to identify, locate and grasp different kitchen utensils
[4].

In spite of such advances, there is still a sharp contrast
of capability when compared to underwater settings, where
autonomous manipulation is still performed at a very low level

of automation. Remotely Operated Vehicles (ROVs) equipped
with manipulators (robot arms), are the main tool for interven-
tion in different applications such as maintenance of offshore
oil and gas structures, military and security operations, and
archaeology and geology exploration [5]. In this context, a
number of research centers have started pursuing the concept
of an Intervention Autonomous Underwater Vehicle (I-AUV)
[6] aiming at improving the automation level of underwater
mobile manipulators.

Motivated by the behavior of robots in indoor environ-
ments, AUVs equipped with robot arms have been shown
to perform tasks of similar complexity as indoor robots in
kitchen settings. Examples of such are the grasping of objects
laying on the seabed, the turning of valves on panels, or the
plugging/unplugging of connectors [7].

The capability to simultaneously navigate and map the
environment at the object level is now prevalent on many
indoor applications [8]–[10]. For the underwater counterpart,
this capability is not yet well established, in spite of the
contributions that have been made towards AUV navigation
autonomy [11]–[13].

In this paper, we present a navigation and mapping system
for an AUV operating near a man-made environment. We
proposed a pipeline for a semantic mapping system, based
on colourless 3D point clouds extracted from a laser scanner.

Our goal consists of recognizing and estimating the pose
(both position and orientation) of different objects in the
scene using the laser scanner data. The identified objects,
together with their pose, are used afterward as landmarks for
simultaneous localization and mapping (SLAM).

To achieve our goal, two problems have to be addressed.
Firstly, it is necessary to use a real-time scanner able to provide
dense 3D point clouds in real-time with an adequately high
update frequency (ideally more than 3 scans per second).
Secondly, it is required to adapt the object recognition and
location methods reported in state of the art in an indoor area



to the complexities of the underwater environment.
This paper follows recent paper by the same authors [14], on

the use of semantic SLAM with objects recognition from point
clouds. The present paper focuses on the object recognition
and registration part, with emphasis on the pose estimation.

II. METHODOLOGY

The proposed approach is composed of two components: the
3D object recognition pipeline and the feature-based semantic
SLAM. The following section describes to the main lines
of the proposed 3D object recognition pipeline, which are
summarized in the block diagram of Fig. 1.

Fig. 1. Block diagram of the proposed method.

A. Object recognition and pose estimation

The proposed pipeline begins with the collection of colour-
less 3D point clouds of an underwater scene using a laser
scanner. Target objects are then recognized among a set of
possible objects available in a database. The database contains
3D models available a priori, which were previously scanned
with Microsoft Kinect.

The different modules and their methods now are briefly
described.

1) Real time laser scanner: In land and aerial domains, it
is common for autonomous robots to sense the objects in the
environment using either depth cameras or stereo cameras for
3D perception. These sensors have very limited range in the
underwater environment. Infrared depth sensors are typically
restricted to 20 cm. Stereo cameras can sense considerably
further than infrared light, but require the presence of texture-
based features to compute the 3D points, which normally
implies the use of strong artificial illumination and the pres-
ence of natural texture in the environment. To overcome
these limitations a real-time laser scanner was designed and
developed in our lab (see [15]). The laser scanner, as shown
in the Fig. 2, is composed of a laser line projector, a
mirror steered with a galvanometer which projects the line
at different parts of the scene through a flat viewport, and a
camera with its own flat viewport. The control of the sensor,
together with the laser detection implemented internally by

the camera hardware, allows the sensor to work at higher
acquisition rates than commercially available laser scanners.
Moreover, the sensor uses the results of [16] to increase the
3D triangulation speed by using an elliptical cone to represent
the light projected underwater, as the laser line is distorted
because of the refraction of the flat viewport.

Fig. 2. Girona 500 AUV with the laser scanner mounted on it
.

2) Segmentation: The recognition pipeline implemented in
this paper requires a non-trivial step of separating the 3D
points belonging to the objects of interest from the rest of the
scene. This step is called segmentation and consists of clus-
tering the points representing the object in one homogeneous
cluster based on similar characteristics following the approach
proposed in [17].

The segmentation is divided into two stages, as proposed
in [17]. For the experiments of this paper, we follow a
simplifying assumption that the objects lie on a flat surface.
The plan that best fits the environment is estimated using
the randomized M-estimator sample consensus (RMSAC), the
points in the 3D scan that belong to this plane are identified
and then removed. The remaining points are clustered using
the Euclidean cluster extraction [17].

