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Introduction

This meeting:

• Overview of the field
◮ Motivation
◮ Assumptions
◮ Models
◮ Methods

• What topics shall we address?

• Fix a schedule.
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Motivation

• Major goal of Artificial Intelligence: build intelligent agents.

• Russell and Norvig (2003): “an agent is anything that can be
viewed as perceiving its environment through sensors and
acting upon that environment through actuators”.

• Problem: how to act?

• Example: a robot performing an assigned task.
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Applications

Reinforcement learning applications:

• Aibo gait optimization (Kohl and Stone, 2004a,b;
Saggar et al., 2006)

• Helicopter control (Bagnell and Schneider, 2001; Ng et al.,
2004)

• Airhockey (Bentivegna et al., 2002)

• More on
http://neuromancer.eecs.umich.edu/cgi-bin/twiki/view/Main/
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Sequential decision making under uncertainty

Assumptions:

Sequential decisions: problems are formulated as a sequence of
“independent” decisions;

Markovian environment: the state at timet depends only on the
events at timet − 1;

Evaluative feedback: use of a reinforcement signal as
performance measure (reinforcement learning);
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Sequential decision making under uncertainty (1)

Possible variations:

• Type of uncertainty.

• Full vs. partial state observability.

• Single vs. multiple decision-makers.

• Model-based vs. model-free methods.

• Finite vs. infinite state space.

• Discrete vs. continuous time.

• Finite vs. infinite horizon.

6/20



Sequential decision making under uncertainty (2)

Methods

DP, TD, etc.

Models

MDPs,

POMDPs, etc.

Applications
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Basic model: Markov chains

The basic model ofMarkov chainsdescribes (first order)
discrete-time dynamic systems.

Xt−1 = i Xt = j2 Xt+1 = k

Xt = j1

Xt = j3

P(i, j1)

P(i, j2)

P(i, j3)
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Adding control

In controlled Markov chains, the transition probabilities depend
on a control parametera.

Xt−1 = i Xt = j
Pa2

(i, j)

Pa3
(i, j)

Pa1
(i, j)
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Markov decision processes

A Markov decision process(MDP) is a controlled Markov chain
endowed with a performance criterion (Puterman, 1994;
Bertsekas, 2000).

• The decision-maker receives a numerical rewardRt for each
time instantt;

• The decision-maker must optimize some long-run optimality
criterion, e.g.,

Jav = lim
T→∞

1

T
E

[

T
∑

t=1

Rt

]

; Jdisc = E

[

∞
∑

t=1

γtRt

]

.
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Considering partial observability

A partially observable MDP(POMDP) is an MDP where the
decision maker is not able to access all information relevant to
the decision-making process (Kaelbling et al., 1998).

• The decision-maker receives an observationZt for each time
instantt;

• The observation depends on the state of the underlying
Markov chain;
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Considering partial observability (1)

Xt−1 Xt

Control

State

Sensor

At−1 At

Xt+1

Zt−1 Zt
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Multiple decision-makers

• Stochastic games(aka Markov games) provide a multi-agent
generalization of MDPs (Shapley, 1953);

• In stochastic games, the control parameter depends on the
choice of severalindependentdecision-makers;

• In stochastic games, each decision-maker (k) can receive a
different rewardRk

t
at each time instantt.
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Multiple decision-makers (1)

In stochastic games, as in MDPs,

• Each decision-maker (k) must optimize its own long-run
optimality criterion, e.g.,

Jk

av
= lim

T→∞

1

T
E

[

T
∑

t=1

Rk

t

]

; Jk

disc
= E

[

∞
∑

t=1

γtRk

t

]

;

• Partial state observability can be considered, leading to the
framework ofpartially observable stochastic games
(POSGs).
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Multiagent models

Fully observable:

• Multiagent MDPs (Boutilier, 1996).

Partially observable:

• Partially observable stochastic games (Hansen et al., 2004).

• Decentralized POMDPs (Bernstein et al., 2002).

• Interactive POMDPs (Gmytrasiewicz and Doshi, 2005).

• Each agent only observes its own observation.
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Solution methods: MDPs

Model based

• Basic: dynamic programming (Bellman, 1957), value
iteration, policy iteration.

• Advanced: prioritized sweeping, function approximators.

Model free, reinforcement learning (Sutton and Barto, 1998)

• Basic: Q-learning, TD(λ), SARSA, actor-critic.

• Advanced: generalization in infinite state spaces,
exploration/exploitation issues.
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Techniques for partially observable environments

Model based (POMDP)

• Exact methods (Monahan, 1982; Cheng, 1988;
Cassandra et al., 1994; Zhang and Liu, 1996)

• Heuristic methods: based on MDP solution.

• Approximate methods: gradient descent, policy search,
point-based techniques.

Other topics

• Predictive State Representations (Littman et al., 2002).

• Reinforcement learning in POMDPs, PSRs.
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Multiagent methods

Model based:

• Hansen et al. (2004)’s dynamic programming.

• JESP (Nair et al., 2003).

• Bayesian game approximation (Emery-Montemerlo et al.,
2004).

Model free:

• Minimax-Q (Littman, 1994)

• FriendFoe-Q (Littman, 2001)

• Nash-Q, multi-agent DYNA-Q, correlated-Q.

• Learning coordination.
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Reading group

Questions to be answered:

• What topics shall we cover?

• When shall we meet? How often?

• Schedule, volunteers?
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