

Decision Making in Multiagent Settings:
Team Decision Making


Matthijs Spaan§ Christopher Amato∗ Shlomo Zilberstein∗


§Institute for Systems and Robotics, IST, Lisbon, Portugal
∗University of Massachusetts Amherst, MA, USA


AAMAS10 Tutorial, May 10, 2010


1/143







Tutorial outline of Part 2


Overlapping material with Part 1 is indicated likethis.


1. Introduction


2. Models
• Single-agent MDPs and POMDPs
• Decentralized POMDPs
• Subclasses and complexity


3. Algorithms
• Exact algorithms
• Approximation methods
• Specialized algorithms for subclasses


4. Problem domains and software tools


5. Wrapup
2/143







Introduction


3/143







Introduction


• AI: develop intelligent agents.


• Cooperating multiagent systems.


• Problem: planning how to act.


• Joint payoff but decentralized actions and observations.


environment


action


action


observation


observation


state


4/143







Related previous work


• Group decision theory in economics, team theory(Marschak,


1955; Papadimitriou and Tsitsiklis, 1982)


• Decentralized detection(Tsitsiklis and Athans, 1985; Tsitsiklis, 1988)


• Optimization of decentralized systems in operations
research(Witsenhausen, 1971; Sandell et al., 1978)


• Communication strategies(Varaiya and Walrand, 1978; Xuan et al., 2001;


Pynadath and Tambe, 2002)


• Approximation algorithms(Peshkin et al., 2000; Guestrin et al., 2002;


Nair et al., 2003; Emery-Montemerlo et al., 2004)


5/143







Decision-theoretic planning


• Decision-theoretic planning tackles uncertainty in sensing
and acting in a principled way.


• We need to model:
◮ each agent’s actions
◮ their sensors
◮ their environment
◮ their task


?
??
?


?


• Popular for single-agent planning under uncertainty
(MDPs, POMDPs).


6/143







Decision-theoretic planning


Assumptions:


• Sequential decisions: problems are formulated as a sequence
of discrete “independent” decisions.


• Markovian environment: the state at timet depends only on
the events at timet− 1.


• Stochastic models: the uncertainty about the outcome of
actions and sensing can be accurately captured.


• Objective encoding: the overall objective can be encoded
using cumulative (discounted) rewards over time steps.


7/143







Multiagent planning problems


Aspects:


• on-line vs. off-line


• centralized vs. distributed
◮ planning
◮ execution


• cooperative vs. self-interested


• observability


• communication


8/143







Example: The DEC-Tiger problem


• A toy problem:
decentralized tiger
(Nair et al., 2003).


• Opening correct door:
both receive treasure.


• Opening wrong door:
both get attacked by a tiger.


• Agents can open a door,
or listen.


• Two noisy observations:
hear tiger left or right.


• Don’t know the other’s
actions or observations.


?


9/143







Example: Sensor network problems


• Sensor networks for
◮ Target tracking


(Nair et al., 2005;
Kumar and Zilberstein,
2009a)


◮ Weather phenomena
(Kumar and Zilberstein,
2009b)


• Two or more cooperating
sensors.


10/143







Application domains


Possible application domains:


• Multi-robot coordination
◮ Space exploration rovers(Zilberstein et al., 2002)


◮ Helicopter flights(Pynadath and Tambe, 2002)


◮ Navigation(Emery-Montemerlo et al., 2005; Spaan and Melo, 2008)


• Load balancing for decentralized queues(Cogill et al., 2004)


• Multi-access broadcast channels(Ooi and Wornell, 1996)


• Network routing(Peshkin and Savova, 2002)


• Sensor network management(Nair et al., 2005)


11/143







Models


12/143







Models outline


1. MDPs: single agent, fully observable


2. POMDPs: single agent, partially observable


3. Decentralized POMDPs


4. Complexity results


5. DEC-POMDP subclasses


13/143







Markov decision processes


• A model of sequential decision-making developed in
operations research in the 1950’s.


• Allows reasoning about actions with uncertain outcomes.


• MDPs have been adopted by the AI community as a
framework for:
◮ Decision-theoretic planning (e.g., Dean et al., 1995)
◮ Reinforcement learning (e.g., Barto et al., 1995)


14/143







Definition of Markov decision processes


Definition 1. A Markov decision process (MDP) is a tuple 〈S,A, P,R〉
where


• S is a finite set of states, with distinguished initial state s0.
• A is a finite set of actions
• P : S × A→ ∆S is a Markovian transition function.


P (s′|s, a) denotes the probability that taking action a in state s


will result in a transition to state s′.
• R : A× S → R is a reward function.


R(a, s′) denotes the reward obtained when action a is taken and


a state transition to s′ occurs.


The Markov assumption:
P (st|st−1, st−2, . . . , s0, a) = P (st|st−1, a)


15/143







Example of a Markov decision process


A simple4× 3 grid environment (Russell and Norvig, 2003)


16/143







Partially observable MDPs


After each action, the agent receives an observationo that
provides partial information about the underlying states.


Definition 2. A partially observable MDP (POMDP) is a tuple
〈S,A, P, Ω, O,R〉 where


• S, A, P , and R are the same as for MDP
• Ω is a finite set of observations
• O : A× S → ∆Ω is an observation function.


O(o|a, s′) denotes the probability of observing o when action a is


taken and and a state transition to s′ occurs.


17/143







Performance criteria


• How to combine rewards over multiple time steps or
histories?
• The assumption that the agent’s preference over histories


depends only on the current state allows only two possible
ways to define utilities of histories:


1. V ([s0, a1, s1, a2, s2, . . .]) = R(a1, s1) + R(a2, s2) + . . .


2. V ([s0, a1, s1, a2, s2, . . .]) = R(a1, s1) + γR(a2, s2) + . . .


• Finite-horizon problems involve a fixed number of steps,h.


• Best action in each state may depend on the number of steps
left (nonstationary).


• Infinite-horizon policies depend only on the current state
(stationary).


• Finite-horizon problems can be solved by adding the number
of steps left to the state.


18/143







Policies and value functions


• A policy π is a mapping from states to actions.


• The value function for a finite-horizon MDP:


V π(s0) = E
[h−1∑


t=0


R(π(st), st+1)
]
.


• The value function for an infinite-horizon MDP:


V π(s0) = E
[ ∞∑


t=0


γtR(π(st), st+1)
]
.


19/143







The Bellman equation


• Optimal policy defined by:


π∗(s) = arg max
a


∑


s′


p(s′|s, a)V (s′)


V (s) = R(s) + γ max
a


∑


s′


p(s′|s, a)V (s′)


• In these equations, the reward function depends only on
state, but this can be easily generalized.


• Can be solved using dynamic programming (Bellman, 1957)


20/143







Examples of optimal policies


(a) An optimal policy for the stochastic environment with
R(s) = −0.04 for all nonterminal states. (b) Optimal policies for
four different ranges ofR(s). (Russell and Norvig, 2003)


21/143







Value iteration for MDPs


Algorithm 1 : Value iteration (Bellman, 1957)
input : MDP problem, convergence parameterε


output : A policy that isε-optimal for all states
begin


Initialize V ′


repeat
V ← V ′


for each state s do
V ′(s)← R(s) + γ maxa


∑
s′ p(s′|s, a)V (s′)


until CloseEnough(V, V ′)


return Greedy policy with respect toV ′


end


22/143







Policy iteration for MDPs


Algorithm 2 : Policy iteration (Howard, 1960)
input : MDP problem
output : An optimal policy
begin


Initialize π′


repeat
π ← π′


V ← ValueDetermination(π)


for each state s do
π′(s)← arg maxa


∑
s′ p(s′|s, a)V (s′)


until π = π′


return π′


end


23/143







Value determination


Value determination of a policyπ can be implemented using:
value iteration:


V ′(s)← R(s) + γ
∑


s′


p(s′|s, π(s))V (s′)


or by solving a set ofn linear equations:


V (s) = R(s) + γ
∑


s′


p(s′|s, π(s))V (s′)


24/143







Solving POMDPs


• Need to act based on partial observations


• Finite-horizon problems: A policy can be represented as a
mapping from observation sequences to actions,π : Ω∗ → A


• This can be summarized using a policy tree:


• Infinite-horizon problems: Solution can be represented as a
finite-state controller with nodes labelled with actions and
transitions labelled with observations


• Use of stochastic controllers versus deterministic
25/143







Belief states


A belief state is a probability distribution over states that can
summarize the knowledge of the agent at a given point.


b(st) = Pr(st = s|s0, a1, o1, a2, o2, . . . , at−1, ot−1)


Example: Consider the4× 3 domain with no observation.


