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Tutorial outline of Part 2

Overlapping material with Part 1 is indicated likethis.

1. Introduction

2. Models
• Single-agent MDPs and POMDPs
• Decentralized POMDPs
• Subclasses and complexity

3. Algorithms
• Exact algorithms
• Approximation methods
• Specialized algorithms for subclasses

4. Problem domains and software tools

5. Wrapup
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Introduction
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Introduction

• AI: develop intelligent agents.

• Cooperating multiagent systems.

• Problem: planning how to act.

• Joint payoff but decentralized actions and observations.

environment

action

action

observation

observation

state
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Related previous work

• Group decision theory in economics, team theory(Marschak,

1955; Papadimitriou and Tsitsiklis, 1982)

• Decentralized detection(Tsitsiklis and Athans, 1985; Tsitsiklis, 1988)

• Optimization of decentralized systems in operations
research(Witsenhausen, 1971; Sandell et al., 1978)

• Communication strategies(Varaiya and Walrand, 1978; Xuan et al., 2001;

Pynadath and Tambe, 2002)

• Approximation algorithms(Peshkin et al., 2000; Guestrin et al., 2002;

Nair et al., 2003; Emery-Montemerlo et al., 2004)
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Decision-theoretic planning

• Decision-theoretic planning tackles uncertainty in sensing
and acting in a principled way.

• We need to model:
◮ each agent’s actions
◮ their sensors
◮ their environment
◮ their task

?
??
?

?

• Popular for single-agent planning under uncertainty
(MDPs, POMDPs).
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Decision-theoretic planning

Assumptions:

• Sequential decisions: problems are formulated as a sequence
of discrete “independent” decisions.

• Markovian environment: the state at timet depends only on
the events at timet− 1.

• Stochastic models: the uncertainty about the outcome of
actions and sensing can be accurately captured.

• Objective encoding: the overall objective can be encoded
using cumulative (discounted) rewards over time steps.
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Multiagent planning problems

Aspects:

• on-line vs. off-line

• centralized vs. distributed
◮ planning
◮ execution

• cooperative vs. self-interested

• observability

• communication
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Example: The DEC-Tiger problem

• A toy problem:
decentralized tiger
(Nair et al., 2003).

• Opening correct door:
both receive treasure.

• Opening wrong door:
both get attacked by a tiger.

• Agents can open a door,
or listen.

• Two noisy observations:
hear tiger left or right.

• Don’t know the other’s
actions or observations.

?

p. 9/147



Example: Sensor network problems

• Sensor networks for
◮ Target tracking

(Nair et al., 2005;
Kumar and Zilberstein,
2009a)

◮ Weather phenomena
(Kumar and Zilberstein,
2009b)

• Two or more cooperating
sensors.
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Application domains

Possible application domains:

• Multi-robot coordination
◮ Space exploration rovers(Zilberstein et al., 2002)

◮ Helicopter flights(Pynadath and Tambe, 2002)

◮ Navigation(Emery-Montemerlo et al., 2005; Spaan and Melo, 2008)

• Load balancing for decentralized queues(Cogill et al., 2004)

• Multi-access broadcast channels(Ooi and Wornell, 1996)

• Network routing(Peshkin and Savova, 2002)

• Sensor network management(Nair et al., 2005)
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Models
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Models outline

1. MDPs: single agent, fully observable

2. POMDPs: single agent, partially observable

3. Decentralized POMDPs

4. Complexity results

5. DEC-POMDP subclasses

p. 13/147



Markov decision processes

• A model of sequential decision-making developed in
operations research in the 1950’s.

• Allows reasoning about actions with uncertain outcomes.

• MDPs have been adopted by the AI community as a
framework for:
◮ Decision-theoretic planning (e.g.,Dean et al., 1995)
◮ Reinforcement learning (e.g.,Barto et al., 1995)
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Definition of Markov decision processes

Definition 1. A Markov decision process (MDP) is a tuple 〈S,A, P,R〉
where

• S is a finite set of states, with distinguished initial state s0.
• A is a finite set of actions
• P : S × A→ ∆S is a Markovian transition function.
P (s′|s, a) denotes the probability that taking action a in state s

will result in a transition to state s′.
• R : A× S → R is a reward function.
R(a, s′) denotes the reward obtained when action a is taken and

a state transition to s′ occurs.

The Markov assumption:
P (st|st−1, st−2, . . . , s0, a) = P (st|st−1, a)
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Example of a Markov decision process

A simple4× 3 grid environment (Russell and Norvig, 2003)

p. 16/147



Partially observable MDPs

After each action, the agent receives an observationo that
provides partial information about the underlying states.

Definition 2. A partially observable MDP (POMDP) is a tuple
〈S,A, P,Ω, O,R〉 where

• S, A, P , and R are the same as for MDP
• Ω is a finite set of observations
• O : A× S → ∆Ω is an observation function.
O(o|a, s′) denotes the probability of observing o when action a is

taken and and a state transition to s′ occurs.
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Performance criteria

• How to combine rewards over multiple time steps or
histories?
• The assumption that the agent’s preference over histories

depends only on the current state allows only two possible
ways to define utilities of histories:

1. V ([s0, a1, s1, a2, s2, . . .]) = R(a1, s1) +R(a2, s2) + . . .

2. V ([s0, a1, s1, a2, s2, . . .]) = R(a1, s1) + γR(a2, s2) + . . .

• Finite-horizon problems involve a fixed number of steps,h.

• Best action in each state may depend on the number of steps
left (nonstationary).

• Infinite-horizon policies depend only on the current state
(stationary).

• Finite-horizon problems can be solved by adding the number
of steps left to the state.
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Policies and value functions

• A policy π is a mapping from states to actions.

• The value function for a finite-horizon MDP:

V π(s0) = E
[h−1∑

t=0

R(π(st), st+1)
]
.

• The value function for an infinite-horizon MDP:

V π(s0) = E
[ ∞∑

t=0

γtR(π(st), st+1)
]
.
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The Bellman equation

• Optimal policy defined by:

π∗(s) = argmax
a

∑

s′

p(s′|s, a)V (s′)

V (s) = R(s) + γmax
a

∑

s′

p(s′|s, a)V (s′)

• In these equations, the reward function depends only on
state, but this can be easily generalized.

