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May 2005



Abstract

Interest in robotic and software agents has increased a lot in the last decades.
They allow us to do tasks that we would hardly accomplish otherwise. Par-
ticularly, multi-agent systems motivate distributed solutions that can be
cheaper and more efficient than centralized single-agent ones.

In this context, reinforcement learning provides a way for agents to com-
pute optimal ways of performing the required tasks, with just a small in-
struction indicating if the task was or was not accomplished.

Learning in multi-agent systems, however, poses the problem of non-
stationarity due to interactions with other agents. In fact, the RL methods
for the single agent domain assume stationarity of the environment and
cannot be applied directly.

This work is divided in two main parts. In the first one, the reinforcement
learning framework for single-agent domains is analyzed and some classical
solutions presented, based on Markov decision processes.

In the second part, the multi-agent domain is analyzed, borrowing tools
from game theory, namely stochastic games, and the most significant work
on learning optimal decisions for this type of systems is presented.
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Chapter 1

Introduction

The use of artificial agents, wether software or robotic, to solve problems
and accomplish tasks is becoming a commonplace, as technologies evolve
and new challenges are presented. Robots, for example, are already around
for a few decades and have become essential in may branches of industry,
particularly the automotive one.

The problem of programming an agent to do a certain task is sometimes
hard, but programming it to decide over groups of possible tasks stems
a different problem, one that is, nevertheless, more and more essential as
there is a constant need to provide the agents with some autonomy. An
example are robots in situations where man cannot access easily or has
little communications: search and rescue scenarios like the World Trade
Center, planetary missions like the Mars rovers Spirit and Opportunity,
etc. The problem of imbuing agents with a decision-making mechanism can,
sometimes, be hard to tackle as the designer himself does not have a clear
idea of what the agent should do, or does not have the time to provide all
the possible acting options. Hence, the need for learning techniques arises.

Agents can be characterized by the following components: perception,
reasoning and actuation. In this context, reinforcement learning is a learning
framework that is very tied to the concept of agent. The motivation is that,
as stated before, the programmer usually does not have the clear notion
of what the agent’s actions should be and is only able to decide wether a
complete task was or was not well accomplished. So the agent cannot be
told the sequence of actions to do but rather wether a sequence of actions
was or was not good enough.

Reinforcement learning, instead of testing each possible sequence to find
the appropriate one, which probably would be a very inefficient procedure,
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acts by using the concept of state and iteratively propagating the reward
it receives at the end of the task to the actions on the chosen sequence. It
is, in this sense, a set of methods to learn decision making policies while
performing the task and interacting with the environment.

The concept of Markov decision process will be essential in modeling the
learning task and providing a framework over which reinforcement learning
methods can be constructed.

A harder problem than the one of an agent learning what to do is when
several agents are learning what to do, while interacting with each other.
Research on this problem is an interesting one as the fields of multi-agent
learning and multi-agent robotics are increasingly proving to be a necessity
for many applications. Tackling the problem with one robot is interesting
and necessary but, typically, several agents can accomplish tasks that a
single one would not, or would do so in a costly manner.

Learning is also essential in this domain but poses additional problems to
the learning methods. In single agent cases the environment was considered
to be stationary but that is not possible to do in the multi-agent scenario
because the other agents themselves are changing the environment. The
problem is the one of learning in a non-stationary environment, possibly
with the other agents also learning.

To solve such problems, some attention has been given to game theory
and, particularly, the framework of stochastic games and the decision prob-
lems arising from it.

The objective of this work is to provide a survey of the basic frameworks,
results and algorithms in both single and multi-agent learning. For this, it
was divided in two main chapters, plus a conclusion:

• Chapter 2 looks into the single agent learning problem. It starts by
presenting Markov decision processes (MDPs) and the optimality con-
cepts associated with the framework. Afterwards, it looks into dy-
namic programming algorithms used to solve and understand MDPs.
Finally, it presents some classical reinforcement learning algorithms
and an extension which relates them to Monte Carlo approaches.

• Chapter 3 describes the learning problem and associated concepts in
the multi-agent domain. It tries to explain some ideas from game the-
ory, such as matrix games and stochastic games, giving some insight on
classical methods for solving the first. The problem of solving stochas-
tic games is essentially the most addressed problem in the multi-agent
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learning community. So, this work then presents two classes of algo-
rithms that act as cornerstones in the multi-agent learning research.

• Chapter 4 tries to draw some comparative conclusions on the methods
analyzed and describes further topics of reinforcement learning, for
single agent systems, which have been widely addressed although there
are still some open problems, and multi-agent systems, which remain
mostly as research directions and challenges for researchers in the area.

4



Chapter 2

Single-Agent Framework

The single agent reinforcement learning framework is based on the model
of Figure 2.1, where an agent interacts with the environment by selecting
actions to take and then perceiving the effects of those actions, a new state
and a reward signal indicating if it has reached some goal (or has been pe-
nalized, if the reward is negative). The objective of the agent is to maximize

Environment

Agent

actionstate reward

Figure 2.1: The general reinforcement learning task.

some measure over the rewards, like the sum of all rewards after a number
of actions taken.

This general idea can be described by the framework of Markov decision
processes, over which the solutions for the reinforcement learning problem
are constructed.
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2.1 Markov Decision Processes

Markov Decision Processes (Bellman, 1957; Howard, 1960; Bertsekas, 1995;
Sutton and Barto, 1998; Puterman, 1994) are, in fact, the foundation for
much of the research on agent control. They can be defined as a tuple
(S, A, T,R) where:

• A is an action set.

• S is a state space.

• T : S×A×S −→ [0, 1] is a transition function defined as a probability
distribution over the states. Hence, we have T (s, a, s′) = Pr{st+1 =
s′|st = s, at = a}. st+1 represents the state of the process at time t+1,
st the state at time t and at the action taken after observing state st.

• R : S × A × S −→ R is a reward function representing the expected
value of the next reward, given the current state s and action a and
the next state a′: R(s, a, s′) = E{rt+1|st = s, at = a, st+1 = s′}. In
this context rt+1 represents the immediate payoff of the environment
to the agent at time t + 1.

The fact that there are no time dependences either on T or on R is due
to the stationarity (by the definition) of the MDP. Although this is not
stated in the definition, reinforcement learning algorithms without a gener-
alization mechanism are usually designed to work on finite MDPs, that is,
MDPs in which both the state and the action spaces are finite. So, unless
clearly stated otherwise, the term MDP will refer to a finite Markov decision
process.

The idea of MDPs is that the agent acts on the environment with some
action a, in state s, and waits for the response of the environment, in the
form of the following state s′ and a real number representing the immediate
reward the agent receives by choosing to perform a in s.

The task of deciding which action to choose in each state is done by a pol-
icy function. Generally, a policy is a collection of probability distributions,
one for each trace of the the process – π(st, at−1, st−1, at−2, . . . ) ∈ PD(A)
– defining the probability that each action will be chosen for that particu-
lar trace of the system. However, there is no need to consider other than
Markovian policies because the MDP itself is Markovian by construction –
it is sufficient to define the policy for each state of the MDP.

A policy can also be thought as a projection transforming the MDP in
an induced discrete-time Markov chain. The interesting thing with this idea
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is that the Markov chains theoretic paraphernalia becomes available and
can act as a performance measure for the current policy. In (Bhulai, 2002)
the two frameworks are related and the results applied to fields traditionally
related to Markov chains such as control of queuing systems.

Optimality Concepts

The goal of an agent living in an environment that can be modeled as a
Markov Decision Process is to maximize the expected reward over time,
which on itself aggregates a myriad of formulations. The most common
criteria are:

Finite-horizon model: in this scenario the agent tries to maximize the
sum of rewards for the following M steps:

E

{
M∑

k=0

rt+k+1

∣∣∣∣st = s

}

The objective is to find the best action, considering there are only M
more steps in which to collect rewards.

Infinite-horizon discounted reward model: in this scenario the goal of
the agent is to maximize reward at the long-run but favoring short-
term actions:

E

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣st = s

}
, γ ∈ [0, 1[

The discount factor γ regulates the degree of interest of the agent: a γ
close to 1 gives similar importance to short-term actions and long-term
ones; a γ close to 0 favors short-term actions.

Average reward model: in this model the idea is to find actions that
maximize average reward on the long-run:

lim
M→∞

E

{
1
M

M∑
k=0

rt+k+1

∣∣∣∣st = s

}

This model makes no distinction between policies which take reward
in the initial phases from others that shoot for the long-run rewards.
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The first criterion could be used to model systems where there’s a hard dead-
line and the task has to be finished in M steps. In reinforcement learning,
usually the adopted model is the Infinite-horizon discounted reward model,
probably not only because of its characteristics but because it bounds the
sum. The single agent (MDP) algorithms surveyed here almost all adopt
this model, although there is some work on finding policies that maximize
other models.

A fundamental concept of algorithms for solving MDPs is the state value
function, which is nothing more than the expected reward (in some reward
model) for some state, given the agent is following some policy:

V π(s) = E

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣st = s, π

}
(2.1)

Similarly, the expected reward given the agent takes action a in state s and
following policy π could also be defined:

Qπ(s, a) = E

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣st = s, at = a, π

}
(2.2)

This function is usually know as Q-function and the corresponding values
as Q-values.