(a) The initial probability distribution for the agent’s location


(b) after movingLeft five times


(c) after movingUp five times


(d) after movingRightfive times


26/143







Bayesian updating of beliefs


• When actiona is taken in belief stateb(s) ando is observed,
the new beliefb′(s′) can be calculated using Bayes’ rule:


b′(s′) = Pr(s′|b, a, o) =
O(o|a, s′)


∑
s b(s)P (s′|s, a)


Pr(o|a, b)


• The probability of the observation can be computed by
summing over all possibles′


Pr(o|a, b) =
∑


s′


Pr(o|a, s′, b)Pr(s′|a, b)


=
∑


s′


O(o|a, s′)Pr(s′|a, b)


=
∑


s′


O(o|a, s′)
∑


s


b(s)P (s′|s, a)


27/143







Belief state transition model


We can now define a new “belief-state MDP” with the following
transition model:


Pr(b′|b, a) =
∑


o


Pr(b′|o, a, b)Pr(o|a, b)


=
∑


o


Pr(b′|o, a, b)
∑


s′


O(o|a, s′)
∑


s


b(s)P (s′|s, a)


And the following reward function:


ρ(b) =
∑


s


b(s)R(s)


28/143







Solving POMDPs


The optimal value function of a (finite-horizon) POMDP is
piecewise linear and convex:V (b) = maxα b · α.


������������������������������������������


���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������


���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������


���������������������
���������������������
���������������������
���������������������
���������������������


���������������������
���������������������
���������������������
���������������������
���������������������


���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������


���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������


(1,0) (0,1)


α1


α2


α3


α4


V


29/143







POMDP methods


• Optimal


◮ Enumerate and prune(Monahan, 1982; Zhang and Liu, 1996; Hansen, 1998b)


◮ Search for witness points(Sondik, 1971; Cassandra et al., 1994)


• Heuristic


◮ Most likely state(Cassandra et al., 1996)


◮ QMDP (Littman et al., 1995)


• Approximate


◮ Grid-based approximations(Lovejoy, 1991; Brafman, 1997; Zhou and Hansen,


2001; Bonet, 2002)


◮ Optimizing finite-state controllers(Poupart and Boutilier, 2004; Amato et al.,


2007)


◮ Branch-and-bound search(Satia and Lave, 1973; Hansen, 1998a)


◮ Point-based techniques(Pineau et al., 2003; Spaan and Vlassis, 2005)


30/143







Decentralized POMDPs


Now we consider a group of agents that control the environment
jointly.


Each agent receives a separate partial observation.
The agents try to optimize a single reward function.


31/143







DEC-POMDP


Definition 3. A decentralized partially observable MDP (DEC-POMDP)
is a tuple 〈I, S, {Ai}, P, {Ωi}, O,R, h〉 where
• I is a finite set of agents indexed 1, . . . , n.


• S is a finite set of states, with distinguished initial state s0.


• Ai is a finite set of actions available to agent i, and
~A = ⊗i∈IAi is the set of joint actions.


• P : S × ~A→ ∆S is a Markovian transition function.


P (s′|s,~a) denotes the probability that after taking joint action ~a in state s a transition to state s′


occurs.


• Ωi is a finite set of observations available to agent i, and
~Ω = ⊗i∈IΩi is the set of joint observations.


• O : ~A× S → ∆~Ω is an observation function.


O(~o|~a, s′) denotes the probability of observing joint observation ~o given that joint action ~a was


taken and led to state s′.


• R : ~A× S → R is a reward function.


R(~a, s′) denotes the reward obtained after joint action ~a was taken and a state transition to s′


occurred.


• If the DEC-POMDP has a finite horizon, that horizon is represented by a positive integer h.


32/143







Partially observable stochastic games


Definition 4. A partially observable stochastic game (POSG) is a tuple
〈I, S, {Ai}, P, {Ωi}, O, {Ri}, h〉 where


• All the components except the reward function are the same as in a
DEC-POMDP


• Each agent has an individual reward function: Ri : Ai × S → R.
Ri(ai, s


′) denotes the reward obtained after action ai was taken


by agent i and a state transition to s′ occurred.


This is the self-interested version of the DEC-POMDP model


33/143







Policies for DEC-POMDPs


Definition 5. A local policy for agent i, πi, is a mapping from local


histories of observations ~o i = (oi1 · · · oit) over Ωi to actions in Ai,
πi : Ω∗i → Ai.


Definition 6. A joint policy, π = 〈π1, . . . , πn〉, is a tuple of local
policies, one for each agent.


Other forms of policy representations:


• Mapping from (generalized) belief states to actions:


• Mapping from internal memory states to actions (FSCs)
34/143







Value functions for DEC-POMDPs


Definition 7. The value of a joint policy π for a finite-horizon
DEC-POMDP with initial state s0 is:


V π(s0) = E
[h−1∑


t=0


R(~at, st)|s0, π
]
.


Definition 8. The value of a joint policy π for an infinite-horizon
DEC-POMDP with initial state s0 and discount factor γ ∈ [0, 1) is:


V π(s0) = E
[ ∞∑


t=0


γtR(~at, st)|s0, π
]
.


35/143







Modeling communication


Definition 9. A decentralized partially observable Markov decision
process with communication (DEC-POMDP-COM) is a tuple
〈I, S, {Ai}, P, {Ωi}, O, Σ, CΣ, R, h〉 where:


• I, S, {Ai}, P, {Ωi}, O, and h are defined as in the DEC-POMDP.


• Σ is the alphabet of communication messages. σi ∈ Σ is an atomic message


sent by agent i, and ~σ = 〈σ1, . . . , σn〉 is a joint message, i.e. a tuple of all


messages sent by the agents in one time step. A special message belonging to


Σ is the null message, εσ , which is sent by an agent that does not want to


transmit anything to the others. Agents incur no cost for sending a null message.


• CΣ is the cost of transmitting an atomic message.


CΣ : Σ→ R, CΣ(εσ) = 0.


• R is the reward function. R(~a, s′, ~σ) represents the reward obtained by all


agents together, when they execute the joint action ~a, a state transition to s′


occurs, and the joint message ~σ is sent.


36/143







Interactive POMDPs


• Interactive POMDPs (I-POMDPs) extend state space with
behavorial models of other agents
(Gmytrasiewicz and Doshi, 2005).


• Agents maintain beliefs over physical and models of others.
◮ Recursive modeling.


• When assuming a finite nesting, beliefs and value functions
can be computed (approximately).


• Finitely nested I-POMDPs can be solved as a set of
POMDPs.


37/143







Relationships among the models


 


M
M
D
P


DEC−
MDP


POSG


MDPI−POMDP
(finitely nested) POMDP


MTDP


DEC−POMDP
DEC−POMDP−COM


38/143







Previous complexity results


Finite Horizon
MDP P-complete (ifh <


|S|)
(Papadimitriou and Tsitsiklis,
1987)


POMDP PSPACE-complete
(if h < |S|)


(Papadimitriou and Tsitsiklis,
1987)


Infinite Horizon Discounted
MDP P-complete (Papadimitriou and Tsitsiklis,


1987)


POMDP undecidable (Madani et al., 1999)


39/143







DEC-POMDPs complexity


Intuition


• Agents must consider the choices of all others in addition tothe state and


action uncertainty present in POMDPs.


• This makes DEC-POMDPs much harder to solve (NEXP-complete).


• Solvable in nondeterminstic exponential time: Can guess a solution in


exponential time and transform the DEC-POMDP into an exponentially


bigger belief state MDP.


• NEXP-hardness: Reduction from tiling problem (each agent must place


a tile based on local information and the result must be consistent).


40/143







Upper bound for DEC-POMDPs


Theorem 1. Finite-horizon DEC-POMDPs are in nondeterministic
exponential time.
Proof: The following process shows that a non-deterministic Turing machine can solve any


instance of a DEC-POMDPn in at most exponential time.


1. Guess a joint policy and write it down in exponential time.This is possible, because a joint


policy consists ofn mappings from observation histories to actions. Sinceh ≤ |S|, the


number of possible histories is exponentially bounded by the problem description.


2. The DEC-POMDP together with the guessed joint policy can be viewed as an


exponentially bigger POMDP usingn-tuples of observations and actions.


3. In exponential time, convert all the observation sequences into a belief state.


4. In exponential time, compute transition probabilities and expected rewards for an


exponentially bigger belief state MDP.


5. This MDP can be solved in polynomial time, which is exponential in the original problem


description.


Thus, there is an accepting computation path in the non-deterministic machine if and only if there


is a joint policy that can achieve rewardK.
41/143







Lower bound for DEC-POMDPs


Theorem 2. (Bernstein et al., 2002) Two-agent finite-horizon
DEC-POMDPs are NEXP-hard.


• Thus provably intractable (unlike POMDP)


• Probably doubly exponential (unlike POMDP)


Proof: By reduction from TILING


42/143







Proof of hardness


∃ policy with expected reward 0⇔ ∃ consistent tiling
43/143







Proof of hardness


• Naive approach has a state for every pair of tile positions
(exponential in size of instance!)


• Luckily, we need only remember info about relationship
between positions in the state


• Generate positions bit-by-bit, and only remember key
information:
◮ Are they equal?
◮ Are they horizontally adjacent?
◮ Are they vertically adjacent?


• Q.E.D.


44/143







Joint observability


Definition 10. Joint full observability≡ collective observability. A
DEC-POMDP is jointly fully observable if the n-tuple of observations
made by all the agents uniquely determine the current global state.
That is, if O(~o|~a, s′) > 0 then P (s′|~o) = 1.