• Can be solved using dynamic programming (Bellman, 1957)
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Examples of optimal policies

(a) An optimal policy for the stochastic environment with
R(s) = −0.04 for all nonterminal states. (b) Optimal policies for
four different ranges ofR(s). (Russell and Norvig, 2003)
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Value iteration for MDPs

Algorithm 1 : Value iteration (Bellman, 1957)
input : MDP problem, convergence parameterε

output : A policy that isε-optimal for all states
begin

Initialize V ′

repeat
V ← V ′

for each state s do
V ′(s)← R(s) + γmaxa

∑
s′ p(s

′|s, a)V (s′)

until CloseEnough(V, V ′)

return Greedy policy with respect toV ′

end
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Policy iteration for MDPs

Algorithm 2 : Policy iteration (Howard, 1960)
input : MDP problem
output : An optimal policy
begin

Initialize π′

repeat
π ← π′

V ← ValueDetermination(π)
for each state s do

π′(s)← argmaxa
∑

s′ p(s
′|s, a)V (s′)

until π = π′

return π′

end
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Value determination

Value determination of a policyπ can be implemented using:
value iteration:

V ′(s)← R(s) + γ
∑

s′

p(s′|s, π(s))V (s′)

or by solving a set ofn linear equations:

V (s) = R(s) + γ
∑

s′

p(s′|s, π(s))V (s′)
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Solving POMDPs

• Need to act based on partial observations

• Finite-horizon problems: A policy can be represented as a
mapping from observation sequences to actions,π : Ω∗ → A

• This can be summarized using a policy tree:

• Infinite-horizon problems: Solution can be represented as a
finite-state controller with nodes labelled with actions and
transitions labelled with observations

• Use of stochastic controllers versus deterministic
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Belief states

A belief state is a probability distribution over states that can
summarize the knowledge of the agent at a given point.

b(st) = Pr(st = s|s0, a1, o1, a2, o2, . . . , at−1, ot−1)

Example: Consider the4× 3 domain with no observation.

(a) The initial probability distribution for the agent’s location

(b) after movingLeft five times

(c) after movingUp five times

(d) after movingRightfive times
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Bayesian updating of beliefs

• When actiona is taken in belief stateb(s) ando is observed,
the new beliefb′(s′) can be calculated using Bayes’ rule:

b′(s′) = Pr(s′|b, a, o) =
O(o|a, s′)

∑
s b(s)P (s′|s, a)

Pr(o|a, b)

• The probability of the observation can be computed by
summing over all possibles′

Pr(o|a, b) =
∑

s′

Pr(o|a, s′, b)Pr(s′|a, b)

=
∑

s′

O(o|a, s′)Pr(s′|a, b)

=
∑

s′

O(o|a, s′)
∑

s

b(s)P (s′|s, a)
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Belief state transition model

We can now define a new “belief-state MDP” with the following
transition model:

Pr(b′|b, a) =
∑

o

Pr(b′|o, a, b)Pr(o|a, b)

=
∑

o

Pr(b′|o, a, b)
∑

s′

O(o|a, s′)
∑

s

b(s)P (s′|s, a)

And the following reward function:

ρ(b) =
∑

s

b(s)R(s)
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Solving POMDPs

The optimal value function of a (finite-horizon) POMDP is
piecewise linear and convex:V (b) = maxα b · α.
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POMDP methods

• Optimal

◮ Enumerate and prune(Monahan, 1982; Zhang and Liu, 1996; Hansen, 1998b)

◮ Search for witness points(Sondik, 1971; Cassandra et al., 1994)

• Heuristic

◮ Most likely state(Cassandra et al., 1996)

◮ QMDP (Littman et al., 1995)

• Approximate

◮ Grid-based approximations(Lovejoy, 1991; Brafman, 1997; Zhou and Hansen,

2001; Bonet, 2002)

◮ Optimizing finite-state controllers(Poupart and Boutilier, 2004; Amato et al.,

2007)

◮ Branch-and-bound search(Satia and Lave, 1973; Hansen, 1998a)

◮ Point-based techniques(Pineau et al., 2003; Spaan and Vlassis, 2005)
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Decentralized POMDPs

Now we consider a group of agents that control the environment
jointly.

Each agent receives a separate partial observation.
The agents try to optimize a single reward function.
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DEC-POMDP

Definition 3. A decentralized partially observable MDP (DEC-POMDP)
is a tuple 〈I, S, {Ai}, P, {Ωi}, O,R, h〉 where
• I is a finite set of agents indexed 1, . . . , n.

• S is a finite set of states, with distinguished initial state s0.

• Ai is a finite set of actions available to agent i, and
~A = ⊗i∈IAi is the set of joint actions.

• P : S × ~A→ ∆S is a Markovian transition function.

P (s′|s,~a) denotes the probability that after taking joint action ~a in state s a transition to state s′

occurs.

• Ωi is a finite set of observations available to agent i, and
~Ω = ⊗i∈IΩi is the set of joint observations.

• O : ~A× S → ∆~Ω is an observation function.

O(~o|~a, s′) denotes the probability of observing joint observation ~o given that joint action ~a was

taken and led to state s′.

• R : ~A× S → R is a reward function.

R(~a, s′) denotes the reward obtained after joint action ~a was taken and a state transition to s′

occurred.

• If the DEC-POMDP has a finite horizon, that horizon is represented by a positive integer h.
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Partially observable stochastic games

Definition 4. A partially observable stochastic game (POSG) is a tuple
〈I, S, {Ai}, P, {Ωi}, O, {Ri}, h〉 where

• All the components except the reward function are the same as in a
DEC-POMDP

• Each agent has an individual reward function: Ri : Ai × S → R.
Ri(ai, s

′) denotes the reward obtained after action ai was taken

by agent i and a state transition to s′ occurred.

This is the self-interested version of the DEC-POMDP model
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Policies for DEC-POMDPs

Definition 5. A local policy for agent i, πi, is a mapping from local

histories of observations ~o i = (oi1 · · · oit) over Ωi to actions in Ai,
πi : Ω

∗
i → Ai.

Definition 6. A joint policy, π = 〈π1, . . . , πn〉, is a tuple of local
policies, one for each agent.

Other forms of policy representations:

• Mapping from (generalized) belief states to actions:

• Mapping from internal memory states to actions (FSCs)
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Value functions for DEC-POMDPs

Definition 7. The value of a joint policy π for a finite-horizon
DEC-POMDP with initial state s0 is:

V π(s0) = E
[h−1∑

t=0

R(~at, st)|s0, π
]
.