From Equation 2.1 a recursive relation can be derived, which will act as
the base of much of the ideas behind dynamic programming and reinforce-
ment learning algorithms to solve MDPs.

V π(s) = E

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣st = s, π

}

= E

{
rt+1 + γ

∞∑
k=0

γkrt+k+2

∣∣∣∣st = s, π

}

=
∑

a

π(s, a)
∑
s′

T (s, a, s′)

[
R(s, a, s′) + γE

{ ∞∑
k=0

γkrt+k+2

∣∣∣∣st+1 = s′, π

}]
=

∑
a

π(s, a)
∑
s′

T (s, a, s′)
[
R(s, a, s′) + γV π(s′)

]
(2.3)

Note that the term π(s, a) is used to represent the probability of taking
action a in state s. In some situations, the term π(s) will be used to represent
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the action selected by policy π. Generally, this a probabilistic outcome,
except for deterministic policies where π can be thought as π : S → A.

The resulting recursive equation, called the Bellman equation, has a
unique solution for each policy which is the state value function for that
policy (Howard, 1960).

From the Bellman equation a relation between state values and Q-values
can be derived resulting in:

Qπ(s, a) =
∑
s′∈S

T (s, a, s′)
[
R(s, a, s′) + γV π(s′)

]
(2.4)

and
V π(s) =

∑
a

π(s, a)Qπ(s, a) (2.5)

As previously stated, the goal of solving a MDP is usually to find a policy
that guarantees a maximal reward, with some given reward criterion. Using
state values, a policy π′ is said to dominate a policy π if and only if, for
every s in the state space, V π′(s) > V π(s). An optimal policy is one which
is undominated in the sense that no other can expect to do better, in any
state. An optimal policy π∗ is always guaranteed to exist1 and sometimes
even more than one, although they share the same value function, which
can be defined as:

V ∗(s) = max
π

V π(s) , ∀s∈S (2.6)

or, for Q-values:

Q∗(s, a) = max
π

Qπ(s, a) , ∀s∈S∀a∈A (2.7)

Each optimal policy must respect the Bellman consistency relation expressed
in Equation 2.3 as well as equations derived from it, particularly, the ones
expressed in Equations 2.5 and 2.4. Applying Equation 2.5 to the optimal
policy, the optimal equation can be written as a maximization over the
action space rather than over the policy space. Notice that for all π in the
policy space

∑
a π(s, a)Q∗(s, a) ≤ maxa Q∗(s, a).

V ∗(s) = max
a

Q∗(s, a) (2.8)

1This can be proved by construction, choosing at each state the policy that maximizes
V for that state and discarding the rest of the policy. On the other hand, a maximum
value of V always exists in the infinite-horizon discounted reward model due to γ < 1.
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Combining it with Equation 2.4 it is possible to obtain the Bellman opti-
mality equations, for state values and for Q-values respectively:

V ∗(s) = max
a

∑
s′

T (s, a, s′)
[
R(s, a, s′) + γV ∗(s′)

]
(2.9)

Q∗(s, a) =
∑
s′

T (s, a, s′)
[
R(s, a, s′) + γ max

a′
Q(s′, a′)∗

]
(2.10)

This last equation makes the task of finding optimal policies really easy,
when the optimal Q-values are know. In fact, the consequence of the Bell-
man optimality equations is that an optimal policy is one that will always
choose an action that maximizes the Q-function for the current state. Sev-
eral policies exist, when different actions have the same Q-value (the Q-
function is unique for a given MDP) for a given state, but all of them are
greedy with respect to the Q-function. Another consequence it that there is
always a deterministic policy which is optimal, in the infinite-horizon dis-
counted reward model.

The problem is that, usually, there’s no knowledge of the optimal state
function or Q-function and, so, there’s a need for methods which estimate
such functions and find optimal policies from them. Dynamic programming
methods are used to accomplish this task when the parameters of the MDP
are know, particularly the functions R and T . When the agent does not have
such knowledge and has to find optimal policies based solely on experience,2

Monte Carlo or reinforcement learning algorithms are appropriate.

2.2 Dynamic Programming

Solving MDPs have always been closely tied to the idea of dynamic pro-
gramming, which was introduced by (Bellman, 1957) as a possible solution
to a wide variety of problems. From then on, a lot of research has been
done in that area and extensive treatments of the subject can be found in
texts like (Bertsekas, 1995; Bertsekas and Tsitsiklis, 1996; Ross, 1983). An
interesting approach is the one of (Cassandras and Lafortune, 1999) which
relates dynamic programming with other methods for controlling discrete
event systems. It has been also widely used in optimal control applications.

Two classical dynamic programming methods for MDPs are value iter-
ation and policy iteration.

2In the MDP sense: in each state, choosing an action, observing the next state and
collecting the reward.
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2.2.1 Value Iteration

As stated previously, a way of finding an optimal policy is to compute the
optimal value function. Value iteration is an algorithm to determine such
function, which can be proved to converge to the optimal values of V . The
core of the algorithm is:

V (s)← max
a

∑
s′

T (s, a, s′)
[
R(s, a, s′) + γV (s′)

]
(2.11)

Note that the expression was obtained by turning the Bellman optimality
equation (2.9) into an update rule. An important result about value iteration
is that it is guaranteed to find an optimal greedy policy in a finite number
of steps, even though the optimal value function may not have converged
– usually the optimal policy is found long before the value function has
converged. In (Bertsekas, 1987) those questions are discussed, along with
some convergence proofs.

One thing lacking in the definition of the algorithm is the termination
rule – it is not obvious when the algorithm should stop. A typical stopping
condition bounds the performance as a function of the Bellman residual
of the current value-function. That is the approach taken by (Sutton and
Barto, 1998) in their description of the algorithm and it states that if:

max
s∈S
|Vk+1(s)− Vk(s)| < ε

then
∀s∈S |Vk+1(s)− V ∗(s)| < 2εγ

1− γ

Another stopping criterion, which may lead the algorithm to stop some
iterations earlier, is discussed in (Puterman, 1994).

Assuming the Bellman residual criterion is used, the complete algorithm
can be seen in Algorithm 2.1.

Although the algorithm assumes a full sweep through the state space
before passing to the next iteration, the assignments of V do not need to
be done through successive sweeps. Asynchronous dynamic programming
algorithms, originally proposed by (Bertsekas, 1982; Bertsekas, 1983) who
also called them distributed dynamic programming algorithms, back up the
values of the states in an indefinite order and, in fact, the value of a state
can be backed up several times before the value of another one gets backed
up even once. The condition for convergence is that all states are backed up
infinitely often. These algorithms were further discussed in (Bertsekas and
Tsitsiklis, 1989).
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Algorithm 2.1 Value iteration
Initialize V (s) arbitrarily

repeat
δ ← 0
for all s ∈ S do

v ← V (s)
V (s)← maxa

∑
s′ T (s, a, s′) [R(s, a, s′) + γVk(s′)]

δ ← max(δ, |v − V (s)|)
end for

until δ < ε

2.2.2 Policy Iteration

Another way of finding an optimal policy in a finite MDP is by manipulating
the policy directly rather than finding it through the state values. A simple
algorithm for doing that is based on the idea of alternating two different
steps: a policy evaluation step plus a policy improvement step.

In the first one, the state values corresponding to the starting policy
are computed based on an iterative expression which, similarly to value
iteration, is taken from the Bellman equation, although this time not for
the optimal values:

V π(s)←
∑

a

π(s, a)
∑
s′

T (s, a, s′)
[
R(s, a, s′) + γV π(s′)

]
(2.12)

The discussion of when to stop the algorithm is the same as for value itera-
tion. A different option is to use the Bellman equation directly and solve a
set of linear equations to find the value function corresponding to the policy
being used. This could not be done so easily for value iteration because the
equations are not linear (due to the max operator).

In the improvement step, the current policy is analyzed to see if it is
greedy with respect to the current value function. It can be proved that by
making the policy greedy it will be strictly improved over the current policy,
except when the policy is already optimal. This also provides a termination
criterion for the policy improvement algorithm3.

The algorithm, explicitly solving the policy evaluation equations at each
step of the algorithm, is presented in Algorithm 2.2. In this situation the
policy is deterministic and, so, π(s) represents an action.

3The termination criterion is for the overall algorithm, which still does not solve the
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Algorithm 2.2 Policy iteration
Initialize V (s) and π(s) arbitrarly

repeat

Policy Evaluation
Solve the system of linear equations
V π(s) =

∑
a π(s, a)

∑
s′ T (s, a, s′) [R(s, a, s′) + γV π(s′)]

Policy Improvement
optimalPolicy?← TRUE
for all s ∈ S do

b← π(s)
π(s)← arg maxa

∑
s′ T (s, a, s′) [R(s, a, s′) + γV (s′)]

if b 6= π(s) then
optimalPolicy?← FALSE

end if
end for

until optimalPolicy? = TRUE

The policy evaluation step could, of course, be substituted by an iterative
procedure similar to value iteration but based on Equation 2.12, solving the
linear equations numerically.

Considering that the number of deterministic policies over a finite MDP
is also finite (in fact the number of policies is equal to |A||S|), and knowing
the policy improvement step always strictly improves the policy, there is an
bound in the total number of iterations. Policy Iteration could be claimed to
be better than value iteration because it usually takes fewer iterations but,
on the other hand, value iteration does not consume so much time in each
iteration – policy iteration has to solve a possibly large set of equations or
use an iterative procedure similar to value iteration itself, and do it several
times. In the end, it is not clear which of the algorithms is better.