Definition 11. A decentralized Markov decision process (DEC-MDP) is
a DEC-POMDP with joint full observability.


A stronger result: The problem is NEXP-hard even when the
state is jointly observed! That is, two-agent finite-horizon
DEC-MDPs are NEXP-hard.


45/143







Classes of DEC-POMDPs


Definition 12. A factored n-agent DEC-MDP is a DEC-MDP for which
the world state can be factored into n + 1 components,
S = S0 × S1 × . . .× Sn.


Definition 13. A factored, n-agent DEC-MDP is said to be locally fully
observable if each agent observes its own state component


∀oi ∃ŝi : Pr(ŝi|oi) = 1.


Definition 14. Local state/observation/action ŝi ∈ Si × S0 is referred
to as the local state, ai ∈ Ai as the local action, and oi ∈ Ωi as the
local observation for agent i.


Definition 15. Full observability≡ individual observability. A
DEC-POMDP is fully observable if there exists a mapping for each
agent i, fi : Ωi → S such that whenever O(~o|s,~a, s′) is non-zero


then fi(oi) = s′.
46/143







Classes of DEC-POMDPs


Definition 16. MMDP A multi-agent Markov decision process is a
DEC-POMDP with full observability (Boutilier, 1996).


Definition 17. A factored, n-agent DEC-MDP is said to be transition
independent if there exists P0 through Pn such that


Pr(s′i|(s0, . . . , sn),~a, (s′1, . . . , s
′
i−1, s


′
i+1, . . . , s


′
n)) =


{
P0(s


′
0|s0) i = 0


Pi(s
′
i|ŝi, ai, s


′
0) 1 ≤ i ≤ n


(1)


Definition 18. A factored, n-agent DEC-MDP is said to be observation
independent if there exists O1 through On such that:


Pr(oi|(s0, . . . , sn),~a, (s′0, . . . , s
′
n), (o1, . . . , oi−1, oi+1, . . . , on))


= Pr(oi, ŝi, ai, ŝi
′).


47/143







Classes of DEC-POMDPs


Definition 19. A factored, n-agent DEC-MDP is said to be reward
independent if there exist f and R1 through Rn such that


R((s0, . . . , sn),~a, (s′0, . . . , s
′
n)) =


f(R1(ŝ1, a1, ŝ
′
1), . . . , Rn(ŝn, an, ŝ


′
n)) (2)


and


Ri(ŝi, ai, ŝ
′
i) ≤ Ri(ŝi, a


′
i, ŝ
′′
i )⇔


f(R1 . . . Ri(ŝi, ai, ŝ
′
i) . . . Rn) ≤ f(R1 . . . Ri(ŝi, a


′
i, ŝ
′′
i ) . . . Rn)


(3)


Theorem 3. If a DEC-MDP has independent observations and
transitions, then the DEC-MDP is locally fully observable.


48/143







Observability, communication and complexity


Observability General Communication Free Communication


Full MMDP (P-complete) MMDP (P-complete)


Joint Full DEC-MDP (NEXP-complete) MMDP (P-complete)


Partial DEC-POMDP (NEXP-complete) MPOMDP (PSPACE-complete)


49/143







More complexity results


(Goldman and Zilberstein, 2004)
50/143







Algorithms


51/143







Algorithms outline


1. Optimal solutions


2. Bottom-up algorithms


3. Top-down algorithms


4. Other finite-horizon algorithms


5. Infinite-horizon algorithms


6. Algorithms for subclasses


52/143







Optimal DEC-POMDP solutions


• Reminder
◮ No beliefs over states available.
◮ No piecewise linear convex value functions.


• MDP/POMDP algorithms do not transfer directly. . .
◮ . . . but ideas do transfer.


53/143







Optimal DEC-POMDP solutions


Example: optimal policy for Dec-Tiger,h = 4 (shown for 1
agent)


aLi


aLi


aLi


aLi


aLiaLiaLi


aLi


aLi


aLi


aLiaLi


aLi


aOR aOL


oHL


oHLoHL


oHL


oHLoHL


oHL


oHR


oHRoHR


oHR


oHRoHR


oHR


54/143







Axes


• Algorithms can be classified according along various axes:
◮ Optimal vs. Approximate
◮ General Model vs. Subclasses
◮ Infinite horizon vs. Finite horizon


• Axes will be indicated as follows:


Optimal / Approximate, General / Subclasses, Infinite / Finite horizon


55/143







Bottom up approaches


• Build the policies up for each agent simultaneously


• Begin on the last step (single action) and continue until the
first


• When done, choose highest value set of trees for any initial
state


56/143







Exhaustive search


• Construct all possible policies for the set of agents


• Do this in a bottom up fashion


• Trivially includes an optimal set of trees when finished


Optimal, General, Finite-horizon


57/143







Exhaustive search example (2 agents)


58/143







Exhaustive search example (2 agents)


59/143







Exhaustive search example (2 agents)


60/143







Exhaustive search summary


• Can find an optimal set of trees


• Number of each agent’s trees grows exponentially at each
step


• Many trees will not contribute to an optimal solution


• Can we reduce the number of trees we consider?


61/143







Dynamic programming


Add a pruning step to exhaustive search


• At each step, remove trees that will never be part of optimal
solution


• Uses linear programming (LP) to prune these dominated
trees


• Ensures any policy that can contribute to optimal is not
removed


(Hansen et al., 2004)


Optimal, General, Finite-horizon


62/143







Pruning trees


• Prune over multiagent belief space (policies of the other
agents and states of the system)


• Retains optimal policy for any belief state


63/143







Linear program for pruning a tree


Variables:ǫ, x(q̂i)


Objective: Maximizeǫ


Improvement constraints:


∀s, q−i V (s, qi, q−i) + ǫ ≤
∑


q̂i


x(q̂i)V (s, q̂i, q−i)


Probability constraints:
∑


q̂i


x(q̂i) = 1, ∀q̂i x(q̂i) ≥ 0


Prune treeqi if there is a distribution of other treesx(q̂i) that has a higher value


for all system states and trees of the other agentsq−i.


64/143







Dynamic programming example (2 agents)


65/143







Dynamic programming example (2 agents)


66/143







Dynamic programming example (2 agents)


67/143







Dynamic programming example (2 agents)


68/143







Dynamic programming example (2 agents)


69/143







Dynamic programming example (2 agents)


70/143







Dynamic programming example (2 agents)


71/143







Dynamic programming summary


• Will produce optimal solution for any initial state


• Improves scalability of exhaustive backups with pruning at
each step


• Still limited to small problems


• For POSGs, iterative removal of very weakly dominated
strategies


72/143







Approximate bottom-up algorithms


Optimal algorithms have theoretical value, but are generally
intractable in practice


• Approximate bottom up algorithms can provide higher value
and solve larger problems
◮ Joint Equilibrium Search for Policies (JESP)
◮ Memory Bounded Dynamic Programming (MBDP) (will


be discussed later)


Approximate, General, Finite-horizon


73/143







Joint Equilibrium Search for Policies (JESP)


Instead of exhaustive search, find best response


Algorithm 3 : JESP (Nair et al., 2003)
Start with policy for each agent
while not converged do


for i = 1 to n do
Fix other agent policies
Find a best response policy for agenti


Approximate, General, Finite-horizon


74/143







JESP summary


• Find a locally optimal set of policies


• Worst case complexity is the same as exhaustive search, but
in practice is much faster


• Can also incorporate dynamic programming to speed up
finding best responses
◮ Fix policies of other agents
◮ Generate reachable belief states from initial stateb0


◮ Build up policies from last step to first
◮ At each step, choose subtrees that maximize value at


reachable belief states


75/143







Bottom up summary


• Build agents polices simultaneously from the last step until
the first


• Typically build policies for any initial state


• Optimal algorithms are not very scalable


• Approximate algorithms use locally optimal solutions and
top-down heuristics (discussed later)


• Improve scalability by
◮ Compressing policies at each step


(Boularias and Chaib-draa, 2008)
◮ Not generating tree sets exhaustively (Amato et al., 2009)


76/143







Top down approaches


Bottom upTop down


new
old


t = 2


t = 1


t = 0


a1


a1


a1


a1


a1


a1


a2a2


a2


a2a2


a2


a2a2


o1o1


o1


o1o1


o1


o2o2


o2


o2o2


o2


77/143







Multiagent A*


• MAA ∗: top-down heuristic policy search (Szer et al., 2005).
◮ Requires an admissable heuristic function.
◮ A*-like search over partially specified joint policies:


ϕt = (δ0, δ1, . . . , δt−1),


δt = (δt
0, . . . , δ


t
n) δt


i : ~Ot
i → Ai


• Heuristic value forϕt:


V̂ (ϕt)︸ ︷︷ ︸
F


= V 0...t−1(ϕt)︸ ︷︷ ︸
G


+ V̂ t...h−1
︸ ︷︷ ︸


H


◮ If V̂ t...h−1 is admissible (overestimation), so iŝV (ϕt).


