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Within the Markov Decision Processes framework, agents attempt to find
policies maximizing a given reward. But what if the multiple objectives,
possibly conflicting, are considered? This is a common situation in
communication networks, project management and multi-robot team
coordination
In this presentation, the framework of Constrained Markov Decision
Processes (CMDP’s) is introduced to deal with such dynamical,
multi-objective, decision problems. A small example, using mobile robots,
is presented to illustrate the application of CMDP’s.



Examples of mutiple objective, dynamic, decision problems:

I Project managment
I Fullfill project objectives
I Constrained budget
I Constrained material resources
I Constrained human resources

I Communication networks
I Maximize data throughoutput, for example
I Constrain message delays
I Constrain different types of data
I Constrain power compsumption

I Multirobot teams coordination
I Execute assigned task
I Limited number of robots
I Robots have limited capabilities
I The task can impose aditional constraints (time, for example)



Markov Decision Process:

I Discrete and finite space state, X

I Finite set of actions, A

I A(x) are the actions available at state x ∈ X , A(x) ⊂ A

I Set of state-action pairs, K = {(x , a) : x ∈ X , a ∈ A(x)}
I Transition probabilities, Pxay

I Immediate cost, c : K 7→ R



The system history at time instant t is given by:

ht = (y1, a1, y2, a2, . . . , yt−1, at−1, yt) (1)

A policy u is a sequence u = (u1, u2, . . .) where the element ut is the
probability of selection action a given the system history, ut(a|ht). There
are different classes of policies:

I UM : Markov policies, in which ut is a function of the current state
yt

I US : Stationary policies, in which ut is independent of the time

I UD : Stationary and deterministic policies, wich define the map
g : X 7→ A

These classes verify the relation:

UD ⊂ US ⊂ UM (2)



Let β be the distribuition of the initial state, x0. Define for any initial
distribuition β and policy u:

fα(β, u; x , a) := (1− α)
∞∑
t=1

αt−1Pu
β(Xt = x ,A(x) = a) (3)

Then fα(β, u) can be viewed as the probability (occupation) measure,
assigning the probability fα(β, u; x , a) to each pair (x , a). Thus the
discounted cost can be expressed as:

Cα(β, u) =
∑
x∈X

∑
a∈A(x)

fα(β, u; x , a)c(x , a) = 〈f (β, u), c〉 (4)

where f and c are vectors with dimension |K|. To simplify notation, we
assume α and β are fixed.



A Constrained Markov Decision Process is similar to a Markov Decision
Process, with the difference that the policies are now those that verify
additional cost constraints. That is, determine the policy u that:

min C (u)
s. t. D(u) ≤ V

(5)

where D(u) is a vector of cost functions and V is a vector , with
dimension Nc , of constant values.



Using the discounted cost, an CMDP can be shown to be equivalent to
the linear program:

min 〈ρ,C 〉
s. t. 〈ρ,Dn〉 ≤ Vn, n = 1, . . . ,Nc

ρ ∈ Q
(6)

where C and Dn are imediate cost vectors, both with dimension |K|.



The vector ρ is defined as:


∑

y∈X

∑
a∈A(y) ρ(y , a)(δx(y)− αPyax) = (1− α)β(x), ∀x ∈ X

ρ(y , a) ≥ 0,∀y , a
(7)

If the first line is summed over x , we obtain
∑

a,x ρ(x , a) = 1 for all
ρ ∈ Q. Thus, each element ρ(x , a) can be considered a probability of
selecting action a in state x .



From the elements ρ(x , a) ∈ Q, the stationary optimal policy u can be
determined:

u(a|x) =
ρ(x , a)∑

a∈A(x) ρ(x , a)
(8)

if
∑

a∈A(x) ρ(x , a) 6= 0. Otherwise select an arbitrary value for u(a|x), but

ensuring that
∑

a∈A(x) u(a|x) = 1.



Dominating Policy:
Supose that for any u ∈ U, any of the previous cost criterions and for an
initial distribuiton β, there exists another policy u ∈ U such that:

C (β, u) ≤ C (β, u) and D(β, u) ≤ D(β, u) (9)

Then U is said to be dominating over U. An important result is that:
Markov policies are dominating for any cost criterion wich is a function of
the marginal distribuition of states and actions.



Completeness of Stationary Policies:
Given a set U of policies, define LU = {f (u) : u ∈ U}. It can be shown
that for the discounted cost:

LM = LS = coLD (10)

where LM are the set of Markov policies, LS the set of stationary policies
and LD the set of deterministic policies.
This is an usefull result because it allows to reduce the classes of policies
under consideration. For example, if using the discounted cost we gain
nothing by using more general, non-stationary, policies.



Uniformaly Optimal Policy:
Because now the policy is determined by additional constraints, for some
values of β, or even initial states x0 ∈ X , the optimal policy might not
exist (it is not feasible). This is not a problem with traditional MDP’s.
A policy that is optimal for all initial states is said to be an uniformly
optimal policy.



Consider the following example:
Two robots must pickup a box and move it to a destiny position. When
moving the box, they must move together to avoid dropping the box.

Figure: Box carrying example



The state x , is the tuple(y1, y2) where y1 and y2 are the agents positions:

x ∈ X = {(1, 6), (1, 7), . . . , (5, 10)} = {1, . . . , 25} (11)

Identically, the action at each state a, is the tuple (a′1, a
′
2) :

a ∈ A = {s1s2, s1f2, s1b2, f1s2, b1s2, f1f2, b1b2, f1b2, b1f2}
= {1, 2, 3, 4, 5, 6, 7, 8, 9} (12)

All actions are equiprobable. At some states not all of the actions are not
available.



The minimization imediate cost (objective) is:

c(x , a) =

{
0 if x = 25 and a = s1s2
10 otherwise

(13)

The constraint imediate cost is:

d(x , a) =

 0 if agents get parallel
1 if agents not parallel but get closer
5 otherwise

(14)



The CMDP is then:

inf 〈ρ, c〉
s. t.
Dρ ≤ 1
Aeqρ = beq

ρ ≥ 0

(15)

where the last two constraints represent ρ ∈ Q.



Solving the linear program, we obtain the policy:

Figure: Optimal policy



Could this problem be solved using an MDP ?
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