2.2.3 Generalized Policy Iteration

An idea explored in (Sutton and Barto, 1998) is that of generalized policy
iteration (GPI), in which much of the algorithms of dynamic programming
and even reinforcement learning can de fitted. The term GPI refers to a
process of evaluation interacting with a process of improvement, with the

problem for the policy evaluation step.
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evaluation process being used to estimate a value function with respect to
some policy and the improvement process being used to make a better policy,
given some state values. Figure 2.2 illustrates such a process.

Improvement

Evaluation

V ➝ Vπ π ➝ greedy(V)

V = Vπ π = greedy(V)

Figure 2.2: The idea of generalized policy iteration.

This notion is easily seen in policy evaluation but value iteration also fits
in such a description. In fact, after each run through the state space (the
evaluation step) the policy inherently improves to a new greedy policy over
the current state value function, by choosing the greedy action in the next
run – the improvement step is then implemented.

2.3 Learning with Model-free methods

The dynamic programming methods presented in the previous section are
intended to learn optimal value functions (and from them find optimal poli-
cies) in the presence of a model of the system. In fact, both value iteration
and policy iteration used explicitly the T and R functions which, in general,
could be unknown, particularly if the objective of the method is to learn the
optimal policy while interacting with the environment.

In reinforcement learning, generally it is assumed the model is unknown
and, in this situation, two approaches can be pursued. A model-based ap-
proach tries to learn the model explicitly and then use methods like dynamic
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programming to compute the optimal policy with respect to the estimate of
the model. On the other hand, a model-free approach concentrates on learn-
ing the state value function (or the Q-value function) directly and obtaining
the optimal policy from this estimates.

The focus of this work will be only on model-free methods for learning in
MDPs. The class of algorithms used to accomplish such a task is generally
known as temporal difference methods, as defined by (Sutton, 1988).

2.3.1 TD(0): estimating the value function

Temporal difference methods share a common characteristic: similarly to
value iteration or policy evaluation, they use the estimates for the state
values of other states to update the estimate of the current state, which is
generally know as bootstrapping. The simplest temporal difference method
TD(0) was introduced by (Sutton, 1988) and has the following update rule:

V (s)← V (s) + α
(
r + γV (s′)− V (s)

)
(2.13)

The state s′ is observed and the reward r collected after applying policy π
to state s. This method works as the policy evaluation step in the sense
that it estimates the value function for a given policy but does not improve
the policy.

The idea behind this procedure is that the quantity r + V (s′) acts as an
estimate for V (s) and, probably, it is closer to the state value, for policy
π, because it is computed based on an immediate reward, incorporating
knowledge from the environment into the estimate. In fact, the term weighed
by α is nothing more than an estimate of the error between the current state
value function and the real state value function, for the given policy. This
procedure can be viewed as some sort of stochastic approximation, although
most of the proofs of convergence for temporal difference learning methods
were done without relating it to the theory behind stochastic approximation.
The first move to bring both bodies of knowledge together was made by
(Tsitsiklis, 1994).

This type of procedure is also said to make a sample backup because
the new estimate of the value function is obtained based on a sample of the
possible options for the next state. The dynamic programming algorithms,
on the other hand, are said to perform a full backup, relying on the estimates
of all the possible successor states.

For the method to converge, it has to visit every state infinitely often and
the learning rate α has to be slowly decreased, which was proved in (Sutton,
1988). The algorithm version of the method is presented in Algorithm 2.3.
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Algorithm 2.3 TD(0) learning
Initialize V (s) arbitrarly
Choose the policy π to be evaluated

Initialize s
loop

a← probabilistic outcome of pdf π(s)
Take action a, observe reward r and next state s′

V (s)← V (s) + α (r + γV (s′)− V (s))
s← s′

end loop

In this algorithm, the task is considered to continue indefinitely, that
is, having no terminal states – this situation is know as continuing tasks.
If, on the other hand, the MDP has terminal states and the task naturally
blocks in some state after some iterations, which is called episodic tasks,
the algorithm has to be restarted in some initial state but preserving the
already computed estimates of the state value function. A possible option is
to initialize V (s) not arbitrarily but with the current estimate of V (s), for
all s ∈ S.

There is an important characteristic which divides the temporal differ-
ence learning methods into two main classes: on-policy methods and off-
policy methods. In the first class, the policy used for control of the MDP
is the same which is being improved and evaluated. In the later, the policy
used for control, called the behavior policy, can have no correlation with the
policy being evaluated and improved, the estimation policy. The dilemma of
on-policy vs off-policy methods is related with the dilemma of exploration
vs exploitation, which will be further addressed in Section 2.4.

2.3.2 Q-learning: off-policy control

The Q-learning method, proposed by (Watkins, 1989), is perhaps the most
popular and widely used form of reinforcement learning, mainly due to the
ease of implementation. It is an off-policy method which learns optimal Q-
values, rather than state-values, and simultaneously determines an optimal
policy for the MDP. The use of Q-values is justified due to the need of
selecting an action based on them: similarly to TD(0), in each iteration
there is only knowledge of two states, s and one of its successors, and it is
not possible to make a full backup as it was done in dynamic programming
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algorithms. So, Q-values provide some insight on the future quality of the
actions in the successor state and make the task of choosing an action easier.

The update rule for Q-learning is:

Q(s, a)← Q(s, a) + α
(
r + γ max

a′
Q(s′, a′)−Q(s, a)

)
(2.14)

which is based on the same idea as Equation 2.13 in the sense that
r + γ maxa′ Q(s′, a′) is a sample for Q(s, a)

In (Watkins and Dayan, 1992) the method is proved to converge to the
Q-values for the optimal policy, Q∗, if two convergence conditions were met:

1. Every state-action pair has to be visited infinitely often.

2. α must decay over time such that
∑∞

t=0 αt =∞ and
∑∞

t=0 αt
2 <∞.

The algorithm form can be seen in Algorithm 2.4. Note that the update
rule is always performed based on a greedy and deterministic policy which is
being improved. On the other hand, the actions chosen for control are based
on some other policy. In fact, the behavior policy could have no relation
with Q(s, a), for example, a policy with a uniform distribution over the
action space could be used to generate the actions. However, the objective
is to control the MDP while learning the optimal policy and by always using
the random behavior policy usually a poor control is achieved, although the
estimation policy converges to the optimal one anyway.

Algorithm 2.4 Q-learning
Initialize Q(s, a) arbitrarly

Initialize s
loop

a← probabilistic outcome of behavior policy derived from Q(s, a)
Take action a, observe reward r and next state s′

Q(s, a)← Q(s, a) + α
(
r + γ maxa′ Q(s′, a′)−Q(s, a)

)
s← s′

end loop

∀s∈S π(s)← arg maxa Q(s, a)

2.3.3 Sarsa: on-policy control

Sarsa was first introduced by (Rummery and Niranjan, 1994) as an on-
policy method for learning the optimal policy while controlling the MDP. In
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this situation, the algorithm behaves according to the same policy which is
being improved and, so, the update rule is as follows:

Q(s, a)← Q(s, a) + α
(
r + γQ(s′, a′)−Q(s, a)

)
(2.15)

The method relies on information about the variables s, a, r, s′, a′ and
that explains the origin of the name Sarsa, introduced by (Sutton, 1996).

Convergence results can be seen in (Singh et al., 2000) and, basically,
require that each state-action pair is visited infinitely often and that the
policy being used converges to a greedy policy. Examples of policies which
can be used to meet the requirement can be seen in Section 2.4.

The algorithm form is presented in Algorithm 2.5. Note that the policy
used to choose the actions is the same as the one used for evaluation and
improvement. As stated before, in the Q-learning algorithm the policy used
for evaluation and improvement was greedy, which is identified by the use
of the max operator in computing the new estimate for Q(s, a).

Algorithm 2.5 Sarsa
Initialize Q(s, a) arbitrarly

Initialize s
a← probabilistic outcome of policy derived from Q
loop

Take action a, observe reward r and next state s′

a′ ← probabilistic outcome of policy derived from Q
Q(s, a)← Q(s, a) + α

(
r + γQ(s′, a′)−Q(s, a)

)
s← s′ and a← a′

end loop

2.4 Exploration vs Exploitation

The methods presented previously, when used for learning and control, all
share a common characteristic: for the algorithm to converge to the optimal
policy, all the possible alternatives have to visited infinitely often. This con-
dition allows the convergence to avoid being stuck on sub-optimal policies.

With an off-policy method this is always achieved in the limit by using
soft behavior policies, meaning that no action has a 0 probability of being
chosen. On-policy methods, on the other hand, require that the policy itself
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converges to a greedy one, while performing exploration. This is generally
achieved by making a succession of soft policies converge to the greedy.

In both situations, the dilemma of the learning method is wether to focus
on using the already acquired information for control or trying to get new
information, which could lead to better policies and a better control. The
bottom line is: reinforcement learning algorithms have to act while learning.