Definition 8. The value of a joint policy π for an infinite-horizon
DEC-POMDP with initial state s0 and discount factor γ ∈ [0, 1) is:

V π(s0) = E
[ ∞∑

t=0

γtR(~at, st)|s0, π
]
.

p. 35/147



Example DEC-POMDP: 2 agent grid world
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Modeling communication

Definition 9. A decentralized partially observable Markov decision
process with communication (DEC-POMDP-COM) is a tuple
〈I, S, {Ai}, P, {Ωi}, O,Σ, CΣ, R, h〉 where:

• I, S, {Ai}, P, {Ωi}, O, and h are defined as in the DEC-POMDP.

• Σ is the alphabet of communication messages. σi ∈ Σ is an atomic message

sent by agent i, and ~σ = 〈σ1, . . . , σn〉 is a joint message, i.e. a tuple of all

messages sent by the agents in one time step. A special message belonging to

Σ is the null message, εσ , which is sent by an agent that does not want to

transmit anything to the others. Agents incur no cost for sending a null message.

• CΣ is the cost of transmitting an atomic message.

CΣ : Σ→ R, CΣ(εσ) = 0.

• R is the reward function. R(~a, s′, ~σ) represents the reward obtained by all

agents together, when they execute the joint action ~a, a state transition to s′

occurs, and the joint message ~σ is sent.
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Interactive POMDPs

• Interactive POMDPs (I-POMDPs) extend state space with
behavorial models of other agents
(Gmytrasiewicz and Doshi, 2005).

• Agents maintain beliefs over physical and models of others.
◮ Recursive modeling.

• When assuming a finite nesting, beliefs and value functions
can be computed (approximately).

• Finitely nested I-POMDPs can be solved as a set of
POMDPs.
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Relationships among the models

 

M
M
D
P

DEC−
MDP

POSG

MDPI−POMDP
(finitely nested) POMDP

MTDP

DEC−POMDP
DEC−POMDP−COM
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Previous complexity results

Finite Horizon
MDP P-complete (ifh <

|S|)
(Papadimitriou and Tsitsiklis,
1987)

POMDP PSPACE-complete
(if h < |S|)

(Papadimitriou and Tsitsiklis,
1987)

Infinite Horizon Discounted
MDP P-complete (Papadimitriou and Tsitsiklis,

1987)

POMDP undecidable (Madani et al., 1999)
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DEC-POMDPs complexity

Intuition

• Agents must consider the choices of all others in addition tothe state and

action uncertainty present in POMDPs.

• This makes DEC-POMDPs much harder to solve (NEXP-complete).

• Solvable in nondeterminstic exponential time: Can guess a solution in

exponential time and transform the DEC-POMDP into an exponentially

bigger belief state MDP.

• NEXP-hardness: Reduction from tiling problem (each agent must place

a tile based on local information and the result must be consistent).
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Upper bound for DEC-POMDPs

Theorem 1. Finite-horizon DEC-POMDPs are in nondeterministic
exponential time.
Proof: The following process shows that a non-deterministic Turing machine can solve any

instance of a DEC-POMDPn in at most exponential time.

1. Guess a joint policy and write it down in exponential time.This is possible, because a joint

policy consists ofn mappings from observation histories to actions. Sinceh ≤ |S|, the

number of possible histories is exponentially bounded by the problem description.

2. The DEC-POMDP together with the guessed joint policy can be viewed as an

exponentially bigger POMDP usingn-tuples of observations and actions.

3. In exponential time, convert all the observation sequences into a belief state.

4. In exponential time, compute transition probabilities and expected rewards for an

exponentially bigger belief state MDP.

5. This MDP can be solved in polynomial time, which is exponential in the original problem

description.

Thus, there is an accepting computation path in the non-deterministic machine if and only if there

is a joint policy that can achieve rewardK.
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Lower bound for DEC-POMDPs

Theorem 2. (Bernstein et al., 2002) Two-agent finite-horizon
DEC-POMDPs are NEXP-hard.

• Thus provably intractable (unlike POMDP)

• Probably doubly exponential (unlike POMDP)

Proof: By reduction from TILING
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Proof of hardness

∃ policy with expected reward 0⇔ ∃ consistent tiling
p. 44/147



Proof of hardness

• Naive approach has a state for every pair of tile positions
(exponential in size of instance!)

• Luckily, we need only remember info about relationship
between positions in the state

• Generate positions bit-by-bit, and only remember key
information:
◮ Are they equal?
◮ Are they horizontally adjacent?
◮ Are they vertically adjacent?

• Q.E.D.
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Joint observability

Definition 10. Joint full observability≡ collective observability. A
DEC-POMDP is jointly fully observable if the n-tuple of observations
made by all the agents uniquely determine the current global state.
That is, if O(~o|~a, s′) > 0 then P (s′|~o) = 1.

Definition 11. A decentralized Markov decision process (DEC-MDP) is
a DEC-POMDP with joint full observability.

A stronger result: The problem is NEXP-hard even when the
state is jointly observed! That is, two-agent finite-horizon
DEC-MDPs are NEXP-hard.
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Classes of DEC-POMDPs

Definition 12. A factored n-agent DEC-MDP is a DEC-MDP for which
the world state can be factored into n+ 1 components,
S = S0 × S1 × . . .× Sn.

Definition 13. A factored, n-agent DEC-MDP is said to be locally fully
observable if each agent observes its own state component

∀oi ∃ŝi : Pr(ŝi|oi) = 1.

Definition 14. Local state/observation/action ŝi ∈ Si × S0 is referred
to as the local state, ai ∈ Ai as the local action, and oi ∈ Ωi as the
local observation for agent i.

Definition 15. Full observability≡ individual observability. A
DEC-POMDP is fully observable if there exists a mapping for each
agent i, fi : Ωi → S such that whenever O(~o|s,~a, s′) is non-zero

then fi(oi) = s′.
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Classes of DEC-POMDPs

Definition 16. MMDP A multi-agent Markov decision process is a
DEC-POMDP with full observability (Boutilier, 1996).