Optimal, General, Finite-horizon 78/143







Multiagent A*: example


Policy pool


8 = -2 + 10


12 = -4 + 16


~a1


~a2


79/143







Multiagent A*: example


Policy pool


8 = -2 + 10


12 = -4 + 16


~a1


~a2


80/143







Multiagent A*: example


Policy pool


8 = -2 + 10


3 = -2 + 5 3 = -2 + 5


-2 = -8 + 6 -4 = -6 + 2


~a1~a1


~a1 ~a1


~a1


~a2


~a2


~a2


~a2


~a2~a2


~a2 ~a2


~o1~o1


~o1~o1


~o2~o2


~o2~o2


81/143







Multiagent A*: example


Policy pool


8 = -2 + 10


3 = -2 + 5 3 = -2 + 5


-2 = -8 + 6 -4 = -6 + 2


~a1~a1


~a1 ~a1


~a1


~a2


~a2


~a2


~a2


~a2~a2


~a2 ~a2


~o1~o1


~o1~o1


~o2~o2


~o2~o2


82/143







Multiagent A*: example


Policy pool


-4


3


-2


3


-4 = -9 + 5


4 = 0 + 4


9 = 4 + 5


-4 = -8 + 4


~a1


~a1


~a1


~a1 ~a1


~a1


~a1


~a1


~a1


~a1 ~a1


~a1


~a2


~a2


~a2 ~a2


~a2


~a2 ~a2


~a2


~a2


~a2


~a2


~a2


~o1


~o1


~o1


~o1


~o1


~o1


~o1


~o1


~o2


~o2


~o2


~o2


~o2


~o2


~o2


~o2


83/143







Multiagent A*: example


Policy pool


-4


3


-2


3


-4 = -9 + 5


4 = 0 + 4


9 = 4 + 5


-4 = -8 + 4


~a1


~a1


~a1


~a1 ~a1


~a1


~a1


~a1


~a1


~a1 ~a1


~a1


~a2


~a2


~a2 ~a2


~a2


~a2 ~a2


~a2


~a2


~a2


~a2


~a2


~o1


~o1


~o1


~o1


~o1


~o1


~o1


~o1


~o2


~o2


~o2


~o2


~o2


~o2


~o2


~o2


84/143







Multiagent A*: example


Policy pool


-4


3


-2


3


4
-4
-4


8 = 8


~a1


~a1


~a1


~a1


~a1


~a1


~a1


~a1


~a1


~a1


~a1 ~a1


~a1


~a2~a2~a2


~a2


~a2 ~a2


~a2


~a2


~a2 ~a2


~a2


~a2


~a2


~a2


~a2


~o1~o1


~o1


~o1


~o1


~o1


~o1


~o1


~o1


~o1


~o2~o2


~o2


~o2


~o2


~o2


~o2


~o2


~o2


~o2


85/143







Heuristic functions


• MAA ∗ and other algorithms need heuristic functions
V̂ t...h−1.


• Can be defined by solving simplified problem settings.


V̂ t(ϕt) =
∑


~θt∈~Θt
ϕt


P (~θt|b0)Q(~θt, ϕt(~θt)),


where~θ t
i = (a0


i , o
1
i , . . . , a


t−1
i , ot


i) is an action-observation
history.


86/143







Heuristic functions


• QMDP (Littman et al., 1995):


Q̂M(~θt,~a) =
∑


s∈S


Q
t,∗
M (s,~a)P (s|~θt),


whereQ
t,∗
M (s,~a) is a non-stationary solution to the


underlying MDP.
◮ Cheap to compute, and feasible for high horizons.
◮ Assumes centralized observations and full observability
→ loose bound.


87/143







Heuristic functions


• QPOMDP (Szer et al., 2005; Roth et al., 2005):


Q̂P(~θ
t,~a) = Q∗P(b


~θt


,~a),


whereQ∗P(b
~θt


,~a) is a solution to the underlying POMDP,
i.e., the “belief MDP”.
◮ Assumes centralized observations.
◮ Tighter heuristic thanQMDP, but exponential inh.


• QBG (Oliehoek and Vlassis, 2007): assumes centralized
observations, but delayed by 1 step.


• Hierarchy of upper bounds (Oliehoek et al., 2008b):


Q∗ ≤ QBG ≤ QPOMDP ≤ QMDP.


88/143







Heuristic functions: example DEC-Tigerh = 4


0 1
0


10


20


30


40


50


60
Q−heuristics for horizon=4 Dec−Tiger at t=0


P(s
l
 | θt )


Q
m


ax
 =


 m
ax


a Q
(θ


t ,a
)
Q


BG


Q
POMDP


Q
MDP


Q*


0 1
−10


0


10


20


30


40


50


60
Q−heuristics for horizon=4 Dec−Tiger at t=1


P(s
l
 | θt )


Q
m


ax
 =


 m
ax


a Q
(θ


t ,a
)


Q
BG


Q
POMDP


Q
MDP


Q*


0 1
−20


−10


0


10


20


30


40
Q−heuristics for horizon=4 Dec−Tiger at t=2


P(s
l
 | θt )


Q
m


ax
 =


 m
ax


a Q
(θ


t ,a
)


Q
BG


Q
POMDP


Q
MDP


Q*


0 1
−100


−80


−60


−40


−20


0


20
Q−heuristics for horizon=4 Dec−Tiger at t=3


P(s
l
 | θt )


Q
m


ax
 =


 m
ax


a Q
(θ


t ,a
)


Q
BG


Q
POMDP


Q
MDP


Q*


89/143







DEC-POMDPs as series of Bayesian Games


• DEC-POMDPs can be approximated by series of Bayesian
Games (Emery-Montemerlo et al., 2004).


Definition 20. Bayesian Game for a time step t


• Θ = ×iΘi is the set of joint types. . .
• . . . over which a probability function P (Θ) is specified
• ui : Θ×A → R — payoff function.


• Action-observation history~θ t
i = (a0


i , o
1
i , . . . , a


t−1
i , ot


i)


• BG for time stept of a DEC-POMDP:


◮ Types are action-observation historiesΘi ≡ ~Θt
i


◮ Given the past joint policyϕt = (δ0, . . . , δt−1),
probabilitiesP (Θ) are known.


90/143







DEC-POMDPs as series of Bayesian Games


~θ t=0


2
()


~θ t=0


1
a2 ā2


() a1 +2.75 −4.1


ā1 −0.9 +0.3


~θ t=1


2
(a2, o2) (a2, ō2) ...


~θ t=1


1
a2 ā2 a2 ā2


(a1, o1)
a1 −0.3 +0.6 −0.6 +4.0 ...


ā1 −0.6 +2.0 −1.3 +3.6 ...


(a1, ō1)
a1 +3.1 +4.4 −1.9 +1.0 ...


ā1 +1.1 −2.9 +2.0 −0.4


(ā1, o1)
a1 −0.4 −0.9 −0.5 −1.0 ...


ā1 −0.9 −4.5 −1.0 +3.5 ...


(ā1, ō1) ... ... ... ... ... ...


91/143







DEC-POMDPs as series of Bayesian Games


t = 0


t = 1


joint actions
joint observations
joint act.-obs. history〈a1, a2〉


〈ā1, a2〉


〈a1, ā2〉


〈ā1, ā2〉


〈o1, o2〉


〈ō1, o2〉
〈o1, ō2〉


〈ō1, ō2〉


92/143







Bayesian Game Approximation


• Idea: instead of doing A* search, only keep the best joint
policy ϕt when solving each Bayesian game
(Emery-Montemerlo et al., 2004).


• Or: keep thek best (k-GMAA∗, forward sweep policy
computation Oliehoek et al., 2008b).


• Choice of heuristics:QMDP, QPOMDP, QBG.


• Choice of BG solvers:
◮ Brute force search (exact)
◮ Branch and bound (Oliehoek et al., next Friday, session


23)
◮ Alternating Maximization (approximate)


Approximate, General, Finite-horizon


93/143







Generalized MAA∗


Algorithm 4 : GMAA ∗ (Oliehoek et al., 2008b)
Max. lower bound v⋆←−∞


Policy poolP←{ϕ0 = ()}


repeat


ϕt←Select(P)


ΦNext←ConstructAndSolveBG(ϕt, b0)


if ΦNext contains full policies ΠNext ⊆ ΦNext then
π′← arg maxπ∈ΠNext


V (π)


if V (π′) > v⋆ then
v⋆←V (π′) found new lower bound


π⋆←π′


P←{ϕ ∈ P | bV (ϕ) > v⋆} prune P


ΦNext←ΦNext \ΠNext remove full policies


P←(P \ ϕt) ∪ {ϕ ∈ ΦNext | bV (ϕ) > v⋆}


until P is empty


Optimal or Approximate, General, Finite-horizon94/143







Lossless Clustering of Histories


• Idea: if two individual histories induce the same distribution
over states and over other agents’ histories, they are
equivalent and can be clustered (Oliehoek et al., 2009).