3) 3D Global descriptors: The next step uses the result
of the previous step, and computes a 3D global descriptor
for each segmented cluster. The advantage of using these
descriptors lies on fact that they can encode the shape or
geometry information in a very compact way.

Following the classification in [18], 3D Object recognition
methods are split into two groups: local and global meth-
ods. Local methods are based on local descriptors and are



suitable in cluttered environments where occlusions prevent
unobstructed views of the objects. These methods have an
important computational cost and are therefore not suitable
for real-time operation. Conversely, global methods use global
descriptors and require unobstructed views. However they are
adequate in real-time systems due to a lower computational
costs, and have the advantage of representing the entire object
in one set of features. For this reason, global methods were
chosen for the results of this paper.

In our previous paper( [14] ), we experimented two different
global descriptors: The Viewpoint Features Histogram (VFH)
and the Ensemble of Shape Functions (ESF), where ESF( [19])
descriptors achieved a reliable result of recognition compared
to using the VFH descriptor. Thus for the current study we
opted for the Ensemble of Shape Functions (ESF).

4) Matching: The matching consists of identifying a newly
scanned object among the objects included in the database.
This is done based on the comparison of the result of ESF
global descriptor of the newly acquired object against de-
scriptors of objects that have been scanned previously. After
computing and sorting these distances, the smallest distance
is used as the criterion to identify the newly scanned object
among those in the database. Such objects form a database of
objects that are recognizable.

Our database integrates four objects: a reducing tee, elbow,
a reducing socket and ball valve. Each object is represented
by a set of eight partial views. The acquisition of these views
was performed offline and using a Microsoft Kinect sensor.

In [14] a comparison was performed between the matching
using Chi-square and based on Support Vector Machines,
which led to similar result. In the present work, the matching
was based on the Chi-square distance, as proposed in [20]
[21].

5) Pose estimation: After the corresponding model is iden-
tified, the last step in the object recognition is the pose
estimation, which involves determining the object position and
orientation. The goal is to determine the pose with respect to
the canonical pose of that object in the database. This is done
by aligning the scanned view with a view of the recognized
object in the database. This view is referred to as the matched
view or the matched point cloud.

This step is divided into two parts:
a) Translation between two point clouds: After the ob-

ject is recognized among a set of the four objects in the
database, the difference between the centroids of the point
clouds of the scanned object and the object in the database is
computed.

b) Alignment of the matched point cloud: In order to
align the matched point cloud to the same orientation as the
scanned target, the following steps are executed:

• Roughly alignment - Consists of identifying the position
and orientation of the input scan with the matched object
from the database, by following the registration pipeline
proposed in [22]. It consists of computing an initial align-
ment using Features based registration algorithm. The
Fast Points Features Histogram (FPFH) local descriptor

was used to align the points in the matched point cloud
to the points in the scanned point cloud.

• Fine alignment - In the second step, an iterative registra-
tion algorithm (ICP) [23] is applied to refine the result
of the initial alignment. It uses the previous result as the
initial starting point to align the matched point clouds and
scanned point clouds.

The final output of the pose estimation step is the relative
position and orientation of the object with respect to the laser
scanner.

B. Simultaneous Localization And Mapping (SLAM)
SLAM deals with the problem of building a map of an

unknown environment and using it to localize the vehicle
simultaneously. The navigation filter of the Girona 500 AUV
uses an extended Kalman filter to combine the navigation
data from a pressure sensor, a Doppler velocity log (DVL)
and an attitude and heading reference system (AHRS). This
filter provides dead-reckoning navigation, which drifts over
time and needs absolute measurements to correct it. Those
measurements can come from either a global positioning
system (GPS) when the vehicle is at the surface, or through
the detection of visual landmarks in a map.

A semantic EKF-based SLAM filter is proposed here where
landmark measurements are given by the 3D object recognition
pipeline as illustrated in Fig. 3 . The state vector for the
implemented filter is the following:

~x =
[
x y z u v w l1 . . . lN

]
, (1)

where [x y z] and [u v w] are the position and linear
velocity vectors of the AUV, and li is the landmark i pose
vector defined as:

li =
[
lxi lyi lzi lφi lθi lψi

]
. (2)

The navigation filter uses a constant velocity model with
attitude input:
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(3)
where t is the sample time, [nu nv nw] is the noise vector

and [φk θk ψk] are the Euler angles used as the filter input
uk.

Object detection measurements, are integrated in the filter
as linear updates being

zk = [lxi lyi lzi lφi lθi lψi], (4)

and

H =

[
−R(φkθkψk)

T 03×3 R(φkθkψk)
T 03×3 . . .