A simple option for balancing exploration and exploitation is to have the
behavior policy be a mixture of an exploration policy and an exploitation
policy as stated by:

Πbehavior = Γ ·Πexplore + (1− Γ) ·Πexploit (2.16)

where 0 < Γ < 1 is a parameter which can be adjusted to allow more
exploration or more exploitation. For example, on-policy methods just have
to make Πexploit a greedy policy and modify so the parameter so that Γ→ 0
and, in the end, the remaining policy is greedy and is optimal because the
corresponding values would also have converged to the optimal ones.

For off-policy methods, the general balancing expression can also be used
and gamma may or not be modified, according to the specific needs of the
algorithm. This and other considerations regarding exploration are surveyed
in (Thrun, 1992).

2.4.1 ε-greedy policies

This kind of policies fit in the general description of Equation 2.16 and are
basically a mixture of a greedy policy (for exploitation) and a uniform policy
(for exploration). The parameter ε can be made arbitrarily small and drive
the convergence to a greedy (and optimal) policy. Equation 2.17 describes
such a policy.

π(s, a) =


ε

|A|
if a is a greedy action,

1− ε +
ε

|A|
otherwise.

(2.17)

2.4.2 Softmax policies

Although ε-greedy policies are widely used in reinforcement learning, they
have the disadvantage of giving equal weights to the non-greedy actions.
Actually, some of them could be performing incredibly better than others,
although they are not greedy. A way to avoid this problem is to use an
utility function over the actions to better distinguish between them. This
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kind of methods, called softmax, still give the highest probability to the
greedy action but do not treat all the others the same way.

In the reinforcement learning context, the Q-function seems like a natu-
ral utility to use. The most common softmax method used in reinforcement
learning relies on a Boltzmann distribution and controls the focus on ex-
ploration through a temperature parameter τ > 0, as defined in Equation
2.18.

π(s, a) =
eQ(s,a)/τ∑

a′∈A eQ(s,a′)/τ
(2.18)

Similarly to ε-greedy policies, when τ → 0 the policy becomes greedy
making the method adequate for the use with on-policy algorithms.

2.5 Eligibility Traces

The temporal differences methods presented previous are usually called one-
step methods due to the fact that they perform their updates based on a one
step backup. Using TD(0) as an example, the sample return for computing
the estimation of state value at time t is:

R
(1)
t = rt+1 + γVt(st+1)

There is no need to stick to this one-step backup and a n-step backup could
be used like:

R
(n)
t = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γn−1rt+nVt(st+n)

Generally, the sample return for backup could even be an average of
samples with different step-sizes, for example:

Ra
t v = 1

2R
(1)
t + 1

2R
(n)
t

(Watkins, 1989) discusses this questions and proposes a weighted average
over all the possible returns from time t to ∞:

Rλ
t = (1− λ)

∞∑
n=1

λn−1R
(n)
t (2.19)

Of course this idea can not be implemented because it is not causal,
needing information from time t to ∞. This interpretation is called by
(Sutton and Barto, 1998) the forward view. The alternative is to use a
counter, named an eligibility trace, which condenses information about the
time it has passed since the last visit to a state and the total number of visits.
This is called the backward view and they were proved to be equivalent by
(Sutton, 1988).
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2.5.1 TD(λ)

Extending TD(0) with eligibility traces can be made by defining the traces
as:

et(s) =

{
γλet−1(s) if s 6= st

γλet−1(s) + 1 if s = st

(2.20)

where 0 ≤ λ ≤ 1 is the parameter controlling the decay. With this
mechanism, each time a state is visited its counter is incremented by 1,
after which it decreases exponentially.

The idea of the method is that the update error for the rule in Equation
2.13 now gets affected not only by α but by the corresponding eligibility
trace as well, by using the following expression:

V (s)← V (s) + αδe(s) (2.21)

where
δ = r + γV (s′)− V (s) (2.22)

Contrary to what has been done so far, with eligibility traces all the
states have to be updated in each experience (choosing action a in state s and
observing reward r and state s′) and the information about the immediate
payoff is propagated back to the states with higher eligibility traces.

As could be expected, when λ = 0 the algorithm reverts back to TD(0),
updating only state st at time t + 1. As for setting λ = 1, it is equivalent to
doing a complete run of the method (which only makes sense for an episodic
task) and in the end estimating the state values by collecting all the rewards
and computing the total return. This procedure becomes very similar to a
Monte-Carlo estimation of the state value function for the given policy and
the equivalence between TD(1) and Monte Carlo methods was proved by
(Sutton, 1988).

Convergence of the method for a general λ was proved in the mean by
(Dayan, 1992) and with probability 1 by (Dayan and Sejnowski, 1994) or
(Tsitsiklis, 1994).

The algorithmic form of TD(λ) can be seen in Algorithm 2.6.

2.5.2 Sarsa(λ)

The idea of eligibility traces can also be applied to Sarsa by using traces
for each state-action pair and not just for each state. In fact, the update
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Algorithm 2.6 TD(λ) learning
Initialize V (s) arbitrarly and e(s) = 0, for all s ∈ S
Choose the policy π to be evaluated

Initialize s
loop

a← probabilistic outcome of pdf π(s)
Take action a, observe reward r and next state s′

δ ← r + γV (s′)− V (s)
e(s)← e(s) + 1
for σ ∈ S do

V (σ)← V (σ) + αδe(σ)
e(σ)← γλe(σ)

end for
s← s′

end loop

equations for both methods are very similar, except that Sarsa acts over
Q-values. The traces for Sarsa(λ) can be defined as:

et(s, a) =

{
γλet−1(s, a) if s 6= st or a 6= at

γλet−1(s, a) + 1 otherwise
(2.23)

and the update rule described by the following expression:

Q(s, a)← Q(s, a) + αδe(s) (2.24)

where
δ = r + γQ(s′, a′)−Q(s, a) (2.25)

The method was first explored in (Rummery and Niranjan, 1994; Rum-
mery, 1995), although the convergence of the method for a general λ is yet
to be proved.

Algorithm 2.7 presents the algorithmic version of this method.

2.5.3 Q(λ)

Q-learning has also been combined with eligibility traces giving birth to two
different methods, one proposed in (Watkins, 1989) and the other in (Peng,
1993; Peng and Williams, 1996). The problem with applying eligibility traces
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Algorithm 2.7 Sarsa(λ) learning
Initialize Q(s, a) arbitrarly and e(s, a) = 0, for all s ∈ S and a ∈ A
Choose the policy π to be evaluated

Initialize s
a← probabilistic outcome of policy derived from Q
loop

Take action a, observe reward r and next state s′

a′ ← probabilistic outcome of policy derived from Q
δ ← r + γQ(s′, a′)−Q(s, a)
e(s, a)← e(s, a) + 1
for σ ∈ S and θ ∈ A do

Q(σ, θ)← Q(σ, θ) + αδe(σ, θ)
e(σ, θ)← γλe(σ, θ)

end for
s← s′ and a← a′

end loop

to Q-learning is knowing to which state-action pairs to assign credit for some
sample return. Notice that as the policy used to control is not the same
being evaluated and improved, non-greedy actions would be used to update
a policy that only follows greedy actions.

Watkins’s Q(λ) solves this problem by using the eligibility traces when
the greedy action is followed by the behavior policy and reseting all traces
to 0 when an exploratory action is chosen. However, another problem is
created because the possible advantage of using eligibility traces is lost when
the traces are reset.

Peng’s Q(λ) on the other hand, never resets the traces and always follows
the action that maximizes the Q-function. The backups, however, are dif-
ferent for one-step (the current state) than for all other states. This method
has shown to perform better than Watkins’s Q(λ) converging faster to the
optimal policy, although there are no convergence proofs and this conclu-
sions are based on empirical studies.

Regarding the advantages of methods using eligibility traces over one-
step methods, they propagate information faster through the table of val-
ues and, hence, converge usually much faster to the optimal policies/values
than their one-step counterparts. The catch is that they need an enormous

23



amount of computation over the others. A simple option to decrease such
intensive computation is to keep a record of the states in which the eligibility
trace is higher than a certain δ, considering all the others to be 0. Another
approximation is to store only a fixed number of states, the ones with higher
traces.

In practice, eligibility traces have proved to speed up the learning task
and to be an useful tool when doing reinforcement learning applications,
especially if there are many delayed reinforcements.
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Chapter 3

Multi Agent Framework

The multi-agent framework is based on the same idea of Figure 2.1 but, this
time, there are several agents deciding on actions over the environment. The
big difference resides in the fact that all each agent probably has some effect
on the environment and, so, actions can have different outcomes1 depending
on what the other agents are doing.

This is precisely the difference that poses problems when applying re-
inforcement learning techniques to the multi-agent domain. Usually, those
are designed to solve stationary environments and, from the point of view
of each agent, the environment is no longer stationary.

To model such a domain, the focus has turned to game theory, which is
designed to solve multi-agent situations and in which the solutions involve
compromises and cooperation. Particularly, the model most commonly used
is that of stochastic games or the subclass of matrix games.

3.1 Matrix Games

The concept of matrix games (MG) or strategic games (von Neumann and
Morgenstern, 1947; Owen, 1995) is a simple framework to deal with single-
shot games, that is, games where there are multiple players but just one
state with an associated reward structure. Formally, they can be defined as
a tuple (n, A1...n, R1...n) where:

• n is the number of agents.
1In the single-agent case they could have different outcomes if T was not deterministic.