∀~θ6=i
P (~θ 6=i|~θi,a) = P (~θ 6=i|~θi,b)


∀~θ6=i
∀s P (s|~θ 6=i, ~θi,a) = P (s|~θ 6=i, ~θi,b)


• Lossless clustering, independent of heuristic, but problem
dependent.


• Clustering is bootstrapped: algorithms only deal with
clustered Bayesian games.


• Large increase in scalability of optimal solvers.


Optimal and Approximate, General, Finite-horizon
95/143







Top down summary


• Top down methods can exploit initial belief state, and
various heuristics.


• GMAA ∗ generalizes MAA∗ and the work of
Emery-Montemerlo et al. (2004).


• Without clustering Bayesian games grow exponentially in
time horizon.


96/143







Memory Bounded Dynamic Programming (MBDP)


• Do not keep all policies at each step of dynamic programming
• Keep a fixed number for each agentmaxTrees
• Select these by using heuristic solutions from initial state
• Combines top down and bottom up approaches


(Seuken and Zilberstein, 2007b)


Approximate, General, Finite-horizon
97/143







MBDP algorithm


Algorithm 5 : MBDP (Seuken and Zilberstein, 2007b)


Start with a one-step policy for each agent
for t = h to 1 do


Backup each agent’s policy
for k = 1 to maxTrees do


Compute heuristic policy and resulting belief stateb


Choose best set of trees starting atb


Select best set of trees for initial stateb0


98/143







MBDP summary


• Linear complexity in problem horizon


• Exponential in the number of observations


• Performs well in practice (often with very smallmaxTrees)


• Can be difficult to choose correctmaxTrees


99/143







Extensions of MBDP


• IMBDP: Limit the number of observations used based on
probability at each belief (Seuken and Zilberstein, 2007a)


• MBDP-OC: compress observations based on the value
produced (Carlin and Zilberstein, 2008)


• PBIP: heuristic search to find best trees rather than
exhaustive (Dibangoye et al., 2009)


• PBIP-IPG: extends PBIP by limiting the possible states
(Amato et al., 2009)


100/143







Other finite-horizon approaches


• Mixed integer linear programming (MILP) (Aras et al.,
2007)
◮ Represent each agent’s policy in sequence form (instead


of as a tree).
◮ Solve as a combinatorial optimization problem (MILP).


Optimal, General, Finite-horizon


• Direct Cross-Entropy policy search (DICE) (Oliehoek et al.,
2008a)
◮ Randomized (sampling-based) algorithm using


combinatorial optimization.
◮ Applies Cross-Entropy method to Dec-POMDPs.
◮ Scales well wrt number of agents.


Approximate, General, Finite-horizon
101/143







Summary of finite-horizon algorithms


Optimal finite-horizon algorithms:


• Exhaustive


• Dynamic Programming (Hansen et al., 2004)


• MAA ∗ (Szer et al., 2005)


• MILP (Aras et al., 2007)


• Lossless policy space compression
(Boularias and Chaib-draa, 2008)


• GMAA ∗-Cluster (Oliehoek et al., 2009)


102/143







Summary of finite-horizon algorithms


Approximate finite-horizon algorithms:


• JESP (Nair et al., 2003)


• kGMAA ∗ (Oliehoek et al., 2008b)


• MBDP (Seuken and Zilberstein, 2007b)
◮ IMBDP (Seuken and Zilberstein, 2007a)
◮ MBDP-OC (Carlin and Zilberstein, 2008)
◮ PBIP (Dibangoye et al., 2009)
◮ PBIP-IPG (Amato et al., 2009)


• DICE (Oliehoek et al., 2008a)


103/143







Comparison of optimal finite-horizon algorithms


Comparison of published results:


• MAA ∗, GMAA∗-Cluster (Oliehoek et al., 2009)


• (Boularias and Chaib-draa, 2008)


• DP (taken from Boularias and Chaib-draa, 2008)


• MILP (Aras et al., 2007)


DEC-Tiger(QBG)


h V ∗ TGMAA∗ (s) Tclus(s) TBoularias(s) TDP (s) TMILP (s)


2 −4.0000 ≤ 0.01 ≤ 0.01 0.17 0.20


3 5.1908 0.02 ≤ 0.01 1.79 2.29 3.5


4 4.8028 3, 069.4 1.50 534.90 72


5 7.0265 − 130.82


104/143







Comparison of optimal finite-horizon algorithms


BroadcastChannel(QMDP)


h V ∗ TGMAA∗ (s) Tclus(s) TBoularias(s) TDP (s) TMILP (s)


2 2.0000 ≤ 0.01 ≤ 0.01 0.14 0.12


3 2.9900 ≤ 0.01 ≤ 0.01 0.36 0.46 0.84


4 3.8900 3.22 ≤ 0.01 4.59 17.59 10.2


5 4.7900 − ≤ 0.01 25


6 5.6900 − ≤ 0.01


7 6.5900 − ≤ 0.01


8 7.4900 − ≤ 0.01


9 8.3900 − ≤ 0.01


10 9.2900 − ≤ 0.01


15 13.7900 − ≤ 0.01


20 18.3132 − 0.08


25 22.8815 − 1.67


105/143







Comparison of optimal finite-horizon algorithms


GridSmall(QBG)


h V ∗ TGMAA∗ (s) Tclus(s)


2 0.9100 ≤ 0.01 ≤ 0.01


3 1.5504 4.21 0.71


4 2.2416 − 30.17


Cooperative Box Pushing(QMDP)


h V ∗ TGMAA∗ (s) Tclus(s)


2 17.6000 0.05 ≤ 0.01


3 66.0810 − 4.55


Hotel 1(QBG)


h V ∗ TGMAA∗ (s) Tclus(s)


2 9.5000 ≤ 0.01 0.02


3 15.7047 − 0.07


4 20.1125 − 1.37


Recycling Robots(QMDP)


h V ∗ TGMAA∗ (s) Tclus(s)


2 6.8000 ≤ 0.01 ≤ 0.01


3 9.7647 0.02 ≤ 0.01


4 11.7264 23052.5 0.02


5 13.7643 − 0.10


10 21.2006 − 4.92


15 25.5940 − 81.46


FireFighting〈nh = 3, nf = 3〉 (QBG)


h V ∗ TGMAA∗ (s) Tclus(s)


2 −4.3825 0.03 0.03


3 −5.7370 0.91 0.70


4 −6.5789 5605.3 5823.5


106/143







Comparison of approximate finite-horizon algorithms


DEC-Tiger (7maxTrees)


|S| = 2, |Ai| = 3, |Ωi| = 2


h JESP MBDP


2 -4.00 -4.00


3 -6.00 5.19


10 – 13.49


100 – 93.24


1000 – 819.01


10000 – 7930.68


100000 – 78252.18


Cooperative Box Pushing (3maxTrees,maxObs)


|S| = 100, |Ai| = 4, |Ωi| = 5


h MBDP IMBDP MBDP-OC


5 – 79.1 72.3


10 – 90.9 103.9


20 – 96.0 149.8


50 – 80.8 278.7


100 – 72.8 503.8


Published results from


• JESP (Nair et al., 2003)


• MBDP (Seuken and Zilberstein,


2007b)


• IMBDP and MBDP-OC


(Carlin and Zilberstein, 2008)
107/143







Comparison of approximate finite-horizon algorithms


Cooperative Box Pushing,|S| = 100, |Ai| = 4, |Ωi| = 5


h MBDP PBIP PBIP-IPG Value


10 – 46s 11s 103.22


100 – 536s 181s 598.40


1000 – 5068s 2147s 5707.59


2000 – 10107s 4437s 11392.03


Stochastic Mars Rover,|S| = 256, |Ai| = 6, |Ωi| = 8


h MBDP PBIP PBIP-IPG Value


2 – 106s 19s 5.80


3 – – 71s 9.38


5 – – 301s 12.66


10 – – 976s 21.18


20 – – 14947s 37.81


Results from (Amato et al., 2009) 108/143







Infinite-horizon only algorithms


A large enough horizon can be used to approximate an
infinite-horizon solution, but this is neither efficient norcompact


Specialized infinite-horizon solutions have also been developed:


• Policy Iteration (PI)


• Best-First Search (BFS)


• Bounded Policy Iteration for DEC-POMDPS (DEC-BPI)


• Nonlinear Programming (NLP)


109/143







Using controllers for infinite-horizon policies


Example: Two agents meeting in a grid


• Periodic policies


• Inherently infinite-horizon


• Randomness can reduce
memory limitations


• Nodes define actions


• Transitions based on
observations seen


110/143







Policy iteration for DEC-POMDPs


• Dynamic programming with controllers


• Start with a one node controller and build a larger controller
at each step


• Stop when discount factor makes further value change less
thenǫ


• Pruning merges nodes and creates a stochastic controller as
one node may be dominated by a distribution


• Can produceǫ-optimal controllers for any initial state


(Bernstein et al., 2009)