Definition 17. A factored, n-agent DEC-MDP is said to be transition
independent if there exists P0 through Pn such that

Pr(s′i|(s0, . . . , sn),~a, (s
′
1, . . . , s

′
i−1, s

′
i+1, . . . , s

′
n)) ={

P0(s
′
0|s0) i = 0

Pi(s
′
i|ŝi, ai, s

′
0) 1 ≤ i ≤ n

(1)

Definition 18. A factored, n-agent DEC-MDP is said to be observation
independent if there exists O1 through On such that:

Pr(oi|(s0, . . . , sn),~a, (s
′
0, . . . , s

′
n), (o1, . . . , oi−1, oi+1, . . . , on))

= Pr(oi, ŝi, ai, ŝi
′).
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Classes of DEC-POMDPs

Definition 19. A factored, n-agent DEC-MDP is said to be reward
independent if there exist f and R1 through Rn such that

R((s0, . . . , sn),~a, (s
′
0, . . . , s

′
n)) =

f(R1(ŝ1, a1, ŝ
′
1), . . . , Rn(ŝn, an, ŝ

′
n)) (2)

and

Ri(ŝi, ai, ŝ
′
i) ≤ Ri(ŝi, a

′
i, ŝ
′′
i )⇔

f(R1 . . . Ri(ŝi, ai, ŝ
′
i) . . . Rn) ≤ f(R1 . . . Ri(ŝi, a

′
i, ŝ
′′
i ) . . . Rn)

(3)

Theorem 3. If a DEC-MDP has independent observations and
transitions, then the DEC-MDP is locally fully observable.
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Observability, communication and complexity

Observability General Communication Free Communication

Full MMDP (P-complete) MMDP (P-complete)

Joint Full DEC-MDP (NEXP-complete) MMDP (P-complete)

Partial DEC-POMDP (NEXP-complete) MPOMDP (PSPACE-complete)
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More complexity results

(Goldman and Zilberstein, 2004)

p. 51/147



Algorithms
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Algorithms outline

1. Optimal solutions

2. Bottom-up algorithms

3. Top-down algorithms

4. Other finite-horizon algorithms

5. Infinite-horizon algorithms

6. Algorithms for subclasses
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Optimal DEC-POMDP solutions

• Reminder
◮ No beliefs over states available.
◮ No piecewise linear convex value functions.

• MDP/POMDP algorithms do not transfer directly. . .
◮ . . . but ideas do transfer.
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Optimal DEC-POMDP solutions

Example: optimal policy for Dec-Tiger,h = 4 (shown for 1
agent)

aLi

aLi

aLi

aLi

aLiaLiaLi

aLi

aLi

aLi

aLiaLi

aLi

aOR aOL

oHL

oHLoHL

oHL

oHLoHL

oHL

oHR

oHRoHR

oHR

oHRoHR

oHR
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Axes

• Algorithms can be classified according along various axes:
◮ Optimal vs. Approximate
◮ General Model vs. Subclasses
◮ Infinite horizon vs. Finite horizon

• Axes will be indicated as follows:

Optimal / Approximate, General / Subclasses, Infinite / Finite horizon

p. 56/147



Bottom up approaches

• Build the policies up for each agent simultaneously

• Begin on the last step (single action) and continue until the
first

• When done, choose highest value set of trees for any initial
state
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Exhaustive search

• Construct all possible policies for the set of agents

• Do this in a bottom up fashion

• Trivially includes an optimal set of trees when finished

Optimal, General, Finite-horizon
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Exhaustive search example (2 agents)
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Exhaustive search example (2 agents)

p. 60/147



Exhaustive search example (2 agents)
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Exhaustive search summary

• Can find an optimal set of trees

• Number of each agent’s trees grows exponentially at each
step

• Many trees will not contribute to an optimal solution

• Can we reduce the number of trees we consider?
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Dynamic programming

Add a pruning step to exhaustive search

• At each step, remove trees that will never be part of optimal
solution

• Uses linear programming (LP) to prune these dominated
trees

• Ensures any policy that can contribute to optimal is not
removed

(Hansen et al., 2004)

Optimal, General, Finite-horizon
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Pruning trees

• Prune over multiagent belief space (policies of the other
agents and states of the system)

• Retains optimal policy for any belief state
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Linear program for pruning a tree

Variables:ǫ, x(q̂i)

Objective: Maximizeǫ

Improvement constraints:

∀s, q−i V (s, qi, q−i) + ǫ ≤
∑

q̂i

x(q̂i)V (s, q̂i, q−i)

Probability constraints:
∑

q̂i

x(q̂i) = 1, ∀q̂i x(q̂i) ≥ 0

Prune treeqi if there is a distribution of other treesx(q̂i) that has a higher

value for all system states and trees of the other agentsq−i.
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Dynamic programming example (2 agents)
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Dynamic programming example (2 agents)
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Dynamic programming example (2 agents)
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Dynamic programming example (2 agents)

p. 69/147



Dynamic programming example (2 agents)
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Dynamic programming example (2 agents)
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Dynamic programming example (2 agents)
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Dynamic programming summary

• Will produce optimal solution for any initial state

• Improves scalability of exhaustive backups with pruning at
each step

• Still limited to small problems

• For POSGs, iterative removal of very weakly dominated
strategies
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Approximate bottom-up algorithms

Optimal algorithms have theoretical value, but are generally
intractable in practice

• Approximate bottom up algorithms can provide higher value
and solve larger problems
◮ Joint Equilibrium Search for Policies (JESP)
◮ Memory Bounded Dynamic Programming (MBDP) (will

be discussed later)

Approximate, General, Finite-horizon
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Joint Equilibrium Search for Policies (JESP)

Instead of exhaustive search, find best response

Algorithm 3 : JESP (Nair et al., 2003)
Start with policy for each agent
while not converged do

for i = 1 to n do
Fix other agent policies
Find a best response policy for agenti

Approximate, General, Finite-horizon
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JESP summary

• Find a locally optimal set of policies

• Worst case complexity is the same as exhaustive search, but
in practice is much faster

• Can also incorporate dynamic programming to speed up
finding best responses
◮ Fix policies of other agents
◮ Generate reachable belief states from initial stateb0

◮ Build up policies from last step to first
◮ At each step, choose subtrees that maximize value at

reachable belief states
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Bottom up summary

• Build agents polices simultaneously from the last step until
the first

• Typically build policies for any initial state

• Optimal algorithms are not very scalable

• Approximate algorithms use locally optimal solutions and
top-down heuristics (discussed later)

• Improve scalability by
◮ Compressing policies at each step

(Boularias and Chaib-draa, 2008)
◮ Not generating tree sets exhaustively (Amato et al., 2009)
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Top down approaches

Bottom upTop down
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Multiagent A*

• MAA ∗: top-down heuristic policy search (Szer et al., 2005).
◮ Requires an admissable heuristic function.
◮ A*-like search over partially specified joint policies:

ϕt = (δ0, δ1, . . . , δt−1),

δt = (δt0, . . . , δ
t
n) δti : ~Ot

i → Ai

• Heuristic value forϕt:

V̂ (ϕt)︸ ︷︷ ︸
F

= V 0...t−1(ϕt)︸ ︷︷ ︸
G

+ V̂ t...h−1
︸ ︷︷ ︸

H

◮ If V̂ t...h−1 is admissible (overestimation), so iŝV (ϕt).