Nevertheless, from the point of view of the agent the distribution is always the same,
which does not happen in the multi-agent domain

25



• Ai is the action set for player i (A = A1 × · · · ×An is the joint action
set)

• Ri : A→ R is the reward function of player i

One important characteristic of MGs is the fact that each agent’s reward
function depends on the actions of all the players and not just its own
actions. The term matrix game arises from the fact that each player’s reward
structure can be represented as an n-dimensional matrix. As with MDPs,
the type of games being considered have finite state and action spaces.

Games like Rock-Paper-Scissors (Table 3.1) or the Prisoner’s Dilemma
(Table 3.2) are examples of two-person matrix games (where n = 2). One
usual convention in two-person games is that the first player always specifies
the row index and the second player (the opponent in adversarial situations)
specifies the column index. Each entry of the matrix specifies both players’
rewards in the form: ( player 1 reward , player 2 reward ).

Rock Paper Scissors
Rock (0 , 0) (-1 , 1) (1 , -1)
Paper (1 , -1) (0 , 0) (-1 , 1)

Scissors (-1 , 1) (1 , -1) (0 , 0)

Table 3.1: Rock-Paper-Scissors reward matrix

Tell Not Tell
Tell (-2 , -2) (0 , -4)

Not Tell (-4 , 0) (-1 , -1)

Table 3.2: Prisoner’s Dilemma reward matrix

In this framework, the concept of strategy plays a similar role to that of
policy in MDPs. A strategy σi ∈ PD(Ai) defines the way agent i decides on
a Matrix Game. A collection of n strategies, one for each of the agents, is
called a joint strategy and it can be written σ = 〈σi, σ−i〉, where the notation
σ−i is used to refer to a joint strategy for all players except for player i.

Usually the name pure strategy is used for deterministic strategies and
stochastic ones are generally called mixed strategies. For every joint strategy,
there is an associated reward for each of the players Ri(σ) which can defined
in terms of the rewards for individual actions:

Ri(σ) =
∑
a∈A

Ri(a)
n∏

j=1

σi(ai) (3.1)
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Optimality Concepts

An individual strategy is said to be a best-response strategy if, for a given
σ−i played by all other players, it achieves the highest possible reward. We
write:

σi ∈ BRi(σ−i) (3.2)

where BRi(σ−i) represents the set of all best-response strategies of player
i to σ−i and BRi : PD(Ai) → 2PD(Ai) is usually called the best-response
function2 for player i. σ∗i ∈ BRi(σ−i) if and only if:

∀σi ∈ PD(Ai) Ri(〈σ∗i , σ−i〉) ≥ Ri(〈σi, σ−i〉) (3.3)

A Nash equilibrium is a collection of strategies, one for each player, that
are best response strategies, which means that none of the players can do
better by changing strategy, if all others continue to follow the equilibrium.

∀i=1...n σi ∈ BRi(σ−i) (3.4)

An important characteristic of Matrix Games is that all of them have at
least one Nash equilibrium.

A usual way of classifying Matrix Games is the following:

• Zero-sum games are two-player games (n = 2) where the reward for
one of the players is always symmetric to the reward of the other
player. Actually, this type of games is equivalent to constant-sum
games, where the sum of both player rewards is always constant for
every joint action. An example is Rock-Paper-Scissors, as shown in
Table 3.1.

• Team games have a general number of players but their reward is the
same for every joint action. An example is the Matrix Game shown
in Table 3.3 that models a shared resource channel where the agents
are playing cooperatively and the optimal is for one of them to always
give priority to the other.

• General-sum games are all types of matrix games. However, the term
is mainly used when the game can not be classified as a zero-sum one.
An example is the Prisoner’s Dilemma, as shown in Table 3.2.

2PD(Ai) represents the set of all probability distributions over Ai and 2PD(Ai) its
power set, that is, the set of all possible subsets of PD(Ai)
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Wait Go
Wait (0 , 0) (1 , 1)
Go (4 , 4) (-2 , -2)

Table 3.3: A Team Game: Modeling of a Shared Resource

The first kind of games, also called two-person zero-sum games, is very
appealing because, although they can contain several equilibria, all of them
have equal rewards and are interchangeable. In this kind of MGs a Nash
equilibrium corresponds to a worst-case scenario: if player 1 is playing an
equilibrium strategy σ1 then there is nothing that player 2 can do to improve
its own payoff besides playing the corresponding strategy σ2 and, because
the game is zero-sum, there is no way player 1 can get a lower payoff than
it is already receiving.

The equilibrium value is optimal in the sense that, for each of the players,
the payoff will never be worst than that value. In alternated games the way
of solving the game in the worst-case scenario is using a minimax approach
where we maximize our reward given the other player is doing everything
to minimize it; this procedure returns a deterministic strategy. However,
in matrix games both players choose their actions at the same time and, in
this situation, we cannot reason exactly like in alternated games.

However, a minimax operator that acts on the strategy space, rather
than on the action space, can effectively find the equilibrium policy:

max
σ∈PD(A)

min
o∈O

∑
a∈A

σ(a)R(a, o)

where A represents player 1 action set, O represents player 2 (the opponent)
action set and R(a, o) the player 1 reward when joint action 〈a, o〉 is played.
The optimal value will be a probability distribution function over the agent’s
actions instead of a singular action. This can be formulated as a linear
programming problem which can be easily solved using a simplex algorithm.
For further explanation on how to formulate the problem above as a linear
program refer to (Owen, 1995) or (Littman, 1994).

In Figure 3.1 a general representation of the reward function for the zero-
sum game in Table 3.4. In the graphic, the strategy is represented as the
probability of choosing the first action (a1 for player 1 and a2 for player 2)
because each player only has two actions and the probability of the second
is inherently determined. Its possible to see that the equilibrium occurs at
a saddle point of the reward function, which is common for zero-sum games.
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Nash

R1

π(a1)

π(a2)

(a) Reward function for player 1

Nash

R2

π(a1)

π(a2)

(b) Reward function for player 2

Figure 3.1: Rewards and Nash equilibria for a zero-sum game

For this particular game the equilibrium occurs when π1 = {0.540, 0.460}
and π2 = {0.385, 0.615}.

a2 b2

a1 (3 , -3) (-5 , 5)
b1 (-3 , 3) (2 , -2)

Table 3.4: A zero-sum game

The second kind of games, called team-games also have trivial solutions:
the payoffs are the same for all agents in the game and, in this situation,
finding the a Nash equilibrium can be achieved just by finding the joint
action corresponding to the higher payoff. As in MDPs, the strategy will be
greedy, and if more than one greedy joint action exists, than all probability
distributions over the greedy joint actions are Nash equilibria. Figure 3.2
represents the equilibria for a team game, particularly the one represented
in Table 3.3.

For general-sum games it is not so easy to compute the Nash equilibrium
although a quadratic programming algorithm is enough when the game has
only two-players as explained in (von Stengel, 1999; Koller et al., 1996).
Nevertheless, some games may have just one equilibrium, as is the case with
the Prisoners Dilemma – the equilibrium is even deterministic for both play-
ers. The representation of the reward function for the Prisoners Dilemma
matrices represents in Table 3.2 can be seen in Figure 3.3.

The kind of equilibrium represented in Figure 3.1 is generally called a
adversarial equilibrium, which has the property that no player is hurt by
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Nash

Nash

R1

π(wait1)

π(wait2)

(a) Reward function for player 1

Nash

Nash

R2

π(wait1)

π(wait2)

(b) Reward function for player 2

Figure 3.2: Rewards and Nash equilibria for a team game

Nash

R1

π(tell2)
π(tell1)

(a) Reward function for player 1

Nash

R2

π(tell2)π(tell1)

(b) Reward function for player 1

Figure 3.3: Rewards and Nash equilibria for a version of the prisoner’s
dilemma
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changes in all the other players strategies:

∀π−i∈PD(A−i) Ri(〈σ∗i , σ∗−i〉) ≤ Ri(〈σ∗i , σ−i〉) (3.5)

and, so, the equilibrium value acts as a worst-case optimal. The equi-
libria in zero-sum games are always adversarial equilibria, which occur at
saddle points.

On the other hand, another important kind of equilibria are called a
coordination equilibrium, which have the property of being maximal for all
the agents:

∀π−i∈PD(A−i) R(σ∗i ) = max
a∈A

Ri(a) (3.6)

Team-games always have at least one coordination equilibria – for Figure
3.2 it is the higher one, with a payoff of 4.

3.2 Stochastic Games

As above mentioned, stochastic games (SG) (Shapley, 1953) can be thought
as an extension of matrix games and/or Markov decision processes in the
sense that they deal with multiple agents in a multiple state situation. For-
mally, they can be defined as a tuple (n, S,A1,...,n, T, R1,...,n) where:

• n represents the number of agents

• S the state set

• Ai the action set of agent i and A = A1×· · ·×An the joint action set.

• T : S × A × S → [0, 1] is a transition function which depends on the
actions of all players.

• R : S×A×S → R is a reward function representing the expected value
of the next reward, which also depends on the actions of all players.

One can think of a SG as a succession of MGs, one for every state. In
fact, SGs are a superset of the two frameworks previously presented – a
MDP can be thought as a stochastic game when n = 1 and a MG can be
thought as a stochastic game when |S| = 1.