Optimal, General, Infinite-horizon


111/143







Policy iteration for DEC-POMDPs


• Optimal for any initial state


• Intractable for all but the smallest problems


• Does not use known initial state information
◮ Thus, retains many nodes that are unnecessary for a


given start state


Optimal, General, Infinite-horizon
112/143







Approximate infinite-horizon approaches


• Use a fixed-size controller


• Want best value for the given size


• How can the action selection and node transition parameters
be set?
◮ Deterministic approaches: using heuristic search


methods
◮ Stochastic approaches: using continuous optimization


113/143







Best-first search (BFS)


• Search through space of deterministic action selection and
node transition parameters


• Produces optimal fixed-size deterministic controllers


• High search time limits this to very small controllers (< 3
nodes)


(Szer and Charpillet, 2005)


Approximate, General, Infinite-horizon


114/143







Bounded policy iteration (DEC-BPI)


• Improve the controller over a series of steps until value converges


• Alternate between improvement and evaluation


• Improvement


Use a linear program to determine if a nodes parameters can be


changed, while fixing the rest of the controller and other agent policies


Improved nodes must have better value for all states and nodes of


the other agents (multiagent belief space)


• Evaluation: Update the value of all nodes in the agent’s controller


• Can solve much larger controller than BFS, but value is low due to lack


of start state info and LP


(Bernstein et al., 2005)


Approximate, General, Infinite-horizon


115/143







Nonlinear programming (NLP)


• Optimal fixed-size representation


• Improve and evaluate all in one step by setting value as a
parameter


• This requires nonlinear constraints to ensure correct value


• Uses start state info


• Globally optimal solution is intractable, but locally optimal
solvers can produce better quality than LP


• Even locally optimal approaches cannot solve large
controllers


(Amato et al., 2007)


Approximate, General, Infinite-horizon


116/143







Summary of infinite-horizon algorithms


Optimal algorithm can only solve very small problems


Approximate algorithms can outperform policy iteration because they are more scalable


NLP generally outperforms others, but more scalability is needed


GridSmall: 16 states, 4 actions, 2 obs


Policy Iteration: 3.7 with 80 nodes in 821s before running out of memory


117/143







Summary of infinite-horizon algorithms


Cooperative Box Pushing: 100 states, 4 actions, 5 obs


Value Time


Size NLP NLP fix DEC-BPI BFS NLP NLP fix DEC-BPI BFS


1 -1.580 n/a -10.367 -2 20 n/a 26 1696


2 31.971 -6.252 3.293 – 115 18 579 –


3 46.282 5.097 9.442 – 683 27 4094 –


4 50.640 18.780 7.894 – 5176 44 11324 –


5 – 53.132 14.762 – – 92 27492 –


6 – 73.247 – – – 143 – –


7 – 80.469 – – – 256 – –


Policy Iteration: 12.84 with 9 nodes in 209s before running out of memory


118/143







Algorithms using communication


• Analysis of possible communication models and complexity
results (Pynadath and Tambe, 2002)


• Myopic communication in transition independent
Dec-MDPs (Becker et al., 2009)


• Reasoning about run-time communication decisions
(Nair et al., 2004; Roth et al., 2005)


• Exploiting factored representations (Roth et al., 2007)


• Stochastically delayed communication (Spaan et al., 2008)


119/143







Algorithms for DEC-POMDP subclasses


• General idea: less powerful models allow for more
scalability.


• E.g., independence assumptions:
◮ DEC-MDPs with transition and observation


independence.
◮ ND-POMDPs


• Assuming structure in the models
◮ Factored DEC-POMDPs


120/143







Subclasses: DEC-MDPs


Motivation: agents may have limited interactions with eachother
(e.g. Mars rovers etc.)


• Independent transitions and observations and special joint
reward structure
◮ Coverage set algorithm: NP-Complete (Becker et al.,


2004b)
◮ Bilinear programming: More efficient anytime approach


(Petrik and Zilberstein, 2009)


• Independent observations and event- driven interactions
◮ Exponential in number of interactions (Becker et al.,


2004a)


Optimal, Subclass, Finite-horizon


121/143







Subclasses: ND-POMDPs


Motivation: to scale up to many agents, exploit locality of
interaction (decomposable rewards) (Nair et al., 2005)


• GOA (optimal) and LID-JESP (approximate) (Nair et al.,
2005)


• SPIDER (Varakantham et al., 2007)


• FANS (approximate) (Marecki et al., 2008)


• CBDP (approximate) (Kumar and Zilberstein, 2009a)


Optimal and Approximate, Subclass, Finite-horizon


122/143







Subclasses: Factored DEC-POMDPs


Motivation: exploit locality of
interaction, but no strict inde-
pendence assumptions.


• More general and powerful
than ND-POMDPs.


• Less scalable
(non-stationary interaction
graph).


• GMAA* has been extended
to Factored DEC-POMDPs
(Oliehoek et al., 2008c). t t + 1


x1 x′
1


a1 o1


R1


x2 x′
2


a2 o2


R2


x3 x′
3


a3 o3


R3


x4 x′
4 R4


Optimal and Approximate, Subclass, Finite-horizon


123/143







Problem domains and software tools


• An overview of the existing benchmark problems.


• Description of available software.


124/143







Benchmark problems


Some benchmark problems:


• DEC-Tiger (Nair et al., 2003)


• BroadcastChannel (Hansen et al., 2004)


• Meeting on a grid (Bernstein et al., 2005)


• Cooperative Box Pushing (Seuken and Zilberstein, 2007a)


• Recycling Robots (Amato et al., 2007)


• FireFighting (Oliehoek et al., 2008b)


• Sensor network problems (Nair et al., 2005;
Kumar and Zilberstein, 2009a,b)


125/143







Software


• The MADP toolbox aims to provide a software platform for
research in decision-theoretic multiagent planning
(Spaan and Oliehoek, 2008).


• Main features:
◮ A uniform representation for several popular multiagent


models.
◮ A parser for a file format for discrete Dec-POMDPs.
◮ Shared functionality for planning algorithms.
◮ Implementation of several Dec-POMDP planners.


• Released as free software, with special attention to the
extensibility of the toolbox.


• Provides benchmark problems.


126/143







Problem specification


agents: 2


discount: 1


values: reward


states: tiger-left tiger-right


start:


uniform


actions:


listen open-left open-right


listen open-left open-right


observations:


hear-left hear-right


hear-left hear-right


127/143







Problem specification (1)


# Transitions


T: * :


uniform


T: listen listen :


identity


# Observations


O: * :


uniform


O: listen listen : tiger-left : hear-left hear-left : 0.7225


O: listen listen : tiger-left : hear-left hear-right : 0.1275


[...]


O: listen listen : tiger-right : hear-left hear-left : 0.0225


# Rewards


R: listen listen: * : * : * : -2


R: open-left open-left : tiger-left : * : * : -50


[...]


R: open-left listen: tiger-right : * : * : 9


128/143







Example program


#include "ProblemDecTiger.h"


#include "JESPExhaustivePlanner.h"


int main()


{


ProblemDecTiger dectiger;


JESPExhaustivePlanner jesp(3,&dectiger);


jesp.Plan();


std::cout << jesp.GetExpectedReward() << std::endl;


std::cout << jesp.GetJointPolicy()->SoftPrint() << std::endl;


return(0);


}


129/143







Program output


src/examples> ./decTigerJESP


Value computed for DecTiger horizon 3: 5.19081


Policy computed:


JointPolicyPureVector index 120340 depth 999999


Policy for agent 0 (index 55):


Oempty, --> a00:Listen


Oempty, o00:HearLeft, --> a00:Listen


Oempty, o01:HearRight, --> a00:Listen


Oempty, o00:HearLeft, o00:HearLeft, --> a02:OpenRight


Oempty, o00:HearLeft, o01:HearRight, --> a00:Listen


Oempty, o01:HearRight, o00:HearLeft, --> a00:Listen


Oempty, o01:HearRight, o01:HearRight, --> a01:OpenLeft


Policy for agent 1 (index 55):


Oempty, --> a10:Listen


Oempty, o10:HearLeft, --> a10:Listen


Oempty, o11:HearRight, --> a10:Listen


Oempty, o10:HearLeft, o10:HearLeft, --> a12:OpenRight


Oempty, o10:HearLeft, o11:HearRight, --> a10:Listen


Oempty, o11:HearRight, o10:HearLeft, --> a10:Listen


Oempty, o11:HearRight, o11:HearRight, --> a11:OpenLeft 130/143







Back to some fundamental questions


• Is decentralized decision making under uncertainty
significantly harder than solving POMDPs? Why?


• What features of the problem domain affect the complexity
and how?


• Is optimal dynamic programming possible?


• Can dynamic programming be made practical? How?


• Is it beneficial to treat communication as a separate type of
action?


• How can we exploit the locality of agent interaction to
develop more scalable algorithms?


131/143







Acknowledgments


This work was partially supported by Fundação para a Ciênciae
a Tecnologia (ISR/IST pluriannual funding) through the through
the PIDDAC Program funds and was supported by project
PTDC/EEA-ACR/73266/2006. This work was also supported by
the Air Force Office of Scientific Research under Grant No.
FA9550-08-1-0181 and by the National Science Foundation
under Grant No. IIS-0812149.