Optimal, General, Finite-horizon
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Multiagent A*

ϕt = (δ0, δ1, . . . , δt−1),

δt = (δt0, . . . , δ
t
n) δti : ~Ot

i → Ai
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Heuristic functions

• MAA ∗ and other algorithms need heuristic functions
V̂ t...h−1.

• Can be defined by solving simplified problem settings.

V̂ t(ϕt) =
∑

~θt∈~Θt
ϕt

P (~θt|b0)Q(~θt, ϕt(~θt)),

where~θ t
i = (a0i , o

1
i , . . . , a

t−1
i , oti) is an action-observation

history.
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Heuristic functions

• QMDP (Littman et al., 1995):

Q̂M(~θ
t,~a) =

∑

s∈S

Q
t,∗
M (s,~a)P (s|~θt),

whereQt,∗
M (s,~a) is a non-stationary solution to the

underlying MDP.
◮ Cheap to compute, and feasible for high horizons.
◮ Assumes centralized observations and full observability
→ loose bound.
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Heuristic functions

• QPOMDP (Szer et al., 2005; Roth et al., 2005):

Q̂P(~θ
t,~a) = Q∗P(b

~θt

,~a),

whereQ∗P(b
~θt

,~a) is a solution to the underlying POMDP,
i.e., the “belief MDP”.
◮ Assumes centralized observations.
◮ Tighter heuristic thanQMDP, but exponential inh.

• QBG (Oliehoek and Vlassis, 2007): assumes centralized
observations, but delayed by 1 step.

• Hierarchy of upper bounds (Oliehoek et al., 2008b):

Q∗ ≤ QBG ≤ QPOMDP ≤ QMDP.
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Heuristic functions: example DEC-Tigerh = 4
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DEC-POMDPs as series of Bayesian Games

• DEC-POMDPs can be approximated by series of Bayesian
Games (Emery-Montemerlo et al., 2004).

Definition 20. Bayesian Game for a time step t

• Θ = ×iΘi is the set of joint types. . .
• . . . over which a probability function P (Θ) is specified
• ui : Θ×A → R — payoff function.

• Action-observation history~θ t
i = (a0i , o

1
i , . . . , a

t−1
i , oti)

• BG for time stept of a DEC-POMDP:

◮ Types are action-observation historiesΘi ≡ ~Θt
i

◮ Given the past joint policyϕt = (δ0, . . . , δt−1),
probabilitiesP (Θ) are known.
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DEC-POMDPs as series of Bayesian Games

~θ t=0

2
()

~θ t=0

1
a2 ā2

() a1 +2.75 −4.1

ā1 −0.9 +0.3

~θ t=1

2
(a2, o2) (a2, ō2) ...

~θ t=1

1
a2 ā2 a2 ā2

(a1, o1)
a1 −0.3 +0.6 −0.6 +4.0 ...

ā1 −0.6 +2.0 −1.3 +3.6 ...

(a1, ō1)
a1 +3.1 +4.4 −1.9 +1.0 ...

ā1 +1.1 −2.9 +2.0 −0.4

(ā1, o1)
a1 −0.4 −0.9 −0.5 −1.0 ...

ā1 −0.9 −4.5 −1.0 +3.5 ...

(ā1, ō1) ... ... ... ... ... ...
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DEC-POMDPs as series of Bayesian Games

t = 0

t = 1

joint actions
joint observations
joint act.-obs. history〈a1, a2〉

〈ā1, a2〉

〈a1, ā2〉

〈ā1, ā2〉

〈o1, o2〉

〈ō1, o2〉
〈o1, ō2〉

〈ō1, ō2〉
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Bayesian Game Approximation

• Idea: instead of doing A* search, only keep the best joint
policy ϕt when solving each Bayesian game
(Emery-Montemerlo et al., 2004).

• Or: keep thek best (k-GMAA∗, forward sweep policy
computationOliehoek et al., 2008b).

• Choice of heuristics:QMDP, QPOMDP, QBG.

• Choice of BG solvers:
◮ Brute force search (exact)
◮ Branch and bound (Oliehoek et al., 2010)
◮ Alternating Maximization (approximate)

Approximate, General, Finite-horizon
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Generalized MAA∗

Algorithm 4 : GMAA ∗ (Oliehoek et al., 2008b)
Max. lower bound v⋆←−∞

Policy poolP←{ϕ0 = ()}

repeat

ϕt← Select(P)

ΦNext←ConstructAndSolveBG(ϕt, b0)

if ΦNext contains full policies ΠNext ⊆ ΦNext then
π′← argmaxπ∈ΠNext

V (π)

if V (π′) > v⋆ then
v⋆←V (π′) found new lower bound

π⋆←π′

P←{ϕ ∈ P | V̂ (ϕ) > v⋆} prune P

ΦNext←ΦNext \ΠNext remove full policies

P←(P \ ϕt) ∪ {ϕ ∈ ΦNext | V̂ (ϕ) > v⋆}
until P is empty

Optimal or Approximate, General, Finite-horizon
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Lossless Clustering of Histories

• Idea: if two individual histories induce the same distribution
over states and over other agents’ histories, they are
equivalent and can be clustered (Oliehoek et al., 2009).

∀~θ 6=i
P (~θ 6=i|~θi,a) = P (~θ 6=i|~θi,b)

∀~θ 6=i
∀s P (s|~θ 6=i, ~θi,a) = P (s|~θ 6=i, ~θi,b)

• Lossless clustering, independent of heuristic, but problem
dependent.

• Clustering is bootstrapped: algorithms only deal with
clustered Bayesian games.

• Large increase in scalability of optimal solvers.

Optimal and Approximate, General, Finite-horizon
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Incremental expansion

• Idea: if we canincrementallygenerate children in order of
their heuristic value, we do not need to expand all of them at
once (Spaan et al., 2011).

• Implemented using BaGaBaB (Oliehoek et al., 2010).

• Hybrid heuristic representation.

Optimal and Approximate, General, Finite-horizon
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Top down summary

• Top down methods can exploit initial belief state, and
various heuristics.

• GMAA ∗ generalizes MAA∗ and the work of
Emery-Montemerlo et al.(2004).