03×3 03×3 03×3 I3×3 . . .

]
,

(5)



where [lxi lyi lzi] is the relative position of the landmark with
respect to the vehicle, [ lφi lθi lψi] is the landmark orientation
with respect the inertial frame, and R(φkθkψk) is the vehicle
orientation rotation matrix at time k.

Fig. 3. Fundamental steps of EKF-SLAM .

III. EXPERIMENTAL RESULTS

This section presents the experimental results on using the
laser scanner mounted on the AUV GIRONA500 and operating
in CIRS water tank. A bottom laying poster was used for
computing a trajectory ground truth. Four pressure PVC pipes
where placed on the bottom of the tank, as seen in Fig. 2.

The object database includes the scanned point clouds of
the four PVC objects, consisting of a reducing tee object of
107×74×63 mm3 , a reducing socket of 57×43 ×63 mm3,
an elbow of 76× 41× 63 mm3 and ball valve of 85× 125×
63 mm3.

In order to close the loop, the GIRONA500 was teleoperated
to follow an approximated square trajectory as shown in Fig. 2,
starting from a position where the reducing socket was within
the field of view of the laser scanner, and ending near the ball
valve after passing through the elbow and the reducing tee.

As the robot measurement given by the compass and the
IMU was nearly precise, an amount of noise was generated in
the attitude and angular velocity estimation, with the purpose
of emphasizing the improvement made by adding feature
orientation to the filter updates.

In order to generate the ground truth a vision based localiza-
tion method with an a priori known map was used. A poster
image representing a seafloor (Fig. 5) was laid on the bottom
of the water tank. An image registration algorithm was used

to register the images grabbed with the robot camera, to the
image poster estimating the camera pose [24].

During the execution, each time a new object was recog-
nized, a new feature had to be introduced in the map. To ensure
consistency, several observations of the same feature were used
(see Fig. 4) and a simple ad hoc consensus algorithm was
used to reject outliers using the most promising observation
for the feature initialization. For each pair of observations,
the algorithm computed the position and attitude errors. The
euclidean distance was used to compute the position error,
while for the error in attitude the next formula was used:

d = 1− < q1, q2 >2 (6)

Two error thresholds were defined, one for the position and
one for the attitude. Next, the observation which had more
consensus in both, position and attitude was selected for the
initialization.

In Fig. 4 the blue arrows represent the pose with highest
consensus, the red ones are outliers and the green arrows
represent poses in consensus with at least one observation.
The cyan arrow is the average of the blue ones, being used
for the initialization.

Fig. 4. Feature initialization based on Adhoc, the red arrow represents
ouliers,the blue one represents the consensus, the cyan the average of the
consensus.

Whenever a feature was re-observed the corresponding
object was identified and its pose was computed. Then, the
Mahalanobis distance was used to test the compatibility of the
pose. If the test was passed, an update using the observation
pose was applied to the filter. Otherwise, the Mahalanobis
distance involving only the position was re-computed perform-
ing a position only compatibility test. If successful, a position
update was applied to the filter. In any other case no update
was applied.

The results are shown in Fig. 6. The abscissa represents
time-stamps and the ordinate the robot position ±3σ. The
four colors: Black, red, blue, and purple represent respectively:
the uncertainty of the EKF-SLAM filter without any update,



updated using only the position, updated using the pose and
the ground truth. As expected, it can be appreciated that the
dead reckoning uncertainty grows without limits. The position
only SLAM is able to reduce the uncertainty at each feature
observation bounding the uncertainty in the AUV position.
Better performance was obtained with the SLAM using the
feature position and attitude, which further reduces the robot
uncertainty, and is more effective in the navigation estimation.

Fig. 5. Ground-truth creation using image registration. Original image
acquired during the test (left), registration of this image against an image of
the poster laying at the bottom of the test pool (center), and mosaic obtained
from merging all images used for ground-truth (right).

Fig. 6. Evolution of the covariance matrix in the three robot position (X, Y,
Z).

IV. CONCLUSION

In this paper, we presented an object recognition and pose
estimation pipeline with the ultimate objective of using it
in a real-time localization and mapping system. A simple
consensus algorithm has been used to estimate the initial pose
of the features from several scans. Next, we have compared
the estimation of the robot position using an SLAM method
incorporating the object position and the object pose, obtaining

Fig. 7. Robot position belief.

better results in the second case as expected. Further work will
focus on increasing the size of the object data base as well as
allowing interconnection among the objects.
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