132/143







References


C. Amato, D. S. Bernstein, and S. Zilberstein. Solving POMDPs Using Quadratically


Constrained Linear Programs. InProc. of Uncertainty in Artificial Intelligence, 2007.


C. Amato, D. S. Bernstein, and S. Zilberstein. Optimizing memory-bounded controllers for


decentralized POMDPs. InProc. Int. Joint Conf. on Artificial Intelligence, 2007.


C. Amato, J. Dibangoye, and S. Zilberstein. Incremental policy generation for finite-horizon


DEC-POMDPs. InInt. Conf. on Automated Planning and Scheduling, 2009.


R. Aras, A. Dutech, and F. Charpillet. Mixed integer linear programming for exact finite-horizon


planning in decentralized POMDPs. InInt. Conf. on Automated Planning and Scheduling,


2007.


A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time dynamic


programming.Artificial Intelligence, 72(1-2):81–138, 1995.


R. Becker, S. Zilberstein, and V. Lesser. Decentralized Markov decision processes with


event-driven interactions. InProc. of Int. Joint Conference on Autonomous Agents and Multi


Agent Systems, 2004a.


R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Solving transition independent


decentralized Markov decision processes.Journal of Artificial Intelligence Research, 22:


423–455, 2004b.


133/143







References


R. Becker, A. Carlin, V. Lesser, and S. Zilberstein. Analyzing myopic approaches for multi-agent


communications.Computational Intelligence, 25(1):31–50, 2009.


R. Bellman.Dynamic programming. Princeton University Press, 1957.


D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of decentralized


control of Markov decision processes.Mathematics of Operations Research, 27(4):819–840,


2002.


D. S. Bernstein, E. A. Hansen, and S. Zilberstein. Bounded policy iteration for decentralized


POMDPs. InProc. Int. Joint Conf. on Artificial Intelligence, 2005.


D. S. Bernstein, C. Amato, E. A. Hansen, and S. Zilberstein. Policy iteration for decentralized


control of Markov decision processes.Journal of Artificial Intelligence Research, 34(89–132),


2009.


B. Bonet. An epsilon-optimal grid-based algorithm for partially observable Markov decision


processes. InInternational Conference on Machine Learning, 2002.


A. Boularias and B. Chaib-draa. Exact dynamic programming for decentralized POMDPs with


lossless policy compression. InInt. Conf. on Automated Planning and Scheduling, 2008.


C. Boutilier. Planning, learning and coordination in multiagent decision processes. InTheoretical


Aspects of Rationality and Knowledge, 1996.


134/143







References


R. I. Brafman. A heuristic variable grid solution method forPOMDPs. InProc. of the National


Conference on Artificial Intelligence, 1997.


A. Carlin and S. Zilberstein. Value-based observation compression for DEC-POMDPs. InProc.


of Int. Joint Conference on Autonomous Agents and Multi AgentSystems, 2008.


A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable


stochastic domains. InProc. of the National Conference on Artificial Intelligence, 1994.


A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty: Discrete Bayesian


models for mobile robot navigation. InProc. of International Conference on Intelligent Robots


and Systems, 1996.


R. Cogill, M. Rotkowitz, B. V. Roy, and S. Lall. An approximate dynamic programming


approach to decentralized control of stochastic systems. In Proceedings of the 2004 Allerton


Conference on Communication, Control, and Computing, 2004.


T. Dean, L. Kaelbling, J. Kirman, and A. Nicholson. Planningunder time constraints in stochastic


domains.Artificial Intelligence, 76(1–2):35–74, 1995.


J. S. Dibangoye, A.-I. Mouaddib, and B. Chaib-draa. Point-based incremental pruning heuristic


for solving finite-horizon DEC-POMDPs. InProc. of Int. Joint Conference on Autonomous


Agents and Multi Agent Systems, 2009.


135/143







References


R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun.Approximate solutions for


partially observable stochastic games with common payoffs. In Proc. of Int. Joint Conference


on Autonomous Agents and Multi Agent Systems, 2004.


P. J. Gmytrasiewicz and P. Doshi. A framework for sequentialplanning in multi-agent settings.


Journal of Artificial Intelligence Research, 24:49–79, 2005.


R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun.Game theoretic control for robot


teams. InProceedings of the IEEE International Conference on Robotics and Automation,


2005.


C. V. Goldman and S. Zilberstein. Decentralized control of cooperative systems: Categorization


and complexity analysis.Journal of Artificial Intelligence Research, 22:143–174, 2004.


C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs. InAdvances in


Neural Information Processing Systems 14. MIT Press, 2002.


E. A. Hansen.Finite-memory control of partially observable systems. PhD thesis, University of


Massachusetts, Amherst, 1998a.


E. A. Hansen. Solving POMDPs by searching in policy space. InProc. of Uncertainty in


Artificial Intelligence, 1998b.


E. A. Hansen, D. Bernstein, and S. Zilberstein. Dynamic programming for partially observable


stochastic games. InProc. of the National Conference on Artificial Intelligence, 2004. 136/143







References


R. A. Howard.Dynamic Programming and Markov Processes. MIT Press and John Wiley &


Sons, Inc., 1960.


A. Kumar and S. Zilberstein. Constraint-based dynamic programming for decentralized pomdps


with structured interactions. InProc. of Int. Joint Conference on Autonomous Agents and Multi


Agent Systems, 2009a.


A. Kumar and S. Zilberstein. Event-detecting multi-agent mdps: Complexity and constant-factor


approximation. InProc. Int. Joint Conf. on Artificial Intelligence, 2009b.


M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learningpolicies for partially observable


environments: Scaling up. InInternational Conference on Machine Learning, 1995.


W. S. Lovejoy. Computationally feasible bounds for partially observed Markov decision


processes.Operations Research, 39(1):162–175, 1991.


O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning and


infinite-horizon partially observable Markov decision problems. InProc. of the National


Conference on Artificial Intelligence, Orlando, Florida, July 1999.


J. Marecki, T. Gupta, P. Varakantham, M. Tambe, and M. Yokoo.Not all agents are equal:


Scaling up distributed POMDPs for agent networks. InProc. of Int. Joint Conference on


Autonomous Agents and Multi Agent Systems, 2008.


137/143







References


J. Marschak. Elements for a theory of teams.Management Science, 1(2):127–137, 1955.


G. E. Monahan. A survey of partially observable Markov decision processes: theory, models and


algorithms.Management Science, 28(1), Jan. 1982.


R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella. Taming decentralized POMDPs:


Towards efficient policy computation for multiagent settings. InProc. Int. Joint Conf. on


Artificial Intelligence, 2003.


R. Nair, M. Tambe, M. Roth, and M. Yokoo. Communication for improving policy computation


in distributed POMDPs. InProc. of Int. Joint Conference on Autonomous Agents and Multi


Agent Systems, 2004.


R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Networked distributed POMDPs: A synthesis


of distributed constraint optimization and POMDPs. InProc. of the National Conference on


Artificial Intelligence, 2005.


F. A. Oliehoek and N. Vlassis. Q-value functions for decentralized POMDPs. InProc. of Int.


Joint Conference on Autonomous Agents and Multi Agent Systems, May 2007.


F. A. Oliehoek, J. F. Kooi, and N. Vlassis. The cross-entropymethod for policy search in


decentralized POMDPs.Informatica, 32:341–357, 2008a.


138/143







References


F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Optimal and approximate Q-value functions for


decentralized POMDPs.Journal of Artificial Intelligence Research, 32:289–353, 2008b.


F. A. Oliehoek, M. T. J. Spaan, S. Whiteson, and N. Vlassis. Exploiting locality of interaction in


factored Dec-POMDPs. InProc. of Int. Joint Conference on Autonomous Agents and Multi


Agent Systems, pages 517–524, 2008c.


F. A. Oliehoek, S. Whiteson, and M. T. J. Spaan. Lossless clustering of histories in decentralized


POMDPs. InProc. of Int. Joint Conference on Autonomous Agents and MultiAgent Systems,


May 2009.


J. M. Ooi and G. W. Wornell. Decentralized control of a multiple access broadcast channel:


Performance bounds. InProc. of the 35th Conference on Decision and Control, 1996.


C. H. Papadimitriou and J. N. Tsitsiklis. On the complexity of designing distributed protocols.


Information and Control, 53(3):211–218, 1982.


C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision processes.


Mathematics of Operations Research, 12(3):441–450, 1987.


L. Peshkin and V. Savova. Reinforcement learning for adaptive routing. InProc. of the Int. Joint


Conf. on Neural Networks, 2002.


L. Peshkin, K.-E. Kim, N. Meuleau, and L. P. Kaelbling. Learning to cooperate via policy search.


In Proc. of Uncertainty in Artificial Intelligence, 2000. 139/143







References


M. Petrik and S. Zilberstein. A bilinear programming approach for multiagent planning.Journal


of Artificial Intelligence Research, 35:235–274, 2009.


J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for


POMDPs. InProc. Int. Joint Conf. on Artificial Intelligence, 2003.