• Without clustering Bayesian games grow exponentially in
time horizon.
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Memory Bounded Dynamic Programming (MBDP)

• Do not keep all policies at each step of dynamic programming
• Keep a fixed number for each agentmaxTrees
• Select these by using heuristic solutions from initial state
• Combines top down and bottom up approaches

(Seuken and Zilberstein, 2007b)

Approximate, General, Finite-horizon
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MBDP algorithm

Algorithm 5 : MBDP (Seuken and Zilberstein, 2007b)

Start with a one-step policy for each agent
for t = h to 1 do

Backup each agent’s policy
for k = 1 to maxTrees do

Compute heuristic policy and resulting belief stateb

Choose best set of trees starting atb

Select best set of trees for initial stateb0
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MBDP summary

• Linear complexity in problem horizon

• Exponential in the number of observations

• Performs well in practice (often with very smallmaxTrees)

• Can be difficult to choose correctmaxTrees
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Extensions of MBDP

• IMBDP: Limit the number of observations used based on
probability at each belief (Seuken and Zilberstein, 2007a)

• MBDP-OC: compress observations based on the value
produced (Carlin and Zilberstein, 2008)

• PBIP: heuristic search to find best trees rather than
exhaustive (Dibangoye et al., 2009)

• PBIP-IPG: extends PBIP by limiting the possible states
(Amato et al., 2009)
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Other finite-horizon approaches

• Mixed integer linear programming (MILP) (Aras et al.,
2007)
◮ Represent each agent’s policy in sequence form (instead

of as a tree).
◮ Solve as a combinatorial optimization problem (MILP).

Optimal, General, Finite-horizon

• Direct Cross-Entropy policy search (DICE) (Oliehoek et al.,
2008a)
◮ Randomized (sampling-based) algorithm using

combinatorial optimization.
◮ Applies Cross-Entropy method to Dec-POMDPs.
◮ Scales well wrt number of agents.

Approximate, General, Finite-horizon
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Summary of finite-horizon algorithms

Optimal finite-horizon algorithms:

• Exhaustive

• Dynamic Programming (Hansen et al., 2004)

• MAA ∗ (Szer et al., 2005)

• IPG (Amato et al., 2009)

• MILP (Aras et al., 2007)

• Lossless policy space compression
(Boularias and Chaib-draa, 2008)

• GMAA ∗-Cluster (Oliehoek et al., 2009)

• GMAA ∗-ICE (Spaan et al., 2011)
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Summary of finite-horizon algorithms

Approximate finite-horizon algorithms:

• JESP (Nair et al., 2003)

• kGMAA ∗ (Oliehoek et al., 2008b)

• MBDP (Seuken and Zilberstein, 2007b)
◮ IMBDP (Seuken and Zilberstein, 2007a)
◮ MBDP-OC (Carlin and Zilberstein, 2008)
◮ PBIP (Dibangoye et al., 2009)
◮ PBIP-IPG (Amato et al., 2009)

• DICE (Oliehoek et al., 2008a)
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Comparison of optimal finite-horizon algorithms

Comparison of published results:

• MAA ∗, GMAA∗-Cluster (Oliehoek et al., 2009)

• (Boularias and Chaib-draa, 2008)

• DP (taken fromBoularias and Chaib-draa, 2008)

• MILP (Aras et al., 2007)

DEC-Tiger(QBG)

h V ∗ TGMAA∗ (s) Tclus(s) TBoularias(s) TDP (s) TMILP (s)

2 −4.0000 ≤ 0.01 ≤ 0.01 0.17 0.20

3 5.1908 0.02 ≤ 0.01 1.79 2.29 3.5

4 4.8028 3, 069.4 1.50 534.90 72

5 7.0265 − 130.82
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Comparison of optimal finite-horizon algorithms

BroadcastChannel(QMDP)

h V ∗ TGMAA∗ (s) Tclus(s) TBoularias(s) TDP (s) TMILP (s)

2 2.0000 ≤ 0.01 ≤ 0.01 0.14 0.12

3 2.9900 ≤ 0.01 ≤ 0.01 0.36 0.46 0.84

4 3.8900 3.22 ≤ 0.01 4.59 17.59 10.2

5 4.7900 − ≤ 0.01 25

6 5.6900 − ≤ 0.01

7 6.5900 − ≤ 0.01

8 7.4900 − ≤ 0.01

9 8.3900 − ≤ 0.01

10 9.2900 − ≤ 0.01

15 13.7900 − ≤ 0.01

20 18.3132 − 0.08

25 22.8815 − 1.67
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Comparison of optimal finite-horizon algorithms

GridSmall(QBG)

h V ∗ TGMAA∗ (s) Tclus(s)

2 0.9100 ≤ 0.01 ≤ 0.01

3 1.5504 4.21 0.71

4 2.2416 − 30.17

Cooperative Box Pushing(QMDP)

h V ∗ TGMAA∗ (s) Tclus(s)

2 17.6000 0.05 ≤ 0.01

3 66.0810 − 4.55

Hotel 1(QBG)

h V ∗ TGMAA∗ (s) Tclus(s)

2 9.5000 ≤ 0.01 0.02

3 15.7047 − 0.07

4 20.1125 − 1.37

Recycling Robots(QMDP)

h V ∗ TGMAA∗ (s) Tclus(s)

2 6.8000 ≤ 0.01 ≤ 0.01

3 9.7647 0.02 ≤ 0.01

4 11.7264 23052.5 0.02

5 13.7643 − 0.10

10 21.2006 − 4.92

15 25.5940 − 81.46

FireFighting〈nh = 3, nf = 3〉 (QBG)

h V ∗ TGMAA∗ (s) Tclus(s)

2 −4.3825 0.03 0.03

3 −5.7370 0.91 0.70

4 −6.5789 5605.3 5823.5
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Optimal Dec-POMDP solutions: GMAA* Results

no clustering— lossless clustering
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Optimal Dec-POMDP solutions: GMAA* Results

full expansion— incremental expansion
Dec-Tiger:
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Comparison of approximate finite-horizon algorithms

DEC-Tiger (7maxTrees)

|S| = 2, |Ai| = 3, |Ωi| = 2

h JESP MBDP

2 -4.00 -4.00

3 -6.00 5.19

10 – 13.49

100 – 93.24

1000 – 819.01

10000 – 7930.68

100000 – 78252.18

Cooperative Box Pushing (3maxTrees,maxObs)

|S| = 100, |Ai| = 4, |Ωi| = 5

h MBDP IMBDP MBDP-OC

5 – 79.1 72.3

10 – 90.9 103.9

20 – 96.0 149.8

50 – 80.8 278.7

100 – 72.8 503.8

Published results from

• JESP (Nair et al., 2003)