The notion of policy can be extended from MDPs and combined with
the notion of strategy from matrix games. In fact, a policy πi : S → PD(Ai)
is still a collection of probability distributions over the available actions, one
for each state, but now a different policy must be defined for each agent.
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The collection of policies, one for each agent, is called a joint policy and it
can be written π = 〈πi, π−i〉 where π−i refers to a joint policy for all players
except for i.

This notion of policy is also limited to Markovian policies. In fact, a
SG is Markovian from the point of view of the game, although it is not
Markovian from the point of view of each agent – if the others are using
learning algorithms their policies are changing and, in this situation, the
perceived behavior of the system is in fact changing. This is one of the facts
that poses a greater challenge when trying to learn in stochastic games.

Optimality Concepts

As with MDPs, the goal of an agent in a stochastic game is to maximize its
expected reward over time and, similarly to MDPs as well, the model for the
expected reward over time has to be defined. Again, the most common model
is the infinite-horizon discounted reward model, leading to the following
definition of state values:

V π
i (s) = E

{ ∞∑
k=0

γkri
t+k+1

∣∣∣∣st = s, π

}
=

=
∑

a

π(s, a)
∑
s′

T (s, a, s′)
[
Ri(s, a, s′) + γV π

i (s′)
] (3.7)

where ri
t+k+1 represents the immediate payoff received by agent i at time

t + k + 1 and π(s, a) is the probability of choosing joint action a in state s
. The big difference from this expression to the one from MDPs is the fact
that the state values must defined for each agent but the expected value
depends on the joint policy and not on the individual policies of the agents.

As for Q-values, they are defined as follows:

Qπ(s, a) = E

{ ∞∑
k=0

γkrt+k+1

∣∣∣∣st = s, at = a, π

}
=

∑
s′∈S

T (s, a, s′)
[
Ri(s, a, s′) + γV π

i (s′)
] (3.8)

and one thing that is visible from the equation is that Q-values also depend
on the actions of all the players.

As in matrix games, the concept of optimal policy for one player of
the game does not apply because the quality of a player’s policy cannot be
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computed independently of the policies of the other players. But it still
makes sense to define the same kind of concepts as for matrix game, namely
the concept of best-response function and the concept of Nash equilibrium.

In the context of SGs, a best-response policy for player i is one that is
optimal with respect to some joint policy off the other players. The notation
for that is:

πi ∈ BRi(π−i) (3.9)

and, as expected, BRi : S × PD(Ai) → 2S×PD(Ai) is called the best
response function3 for player i. π∗i ∈ BRi(πi) if and only if:

∀πi∈S×PD(Ai),∀s ∈ S V
〈π∗i ,π−i〉
i (s) ≥ V

〈πi,π−i〉
i (s) (3.10)

A Nash equilibrium, in the context of stochastic games, is a collection
of policies, one for each player, so that all of this policies are best-response
policies and no player can do better by changing its policy. Formally:

∀i=1...n πi ∈ BRi(π−i) (3.11)

The classification of SGs is similar to the one of MGs. The difference
is that for a stochastic game to be a zero-sum game, all of the states must
define a zero-sum matrix game and for it to be classified as a team game,
all of the states must define team matrix games. The one that do not fall
in any of these categories are generally called general-sum games.

Another class of stochastic games classic in game theory is iterated
games. These are games with just one state (hence, only one reward ma-
trix) but in which the game is repeated for a number of times or ad eternum.
Some methods are concerned with learning in this type of games exactly.

Playing against stationary policies

When the policies of all but one of the agents are stationary, the stochastic
game reduces to a MDP. In fact, all the other agents do is defining the tran-
sition probabilities and reward structure for the equivalent MDP. Supposing
that only agent i is learning policy πi and the joint policy of the other agents
π−i is fixed, the parameters of the MDP are:

• SMDP = SSG

• AMDP = ASG
i

3S × PD(Ai) represents the set of all possible markovian policies for player i and
2S×PD(Ai) represents its power set.
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• TMDP (s, ai, s
′) =

∑
a−i∈ASG

−i

π−i(s, a−i) TSG(s, 〈ai, a−i〉, s′)

• RMDP (s, ai, s
′) =

∑
a−i∈ASG

−i

π−i(s, a−i) TSG(s, 〈ai, a−i〉, s′) RSG(s, 〈ai, a−i〉, s′)

In this situation, its clear a method like Q-learning or Sarsa will be
enough to converge to the best-response (and optimal) policy to other players
joint policy, without having to know the actions of the others at each step.

The next two sections will survey some algorithms that try to solve
stochastic games. These can be divided in best-response learners, that try
to learn a best-response policy to the joint policy of the other players, and
equilibrium learners, that specifically try to learn equilibrium policies, re-
gardless of the joint policy of the other agents.

3.3 Best-Response Learners

This class of methods are not specifically concerned with learning an equilib-
rium and just try to learn a policy that is optimal with respect to the policies
of the other players. The advantage of not trying to learn the equilibrium
is that the other players may be playing policies that are not best-response
and, in this case, the agent can take advantage of that fact and try to ob-
tain a higher return that the one that the equilibrium guarantees. However,
against an agent without a stationary policy, or one that does not converge
to a stationary policy, the methods may have trouble quickly adapting to
what the other is doing and the optimal is no longer assured.

3.3.1 MDP methods

As it was observed previously, a stochastic game is equivalent to a Markov
decision process from the point of view of one agent when the other agents
are playing stationary policies. In this case, any algorithm that learns the
optimal policy for a MDP is equally suited for a SG. Particularly, the algo-
rithms for learning optimal policies presented in Chapter 2 are all suited for
such a task. Some applications of MDP methods, like Q-learning, to a multi-
agent domain have been proposed and not without success (Tan, 1993; Sen
et al., 1994).

Unfortunately, assuming that the other agents are not learning is not
very realistic. Usually the other agents are also trying to maximize their
reward and they cannot be exploited using deterministic policies, which are
the ones most MDP methods find. Taking the matrix game of Table 3.4
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Nash

R1

π(a1)

π(a2)

Player 2 leaves the equilibrium 
to deterministic policy, 

maintaining reward

Player 1 exploits deterministic 
policy of player 2   

(note that R2 = -R1)

Figure 3.4: Deterministic policies can be exploited.

into account, if one agent (player 1) is playing the equilibrium strategy, the
other (player 2) may play a deterministic strategy and get the same reward
(which is equivalent to find a border solution for that player). However,
once player 2 leaves the equilibrium, a learning player 1 can exploit that
fact and play some policy which will lower the reward for player 2. Figure
3.4 represents the path taken.

3.3.2 Joint-action Learners

Joint-action learners (JALs) (Claus and Boutilier, 1998) are intended to
solve iterated team matrix games, where the reward function is the same for
all the involved agents and there is only one state which is played indefinitely.
They differ from purely MDP methods in that they learn Q-values based
on the joint-actions rather than just their own actions – it is assumed that
they have full observability of the state and of the other agents’ actions.

So, from the point of view of the learning method there is no difference
between Q-learning and JALs, except for the action space. The problem
arises when deciding which action to take: if the Q-functions for all the
agents were coordinated, they would always choose the best action, when
not performing exploratory moves. However, there is no guarantee that the
other players are at the same learning stage, or even if they are learning at
all. That is why (Claus and Boutilier, 1998) propose a value function to be
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used instead of the Q-value, when deciding which action to take:

EV (ai) =
∑

a−i∈A−i

Q(〈ai, a−i〉)
∏
j 6=i

π̂j(a−i[j]) (3.12)

where π̂j refers to a estimative of the policy being followed by player
j. This estimator is obtained just by dividing the number of times agent j
chose a given action by the number of trials.

3.3.3 Opponent Modeling

Opponent modeling (Uther and Veloso, 1997) is similar to JALs but it was
initially applied to the context of zero-sum games. Like JALs, statistics of
the number of visits to a state and the number of times an opponent chooses
an action are maintained to obtain policy estimators for the other players.
To be more precise, opponent modeling regards the other agents as one mas-
sive opponent with the ability to play joint actions and maintains statistics
over them, which for the algorithm is in all equivalent. The estimator is:

π̂−i(a−i) =
n(s, a−i)

n(s)
(3.13)

where n(s, a−i) represents the number of times joint action (of the other
players) π−i has be chosen in state s and n(s) represents the number of visits
to a state.

The algorithmic version of opponent modeling can be seen in Algorithm
3.1.

3.3.4 WoLF Policy Hill Climber

Contrasting with the algorithms already shown, (Bowling, 2003; Bowling
and Veloso, 2001) proposed the WoLF policy hill climber (WoLF-PHC)
which can learn mixed policies and converges to a best-response strategy
when all the other players also converge. Moreover, if all the players converge
to best-response policies than those policies must form a Nash equilibrium.

The algorithm is on-policy and works by modifying the policy directly
according to the expected reward values it maintains. The idea of policy
hill climbers (PHC) has been present in some reinforcement methods but,
nevertheless, the novelty of the work of (Bowling, 2003) is that a variable
learning rate is combined with the PHC – WoLF stands for Win or Learn
Fast. To quantify the quality of the current policy, an average policy is also
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Algorithm 3.1 Opponent modeling
Initialize Q(s, a) arbitrarily
∀s∈S∀a−i∈A−i n(s)← 0 and n(s, a−i)← 0

Initialize s
loop

ai ← probabilistic outcome of policy (e.g. ε-greedy) based on O(s, ai)
with O(s, ai) =

∑
a−i

n(s,a−i)
n(s) Q(s, 〈ai, a−i〉)

Take action ai, observe reward r, next state s′ and other players joint
action a−i

Q(s, 〈ai, a−i〉)← Q(s, 〈ai, a−i〉) + α
(
r + γV (s′)−Q(s, 〈ai, a−i〉)

)
with V (σ) = maxai

∑
a−i

n(s,a−i)
n(s) Q(s, 〈ai, a−i〉)

n(s, a−i)→ n(s, a−i) + 1
n(s)→ n(s) + 1

s← s′

end loop
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maintained and the current policy expected value is compared to the one of
the average policy.