P. Poupart and C. Boutilier. Bounded finite state controllers. InAdvances in Neural Information


Processing Systems 16. MIT Press, 2004.


D. V. Pynadath and M. Tambe. The communicative multiagent team decision problem: Analyzing


teamwork theories and models.Journal of Artificial Intelligence Research, 16:389–423, 2002.


M. Roth, R. Simmons, and M. Veloso. Reasoning about joint beliefs for execution-time


communication decisions. InProc. of Int. Joint Conference on Autonomous Agents and Multi


Agent Systems, 2005.


M. Roth, R. Simmons, and M. Veloso. Exploiting factored representations for decentralized


execution in multi-agent teams. InProc. of Int. Joint Conference on Autonomous Agents and


Multi Agent Systems, 2007.


S. J. Russell and P. Norvig.Artificial Intelligence: a modern approach. Prentice Hall, 2nd


edition, 2003.


140/143







References


J. Sandell, N., P. Varaiya, M. Athans, and M. Safonov. Surveyof decentralized control methods


for large scale systems.IEEE Transactions on Automatic Control, 23(2):108–128, Apr 1978.


J. K. Satia and R. E. Lave. Markovian decision processes withprobabilistic observation of states.


Management Science, 20(1):1–13, 1973.


S. Seuken and S. Zilberstein. Improved memory-bounded dynamic programming for


decentralized POMDPs. InProc. of Uncertainty in Artificial Intelligence, July 2007a.


S. Seuken and S. Zilberstein. Memory-bounded dynamic programming for DEC-POMDPs. In


Proc. Int. Joint Conf. on Artificial Intelligence, pages 2009–2015, 2007b.


E. J. Sondik.The optimal control of partially observable Markov processes. PhD thesis, Stanford


University, 1971.


M. T. J. Spaan and F. S. Melo. Interaction-driven Markov games for decentralized multiagent


planning under uncertainty. InProc. of Int. Joint Conference on Autonomous Agents and Multi


Agent Systems, pages 525–532, 2008.


M. T. J. Spaan and F. A. Oliehoek. The MultiAgent Decision Process toolbox: software for


decision-theoretic planning in multiagent systems. InMulti-agent Sequential Decision Making


in Uncertain Domains, 2008. Workshop at AAMAS08.


M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for POMDPs.


Journal of Artificial Intelligence Research, 24:195–220, 2005. 141/143







References


M. T. J. Spaan, F. A. Oliehoek, and N. Vlassis. Multiagent planning under uncertainty with


stochastic communication delays. InInt. Conf. on Automated Planning and Scheduling, pages


338–345, 2008.


D. Szer and F. Charpillet. An optimal best-first search algorithm for solving infinite horizon


DEC-POMDPs. InEuropean Conference on Machine Learning, 2005.


D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A heuristic search algorithm for solving


decentralized POMDPs. InProc. of Uncertainty in Artificial Intelligence, 2005.


J. Tsitsiklis. Decentralized detection by a large number ofsensors.Mathematics of Control,


Signals and Systems, 1(2):167–182, 1988.


J. Tsitsiklis and M. Athans. On the complexity of decentralized decision making and detection


problems.IEEE Transactions on Automatic Control, 30(5):440–446, 1985.


P. Varaiya and J. Walrand. On delayed sharing patterns.IEEE Transactions on Automatic


Control, 23(3):443–445, 1978.


P. Varakantham, J. Marecki, Y. Yabu, M. Tambe, and M. Yokoo. Letting loose a SPIDER on a


network of POMDPs: Generating quality guaranteed policies. In Proc. of Int. Joint Conference


on Autonomous Agents and Multi Agent Systems, 2007.


H. Witsenhausen. Separation of estimation and control for discrete time systems.Proceedings of


the IEEE, 59(11):1557–1566, Nov. 1971. 142/143







References


P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in multi-agent cooperation:


Model and experiments. InProc. of the Fifth Int. Conference on Autonomous Agents, 2001.


N. L. Zhang and W. Liu. Planning in stochastic domains: problem characteristics and


approximations. Technical Report HKUST-CS96-31, Department of Computer Science, The


Hong Kong University of Science and Technology, 1996.


R. Zhou and E. A. Hansen. An improved grid-based approximation algorithm for POMDPs. In


Proc. Int. Joint Conf. on Artificial Intelligence, 2001.


S. Zilberstein, R. Washington, D. Bernstein, and A. Mouaddib. Decision-theoretic control of


planetary rovers. InPlan-Based control of Robotic Agents, volume 2466 ofLNAI, pages


270–289. Springer, 2002.


143/143





		Tutorial outline of Part 2

		

		Introduction

		Related previous work

		slideRepeated Decision-theoretic planning

		slideRepeated Decision-theoretic planning

		slideRepeated Multiagent planning problems

		slideRepeated Example: The DEC-Tiger problem

		Example: Sensor network problems

		Application domains

		

		Models outline

		slideRepeated Markov decision processes

		slideRepeated Definition of Markov decision processes

		slideRepeated Example of a Markov decision process

		slideRepeated Partially observable MDPs

		slideRepeated Performance criteria

		slideRepeated Policies and value functions

		slideRepeated The Bellman equation

		slideRepeated Examples of optimal policies

		slideRepeated Value iteration for MDPs

		slideRepeated Policy iteration for MDPs

		slideRepeated Value determination

		slideRepeated Solving POMDPs

		slideRepeated Belief states

		slideRepeated Bayesian updating of beliefs

		slideRepeated Belief state transition model

		slideRepeated Solving POMDPs

		POMDP methods

		slideRepeated Decentralized POMDPs

		slideRepeated DEC-POMDP

		slideRepeated Partially observable stochastic games

		Policies for DEC-POMDPs

		Value functions for DEC-POMDPs

		Modeling communication

		slideRepeated Interactive POMDPs

		Relationships among the models

		Previous complexity results

		DEC-POMDPs complexity

		Upper bound for DEC-POMDPs

		Lower bound for DEC-POMDPs

		Proof of hardness

		Proof of hardness

		Joint observability

		Classes of DEC-POMDPs

		Classes of DEC-POMDPs

		Classes of DEC-POMDPs

		Observability, communication and complexity

		More complexity results

		

		Algorithms outline

		Optimal DEC-POMDP solutions

		Optimal DEC-POMDP solutions

		Axes

		Bottom up approaches

		Exhaustive search

		Exhaustive search example (2 agents)

		Exhaustive search example (2 agents)

		Exhaustive search example (2 agents)

		Exhaustive search summary

		Dynamic programming

		Pruning trees

		Linear program for pruning a tree

		Dynamic programming example (2 agents)

		Dynamic programming example (2 agents)

		Dynamic programming example (2 agents)

		Dynamic programming example (2 agents)

		Dynamic programming example (2 agents)

		Dynamic programming example (2 agents)

		Dynamic programming example (2 agents)

		Dynamic programming summary

		Approximate bottom-up algorithms

		Joint Equilibrium Search for Policies (JESP)

		JESP summary

		Bottom up summary

		Top down approaches

		Multiagent A*

		Multiagent A*: example

		Multiagent A*: example

		Multiagent A*: example

		Multiagent A*: example

		Multiagent A*: example

		Multiagent A*: example

		Multiagent A*: example

		Heuristic functions

		Heuristic functions

		Heuristic functions

		Heuristic functions: example DEC-Tiger $h=4$

		DEC-POMDPs as series of Bayesian Games

		DEC-POMDPs as series of Bayesian Games

		DEC-POMDPs as series of Bayesian Games

		Bayesian Game Approximation

		Generalized MAA$^*$

		Lossless Clustering of Histories

		Top down summary

		�egin {small}Memory Bounded Dynamic Programming (MBDP)end {small}

		MBDP algorithm

		MBDP summary

		Extensions of MBDP

		Other finite-horizon approaches

		Summary of finite-horizon algorithms

		Summary of finite-horizon algorithms

		Comparison of optimal finite-horizon algorithms

		Comparison of optimal finite-horizon algorithms

		Comparison of optimal finite-horizon algorithms

		�ootnotesize Comparison of approximate finite-horizon algorithms

		�ootnotesize Comparison of approximate finite-horizon algorithms

		Infinite-horizon only algorithms

		Using controllers for infinite-horizon policies

		Policy iteration for DEC-POMDPs

		Policy iteration for DEC-POMDPs

		Approximate infinite-horizon approaches

		Best-first search (BFS)

		Bounded policy iteration (DEC-BPI) 

		Nonlinear programming (NLP)

		Summary of infinite-horizon algorithms

		Summary of infinite-horizon algorithms

		Algorithms using communication

		Algorithms for DEC-POMDP subclasses

		Subclasses: DEC-MDPs

		Subclasses: ND-POMDPs

		Subclasses: Factored DEC-POMDPs

		Problem domains and software tools

		Benchmark problems

		Software

		Problem specification

		Problem specification (1)

		Example program

		Program output

		Back to some fundamental questions

		Acknowledgments

		References

		References

		References

		References

		References

		References

		References

		References

		References

		References

		References