• MBDP (Seuken and Zilberstein,

2007b)

• IMBDP and MBDP-OC

(Carlin and Zilberstein, 2008)
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Comparison of approximate finite-horizon algorithms

Cooperative Box Pushing,|S| = 100, |Ai| = 4, |Ωi| = 5

h MBDP PBIP PBIP-IPG Value

10 – 46s 11s 103.22

100 – 536s 181s 598.40

1000 – 5068s 2147s 5707.59

2000 – 10107s 4437s 11392.03

Stochastic Mars Rover,|S| = 256, |Ai| = 6, |Ωi| = 8

h MBDP PBIP PBIP-IPG Value

2 – 106s 19s 5.80

3 – – 71s 9.38

5 – – 301s 12.66

10 – – 976s 21.18

20 – – 14947s 37.81

Results from (Amato et al., 2009)
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Infinite-horizon only algorithms

A large enough horizon can be used to approximate an
infinite-horizon solution, but this is neither efficient norcompact

Specialized infinite-horizon solutions have also been developed:

• Policy Iteration (PI)

• Best-First Search (BFS)

• Bounded Policy Iteration for DEC-POMDPs (DEC-BPI)

• Nonlinear Programming (NLP)
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Using controllers for infinite-horizon policies

Example: Two agents meeting in a grid

• Periodic policies

• Inherently infinite-horizon

• Randomness reduces memory limitations

• Nodes define actions,Pi(a|q)

• Transitions based on observations

seen,Pi(q
′|q, o)

Value for a set of nodes,~q, and states can be found as:

V (s, ~q) =
∑

~a

P (~a|~q)

[
R(s,~a) +

∑

s′,~o

P (s′|s,~a)P (~o|s′,~a)P (~q′|~q, ~o)V (~q′, s′)

]
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Policy iteration for DEC-POMDPs

• Dynamic programming with controllers

• Start with a one node controller and build a larger controller at each step

• Stop when discount factor makes further value change less thenǫ

• Pruning merges nodes and creates a stochastic controller asone node

may be dominated by a distribution

• Can produceǫ-optimal controllers for any initial state

(Bernstein et al., 2009)

Optimal, General, Infinite-horizon
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Policy iteration for DEC-POMDPs

• Dynamic programming with controllers

• Start with a one node controller and build a larger controller at each step

• Stop when discount factor makes further value change less thenǫ

• Pruning merges nodes and creates a stochastic controller asone node

may be dominated by a distribution

• Can produceǫ-optimal controllers for any initial state

(Bernstein et al., 2009)
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Policy iteration for DEC-POMDPs

• Dynamic programming with controllers

• Start with a one node controller and build a larger controller at each step

• Stop when discount factor makes further value change less thenǫ

• Pruning merges nodes and creates a stochastic controller asone node

may be dominated by a distribution

• Can produceǫ-optimal controllers for any initial state

(Bernstein et al., 2009)

Optimal, General, Infinite-horizon
p. 111/147



Policy iteration for DEC-POMDPs

• ǫ-Optimal for any initial state

• Intractable for all but the smallest problems

• Does not use known initial state information
◮ Thus, retains many nodes that are unnecessary for a

given start state

Optimal, General, Infinite-horizon
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Approximate infinite-horizon approaches

• Use a fixed-size controller

• Want best value for the given size

• How can the action selection and node transition parameters
be set?
◮ Deterministic approaches: using heuristic search

methods
◮ Stochastic approaches: using continuous optimization
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Best-first search (BFS)

• Search through space of deterministic action selection and
node transition parameters

• Produces optimal fixed-size deterministic controllers

• High search time limits this to very small controllers (< 3
nodes)

(Szer and Charpillet, 2005)

Approximate, General, Infinite-horizon
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Bounded policy iteration (DEC-BPI)

• Improve the controller over a series of steps until value converges

• Alternate between improvement and evaluation

• Improvement

Use a linear program to determine if a node’s parameters can be

changed, while fixing the rest of the controller and other agent policies

Improved nodes must have better value for all states and nodes of

the other agents (multiagent belief space)

• Evaluation: Update the value of all nodes in the agent’s controller

• Can solve much larger controller than BFS, but value is low due to lack

of start state info and LP

(Bernstein et al., 2005)

Approximate, General, Infinite-horizon
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Nonlinear programming (NLP)

• Optimal fixed-size representation

• Improve and evaluate all in one step by setting value as a
parameter

• This requires nonlinear constraints to ensure correct value

• Uses start state info

• Globally optimal solution is intractable, but locally optimal
solvers can produce better quality than LP

• Even locally optimal approaches cannot solve large
controllers

(Amato et al., 2007)

Approximate, General, Infinite-horizon
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Alternate representation - Mealy machine

• Controllers currently used are Moore controllers

• Mealy controllers are more powerful than Moore controllers (can

represent higher quality solutions with the same number of nodes)

• Provides extra structure that algorithms can use

• Can be used in all controller-based algorithms

• Key difference: action depends on node and observation

(Amato et al., 2010)
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Summary of infinite-horizon algorithms

Optimal algorithm can only solve very small problems

Approximate algorithms can outperform policy iteration because they are more scalable

NLP generally outperforms others (all Moore formulations), but more scalability is needed

GridSmall: 16 states, 4 actions, 2 obs

Policy Iteration: 3.7 with 80 nodes in 821s before running out of memory
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Summary of infinite-horizon algorithms

Cooperative Box Pushing: 100 states, 4 actions, 5 obs

Value Time

Size NLP NLP fix Mealy NLP DEC-BPI BFS NLP NLP fix Mealy NLP DEC-BPI BFS

1 -1.58 n/a 123.46 -10.37 -2 20 n/a 12 26 1696

2 31.97 -6.25 124.20 3.29 – 115 18 31 579 –

3 46.28 5.10 133.67 9.44 – 683 27 217 4094 –

4 50.64 18.78 143.14 7.89 – 5176 44 774 11324 –

5 – 53.13 – 14.76 – – 92 – 27492 –

6 – 73.25 – – – – 143 – – –

7 – 80.47 – – – – 256 – – –

Policy Iteration: 12.84 with 9 nodes in 209s before running out of memory
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Indefinite horizon DEC-POMDPs

• Many natural problems terminate after a goal is reached

Meeting or catching a target

Cooperatively completing a task

• Unclear how many steps are needed until termination

• Under certain assumptions can produce an optimal solution (terminal

actions and neg. rewards)

• Otherwise, can bound the solution quality by sampling

(Amato et al., 2009a)

General, Indefinite-horizon
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Indefinite and infinite-horizon results

Many current benchmark problems have goals (problem repeats)

Goal-directed, Mealy and a heuristic version of PI perform the best
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Algorithms using communication

• Analysis of possible communication models and complexity
results (Pynadath and Tambe, 2002)

• Myopic communication in transition independent
Dec-MDPs (Becker et al., 2009)

• Reasoning about run-time communication decisions
(Nair et al., 2004; Roth et al., 2005)

• Exploiting factored representations (Roth et al., 2007)

• Stochastically delayed communication (Spaan et al., 2008)
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Algorithms for DEC-POMDP subclasses

• General idea: less powerful models allow for more
scalability.