Suppose the agent is following policy π and has an average policy of π̃,
the agent is said to be wining if and only if:∑

a′

π(s, a′)Q(s, a′) >
∑
a′

π̃(s, a′)Q(s, a′)

The average policy is calculated by maintaining a statistic of visits to a
given state and using it to update the policy.

In Algorithm 3.2 the algorithm for WoLF-PHC is shown. Although some
interesting results were given in (Bowling, 2003) and the method performs
much faster than its fixed learning rate counterparts, its convergence is yet
to be formally proved.

3.4 Equilibrium Learners

Equilibrium Learners specifically try to find policies which are Nash equi-
libria for the stochastic game. Usually, as it is hard to find such equilibria,
they focus on a smaller class of problems, for example zero-sum games or
two-person general-sum. The advantage of finding the Nash equilibrium
is that the agent learns a lower bound for performance and, in this situa-
tion, it becomes fairly independent of the policies being played by the other
agents – it will get at least the amount of return which corresponds to the
equilibrium.

The general idea is to find an equilibrium strategy4 for each state of the
game and composing all the strategies to find the Nash policy.

In fact, a Nash equilibrium policy in a stochastic game can always be
reduced to a collection of Nash equilibrium strategies, one for each state of
the game. So, for an equilibrium policy π∗ and a state s, the matrix game
whose equilibrium is the strategy π∗(s) can be defined by the following
rewards:

Ri(a) = Qπ∗
i (s, a) (3.14)

Generally, a solution for an equilibrium learner would be a fixed point
in π∗ of the following system of equations:

∀i=1...n Q∗
i (s, a) =

∑
s′∈S

Ri(s, a, s′) + γT (s, a, s′)V π∗
i (s′) (3.15)

4A strategy is nothing more than a policy for just one state.
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Algorithm 3.2 WoLF Policy Hill Climbing
Initialize Q(s, a) and π arbitrarily (e.g. π(s, a)→ 1

|Ai
)

∀s∈S n(s)← 0.

Initialize s
loop

a← probabilistic outcome of policy π(s) {Mixed with exploration policy}

Take action a, observe reward r and next state s′

Q(s, a)← Q(s, a) + α (r + γ maxa′ Q(s′, a′)−Q(s, a))

Update average policy π̃:
n(s)← n(s) + 1

π̃(s)← π̃(s) +
1

n(s)
(π(s)− π̃(s))

if
∑

a′ π(s, a′)Q(s, a′) >
∑

a′ π̃(s, a′)Q(s, a′) then
δ ← δw (winning)

else
δ ← δl (loosing)

end if

Update policy π(s):

δsa = min
(

π(s, a),
δ

|Ai| − 1

)

∆sa =

{
−δsa a 6= arg maxa′ Q(s, a′)∑

a′ 6=a δsa′ otherwise

π(s, a)← π(s, a) + ∆sa

Normalize π(s).

s← s′

end loop
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where V π∗
i (s′) represents the equilibrium value for agent i when the joint-

policy being played is the Nash equilibrium π∗ and is computed with respect
to the Q-values. This is similar to a Bellman optimality equation except for
the way the state value function is computed. In fact, the Q-function could
be estimated through a stochastic approximation procedure very similar to
the one of Q-learning:

∀i=1...n Qi(s, a)→ Qi(s, a) + α
(
ri + γVi(s′)−Qi(s, a)

)
(3.16)

with Vi(s′) being the value of a Nash equilibrium policy for agent i.
The big problem with this approach is that, unlike what happens in MDPs,
there is no guarantee that Equation 3.15 has only one fixed point. In fact,
generally there are several Nash equilibria in a stochastic game, which results
in the fact that there is no unique way of computing a Nash equilibrium value
for each matrix game defined by Q(s, a). Usually, this approach works when
considering types of games with just one equilibria or, if that is not the case,
some coordination device is necessary so that the players all converge to the
same equilibrium.

There is an implicit assumption of full observability in this approach –
each agent has to store Q-values for all the joint actions.

The general algorithmic version of this procedure can be seen in 3.3.

Algorithm 3.3 General equilibrium learner algorithm
Initialize Q(s, a) arbitrarily

Initialize s
loop

ai ← probabilistic outcome of Nash policy derived from Q(s, a), for
player i {Mixed with exploration policy}

Take action ai, observe reward r, next state s′ and the joint action of
other players a−i

for i = 1 . . . n do
Qi(s, 〈ai, a−i〉)← Qi(s, 〈ai, a−i〉) + α

(
ri + γVi(s′)−Qi(s, 〈ai, a−i〉)

)
end for
where V (s) = Nash ([Q(s, a)])

s← s′

end loop
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3.4.1 Minimax-Q

The method of Minimax-Q (Littman, 1994) is designed to work with zero-
sum stochastic games. In zero-sum games there is only one equilibrium
and, as stated previously, it can be found using linear programming. In
this situation, the state value can be univocally computed by the minimax
procedure and Equation 3.15 only has one fixed point. It is expected that
Algorithm 3.3 converges to the equilibrium policy. In fact, this has been
proved by (Littman and Szepesvári, 1996).

Using minimax to compute the Nash equilibrium, Equation 3.15 can be
used to describe the Nash condition and Equation 3.16 can be used as an
update rule if the Nash value is computed like

V (s) = max
π∈PD(A)

min
o∈O

∑
a∈A

π(s, a)Q(s, 〈a, o〉) (3.17)

where A represents the action space of the learner and O the action space
of the opponent. There is no need for considering a two-dimensional state
function because, as the rewards are always symmetric for the agents, so
will be the state values and Q-values.

The algorithm can be particularized from Algorithm 3.3 to the Minimax-
Q form of Algorithm 3.4.

Algorithm 3.4 Minimax-Q learner
Initialize Q(s, 〈a, o〉) and π(s) arbitrarily

Initialize s
loop

a← probabilistic outcome of π(s) {Mixed with exploration policy}

Take action a, observe reward r, next state s′ and opponent action o

Q(s, 〈a, o〉)← Q(s, 〈a, o〉) + α
(
r + γV (s′)−Q(s, 〈a, o〉)

)
with V (s) = max

π′∈PD(A)
min
o′∈O

∑
a′∈A

π(s, a′) Q(s, 〈a′, o′〉)

π(s)→ arg max
π′∈PD(A)

min
o′∈O

∑
a′∈A

π(s, a′) Q(s, 〈a′, o′〉)

s← s′

end loop
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3.4.2 Nash-Q

Nash-Q (Hu and Wellman, 1998; Hu and Wellman, 2004) tries to address
the general problem of learning in two-player general-sum games, using the
algorithm structure presented in Algorithm 3.3. The equilibrium value is
computed using a quadratic programming approach, suited for computing
Nash equilibria in general-sum games. Nevertheless, the recurrent problem
of not knowing which equilibrium to choose is patent here. To avoid this
problem, two strict assumptions are devised:

1. All intermediate games over the Q-values must have only one equilib-
rium.

2. The equilibrium in each game must either be a saddle point (in adver-
sarial situations from which zero-sum games are a particular case) or
a global maximum, maximizing each agent’s reward.

This conditions are often too strict because it is not possible to predict
wether they still hold while learning. The convergence difficulties of the
method have been clarified by (Bowling, 2000)

3.4.3 Friend-or-Foe-Q

Motivated by the assumptions of Nash-Q, (Littman, 2001) extended the
original algorithm Minimax-Q to solve a more general class of stochastic
games. In each state, the method is told wether the agent is playing with
a Friend, and the Nash would be a coordination equilibria and a global
optimum, or against a Foe, with the game having an adversarial equilibrium
in a saddle point. It is proved that:

• If the game has at least one coordination equilibria, then all coordina-
tion equilibria have the same value.

• If the game has at least one adversarial equilibria, then all adversarial
equilibria have the same value.

The value function is computed differently wether the algorithm is told
to be playing against a foe, and uses minimax:

V (s) = max
π∈PD(A)

min
o∈O

∑
a∈A

π(s, a)Q(s, 〈a, o〉) (3.18)

or with a friend, and uses max:

V (s) = max
a∈A,o∈O

Q(s, 〈a, o〉) (3.19)
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For simplicity, only the two-person game is being considered, although
the algorithm could extend to a more general situation.

The algorithm version of Friend-or-Foe-Q can be seen in Algorithm 3.5.

Algorithm 3.5 Friend-or-Foe-Q learner
Initialize Q(s, 〈a, o〉) and π(s) arbitrarily

Initialize s
loop

a← probabilistic outcome π(s) {Mixed with exploration policy}

Take action a, observe reward r, next state s′ and opponent action o

Q(s, 〈a, o〉)← Q(s, 〈a, o〉) + α
(
r + γV (s′)−Q(s, 〈a, o〉)

)
where
if Playing against foe then

V (s) = max
π′∈PD(A)

min
o′∈O

∑
a′∈A

π(s, a′) Q(s, 〈a′, o′〉)

π(s)→ arg max
π′∈PD(A)

min
o′∈O

∑
a′∈A

π(s, a′) Q(s, 〈a′, o′〉)

else
V (s) = max

a′∈A,o′∈O
Q(s, 〈a′, o′〉)

π(s, a) =

1 a = arg max
a′∈A

{
max
o′∈O

Q(s, 〈a′, o′〉)
}

0 otherwise
end if

s← s′

end loop

The convergence of the method was proved by (Littman, 2001) which also
discussed that one limitation is, when playing with a friend, coordinating to
choose one of the possible coordination equilibria. Its easy to see, by looking
at the game of Table 3.5, a variation of the game of Table 3.3 which is not
fully cooperative, that there are two coordination equilibria which occur at
{Wait,Go} and {Go,Wait}. However, if players are not coordinated they
may play {Go,Go} or {Wait,Wait}, leading to lower rewards than on the
equilibrium.
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Wait Go
Wait (0 , 0) (4 , 2)
Go (4 , 2) (-2 , -2)

Table 3.5: A matrix game with two equilibria.
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Chapter 4

Conclusions and Research
Directions

Concerning the single agent framework, this work tried to survey some key
algorithms and the main theoretical ideas that act as a foundation for most
of the reinforcement learning body of knowledge. All the temporal differ-
ence algorithms addressed are well established methods whose convergence
properties have been proved.

As for the extension to more than one step updates, using eligibility
traces has proved to accelerate the learning, when compared with the one
step counterparts, although the convergence results have been only partially
proved.

Some other directions could be addressed as they are fundamental in
bringing reinforcement learning closer to the real and feasible applications.

Generalization and Function Approximation. The algorithms ad-
dressed here can be generally called tabular as they assume the values are
stored in table, which makes sense for finite MDPs. However, in most ap-
plications the state space is not finite (usually continuous) or the memory
available, and the time to process it, are serious limitations of the system.

In this case, the value functions have to be generalized for other inputs of
state and action – a close complementary relation arises between reinforce-
ment learning and supervised learning algorithms. Popular example are the
use of neural networks, e.g.. (Jin, 1993; Tesauro, 1992), cerebellar model
articulator controllers (CMAC), as in (Watkins, 1989), SVNs, among many
others.
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Model-based methods. Sometimes it can be a good idea to have a ex-
plicit model of the process and at the same time maintain the values nec-
essary to obtain the policy. The idea is that simulated experiments can be
generated using the model and provided to the learning algorithm, causing
the algorithm to converge must faster, although biased by the correctness of
the model. In a sense, this works as an integration of planning, acting and
learning.

Methods to integrate planning, learning and acting include:

Certainty equivalence, (Kumar and Varaiya, 1986) in which the param-
eters of the MDP are learned previously, through exploring the envi-
ronments and storing statistics over transitions and rewards, and then
a dynamic programming algorithm is applied to obtain optimal values
and functions. This was also the approach of (Neto and Lima, 2005),
based on Minimax-Q, for learning a model and optimal policies for the
multi-agent problem of zero-sum games.

Dyna-Q, (Sutton, 1991) simultaneously builds a model from experience,
uses the experience to adjust the policy and randomly generates simu-
lations from the model to adjust the policy. This architecture proved
to perform much well then the naive model-based method referred
previously.

Prioritized Sweeping, (Moore and Atkeson, 1993) uses a similar approach
of Dyna-Q but, instead of generating simulations randomly, it keeps
a priority for each state and generates simulations according to this
priority.

Hierarchical Reinforcement Learning. Creating hierarchies of learn-
ers is a common approach to reducing the complexity of the system and
concentrating on smaller and local problems. Although the solutions may
be sub-optimal, they are much more feasible and take less time to obtain
than those that consider all the state.

In (Barto and Mahadevan, 2003) the main hierarchical models are an-
alyzed, from the perspective of Semi-MDPs (Howard, 1971). Those are
considered to be the frameworks of options (Sutton et al., 1999), MAXQ
(Dietterich, 2000) and hierarchies of abstract machines (HAMs) (Parr and
Russel, 1997).
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Partially Observable Markov Decision Processes. An important ques-
tion on using reinforcement algorithms to tackle real world problems is to
consider, on the models, the question of partial observability. The framework
of partially observable Markov decision processes extends the regular MDPs
to incorporate beliefs about the state. The methods then start working on
beliefs rather than on states directly.

(Cassandra, 1994; Littman et al., 1995) apply dynamic programming al-
gorithms to solve POMDPs. (Hansen et al., 2004) tries to address the prob-
lem of partial observability on stochastic games. An interesting approach
is that of (Spaan and Vlassis, 2004) where the belief space is sampled and
methods work on the samples, rather than on the space directly.

Concerning the multi agent framework, the most significant body of work
can be divided into two separate kinds of methods: best-response learners
and equilibrium learners.

The first kind of algorithms has the advantage of trying to exploit the
environment in the best way it can. In fact, if the other agents are not play-
ing Nash equilibria, best-response learners might end-up receiving higher
payoffs than if they had played equilibrium policies. From the algorithms
presented, WoLF-PHC is perhaps the best suited for learning in general-
sum stochastic games for two reasons: it converges (the experiments seem
to indicate it) to a stochastic policy, which can be a Nash equilibrium if the
other agents are all best-response learners, and it has a variable learning
rate, which can turn the policy from a softer to a harder one (or vice-versa),
indirectly controlling the focus from exploration to exploitation.

As for the second kind of methods, their advantage is in that they pro-
vide a solid way of finding policies which give some performance guarantees.
Although they can not exploit the weaknesses of the opponents, the policies
learned provide a lower bound for the expected return. The problem with
equilibrium learners is that SGs sometimes have several equilibria and it is
not trivial to know which equilibrium to choose. In this context, Minimax-
Q is the most consistent method because it works well in the domain it is
restricted to. Nash-Q is a general and interesting method but imposes strict
and non-trivial conditions on the initial problem it proposes to solve. Friend-
or-Foe-Q is a generalization of Minimax-Q but has the problem of needing
and oracle to coordinate between equilibria when learning with Friends.
(Shoham et al., 2004) criticize the equilibrium approach and argue that us-
ing learning for action coordination in multi-agent systems stops making
sense when some external mechanism has to be used to coordinate between
equilibria.
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As for research directions in multi-agent learning, there are some inter-
esting open topics that remain to be addressed in detail.

Local best-response policies. All the algorithms presented try to ad-
dress the problem of multi-agent learning by either being optimal (in the
best-response sense) to the other agents actions or playing a Nash equilib-
rium. However, those two objectives might be to hard to tackle for a system
with limited resources or when the number of agents is to high.

An alternative is to aim for global sub-optimal goals by playing best-
response or Nash locally – in large adversarial team situations, each agent
is typically concerned with the agents around him, wether in his team or
in another team. (Kok et al., 2005) addresses that problem by using pre-
defined coordination graphs and, in this case, each agent just has to learn
to coordinate optimally with the agents defined in the graph – the optimal
coordination is lost but the method becomes feasible.

Beliefs about other agents. (Chang and Kaelbling, 2001) discuss a clas-
sification for multi-agent learning systems based not only on their policies
but on their beliefs about other agents policies. They argue that those kind
of agents might take advantage of best-response learners by leading them to
converge to a situation where they can be exploited and then shifting the
learning mechanism to take advantage of that. They come up with an algo-
rithm named PHC-exploiter which tries to exploit a PHC learner in the way
described. The algorithm converges gradually to a cycle of winning/loosing
but which eventually has a positive average reward for zero-sum games.

The interesting thing about this approach is that it extends the idea of
converging to a stationary policy and, instead, goes further by leading the
system to a policy cycle which, in the end, does well on average.

Domain dependent algorithms. The analysis of the convergence prob-
lems of Nash-Q gives some insight on the difficulty of designing an algorithm
to behave well in all kinds of general-sum games. Another approach is de-
signing hybrid algorithms that detect (or are informed) the type of game be-
ing played and use a different learning method. Friend-or-Foe-Q approached
that same idea, which is also the one taken by (Powers and Shoham, 2004).

Multi-robot systems. The multi-agent perspective is no doubt interest-
ing from theoretical and even practical aspects. However, their integration
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in the growing field of multi-robot systems is, most of the times, not straight-
forward because robots pose additional problems due to their nature – they
often carry a bag of coupled problems which are not trivial to tackle indi-
vidually. Its then a great challenge by itself to make multi-agent learning
methods applicable to robots, and one from which lots of interesting tech-
nologies will surely stem. In this context, (Yang and Gu, 2004) survey
learning techniques and discuss their applicability to multi-robot systems.

The field of multi-agent learning, particularly its applicability to multi-
robot systems, is still very open with many interesting questions to be an-
swered. It was in this perspective that this work, far from trying to do a
comprehensive survey of multi-agent learning research, instead tried to ad-
dress the main results in single and multi-agent reinforcement learning. To
us, it served very well the purpose of consolidating basic concepts on the
field and expanding our view of the main challenges and research directions
to be pursued and, hopefully, it will be useful to someone else in the same
manner.
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