• E.g., independence assumptions:
◮ DEC-MDPs with transition and observation

independence.
◮ ND-POMDPs

• Assuming structure in the models
◮ Factored DEC-POMDPs
◮ Weakly-coupled Dec-POMDPs (Witwicki and Durfee,

2010).
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Subclasses: DEC-MDPs

Motivation: agents may have limited interactions with eachother
(e.g. Mars rovers etc.)

• Independent transitions and observations and special joint
reward structure
◮ Coverage set algorithm: NP-Complete (Becker et al.,

2004b)
◮ Bilinear programming: More efficient anytime approach

(Petrik and Zilberstein, 2009)

• Independent observations and event- driven interactions
◮ Exponential in number of interactions (Becker et al.,

2004a)

Optimal, Subclass, Finite-horizon
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Subclasses: ND-POMDPs

Motivation: to scale up to many agents, exploit locality of
interaction (decomposable rewards) (Nair et al., 2005)

• GOA (optimal) and LID-JESP (approximate) (Nair et al.,
2005)

• SPIDER (Varakantham et al., 2007)

• FANS (approximate) (Marecki et al., 2008)

• CBDP (approximate) (Kumar and Zilberstein, 2009a)

Optimal and Approximate, Subclass, Finite-horizon
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Subclasses: Factored DEC-POMDPs

Motivation: exploit locality of
interaction, but no strict inde-
pendence assumptions.

• More general and powerful
than ND-POMDPs.

• Less scalable
(non-stationary interaction
graph).

• GMAA* has been extended
to Factored DEC-POMDPs
(Oliehoek et al., 2008c). t t+ 1

x1 x′
1

a1 o1

R1

x2 x′
2

a2 o2

R2

x3 x′
3

a3 o3

R3

x4 x′
4 R4

Optimal and Approximate, Subclass, Finite-horizon
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Problem domains and software tools

• An overview of the existing benchmark problems.

• Description of available software.
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Benchmark problems

Some benchmark problems:

• DEC-Tiger (Nair et al., 2003)

• BroadcastChannel (Hansen et al., 2004)

• Meeting on a grid (Bernstein et al., 2005)

• Cooperative Box Pushing (Seuken and Zilberstein, 2007a)

• Recycling Robots (Amato et al., 2007)

• FireFighting (Oliehoek et al., 2008b)

• Sensor network problems (Nair et al., 2005;
Kumar and Zilberstein, 2009a,b)
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Software

• The MADP toolbox aims to provide a software platform for
research in decision-theoretic multiagent planning
(Spaan and Oliehoek, 2008).

• Main features:
◮ A uniform representation for several popular multiagent

models.
◮ A parser for a file format for discrete Dec-POMDPs.
◮ Shared functionality for planning algorithms.
◮ Implementation of several Dec-POMDP planners.

• Released as free software, with special attention to the
extensibility of the toolbox.

• Provides benchmark problems.
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Problem specification

agents: 2

discount: 1

values: reward

states: tiger-left tiger-right

start:

uniform

actions:

listen open-left open-right

listen open-left open-right

observations:

hear-left hear-right

hear-left hear-right
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Problem specification (1)

# Transitions

T: * :

uniform

T: listen listen :

identity

# Observations

O: * :

uniform

O: listen listen : tiger-left : hear-left hear-left : 0.7225

O: listen listen : tiger-left : hear-left hear-right : 0.1275

[...]

O: listen listen : tiger-right : hear-left hear-left : 0.0225

# Rewards

R: listen listen: * : * : * : -2

R: open-left open-left : tiger-left : * : * : -50

[...]

R: open-left listen: tiger-right : * : * : 9
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Example program

#include "ProblemDecTiger.h"

#include "JESPExhaustivePlanner.h"

int main()

{

ProblemDecTiger dectiger;

JESPExhaustivePlanner jesp(3,&dectiger);

jesp.Plan();

std::cout << jesp.GetExpectedReward() << std::endl;

std::cout << jesp.GetJointPolicy()->SoftPrint() << std::endl;

return(0);

}
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Program output

src/examples> ./decTigerJESP

Value computed for DecTiger horizon 3: 5.19081

Policy computed:

JointPolicyPureVector index 120340 depth 999999

Policy for agent 0 (index 55):

Oempty, --> a00:Listen

Oempty, o00:HearLeft, --> a00:Listen

Oempty, o01:HearRight, --> a00:Listen

Oempty, o00:HearLeft, o00:HearLeft, --> a02:OpenRight

Oempty, o00:HearLeft, o01:HearRight, --> a00:Listen

Oempty, o01:HearRight, o00:HearLeft, --> a00:Listen

Oempty, o01:HearRight, o01:HearRight, --> a01:OpenLeft

Policy for agent 1 (index 55):

Oempty, --> a10:Listen

Oempty, o10:HearLeft, --> a10:Listen

Oempty, o11:HearRight, --> a10:Listen

Oempty, o10:HearLeft, o10:HearLeft, --> a12:OpenRight

Oempty, o10:HearLeft, o11:HearRight, --> a10:Listen

Oempty, o11:HearRight, o10:HearLeft, --> a10:Listen

Oempty, o11:HearRight, o11:HearRight, --> a11:OpenLeft
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Back to some fundamental questions

• Is decentralized decision making under uncertainty
significantly harder than solving POMDPs? Why?

• What features of the problem domain affect the complexity
and how?

• Is optimal dynamic programming possible?

• Can dynamic programming be made practical? How?

• Is it beneficial to treat communication as a separate type of
action?

• How can we exploit the locality of agent interaction to
develop more scalable algorithms?
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