
Convergence of Q-learning: a simple proof

Francisco S. Melo
Institute for Systems and Robotics,

Instituto Superior Técnico,
Lisboa, PORTUGAL
fmelo@isr.ist.utl.pt

1 Preliminaries
We denote a Markov decision process as a tuple (X ,A,P, r), where

• X is the (finite) state-space;

• A is the (finite) action-space;

• P represents the transition probabilities;

• r represents the reward function.

We denote elements of X as x and y and elements of A as a and b. We admit
the general situation where the reward is defined over triplets (x, a, y), i.e., r is
a function

r : X ×A×X −→ R

assigning a reward r(x, a, y) everytime a transition from x to y occurs due to
action a. We admit r to be a bounded, deterministic function.

The value of a state x is defined, for a sequence of controls {At}, as

J(x, {At}) = E

[ ∞∑
t=0

γtR(Xt, At) | X0 = x

]
.

The optimal value function is defined, for each x ∈ X as

V ∗(x) = max
At

J(x, {At})

and verifies
V ∗(x) = max

a∈A

∑
y∈X

Pa(x, y)
[
r(x, a, y) + γV ∗(y)

]
.

From here we define the optimal Q-function, Q∗ as

Q∗(x, a) =
∑
y∈X

Pa(x, y)
[
r(x, a, y) + γV ∗(y)

]
.

1



The optimal Q-function is a fixed point of a contraction operator H, defined
for a generic function q : X ×A −→ R as

(Hq)(x, a) =
∑
y∈X

Pa(x, y)
[
r(x, a, y) + γ max

b∈A
q(y, b)

]
.

This operator is a contraction in the sup-norm, i.e.,

‖Hq1 −Hq2‖∞ ≤ γ ‖q1 − q2‖∞ . (1)

To see this, we write

‖Hq1 −Hq2‖∞ =

= max
x,a

∣∣∣∣∣∣
∑
y∈X

Pa(x, y)
[
r(x, a, y) + γ max

b∈A
q1(y, b)− r(x, a, y) + γ max

b∈A
q2(y, b)

]∣∣∣∣∣∣ =

= max
x,a

γ

∣∣∣∣∣∣
∑
y∈X

Pa(x, y)
[
max
b∈A

q1(y, b)−max
b∈A

q2(y, b)
]∣∣∣∣∣∣ ≤

= max
x,a

γ
∑
y∈X

Pa(x, y)
∣∣∣∣max

b∈A
q1(y, b)−max

b∈A
q2(y, b)

∣∣∣∣ ≤
= max

x,a
γ

∑
y∈X

Pa(x, y) max
z,b

|q1(z, b)− q2(z, b)| =

= max
x,a

γ
∑
y∈X

Pa(x, y) ‖q1 − q2‖∞ =

= γ ‖q1 − q2‖∞ .

The Q-learning algorithm determines the optimal Q-function using point
samples. Let π be some random policy such that

Pπ [At = a | Xt = x] > 0

for all state-action pairs (x, a). Let {xt} be a sequence of states obtained follow-
ing policy π, {at} the sequence of corresponding actions and {rt} the sequence
of obtained rewards. Then, given any initial estimate Q0, Q-learning uses the
following update rule:

Qt+1(xt, at) = Qt(xt, at) + αt(xt, at)
[
rt + γ max

b∈A
Qt(xt+1, b)−Qt(xt, at)

]
,

where the step-sizes αt(x, a) verify 0 ≤ αt(x, a) ≤ 1. This means that, at the
(t + 1)th update, only the component (xt, at) is updated.1

This leads to the following result.
1There are variations of Q-learning that use a single transition tuple (x, a, y, r) to perform

updates in multiple states to speed up convergence, as seen for example in [2].

2



Theorem 1. Given a finite MDP (X ,A,P, r), the Q-learning algorithm, given
by the update rule

Qt+1(xt, at) = Qt(xt, at) + αt(xt, at)
[
rt + γ max

b∈A
Qt(xt+1, b)−Qt(xt, at)

]
, (2)

converges w.p.1 to the optimal Q-function as long as∑
t

αt(x, a) = ∞
∑

t

α2
t (x, a) < ∞ (3)

for all (x, a) ∈ X ×A.

Notice that, since 0 ≤ αt(x, a) < 1, (3) requires that all state-action pairs
be visited infinitely often.

To establish Theorem 1 we need an auxiliary result from stochastic approx-
imation, that we promptly present.

Theorem 2. The random process {∆t} taking values in Rn and defined as

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x)

converges to zero w.p.1 under the following assumptions:

• 0 ≤ αt ≤ 1,
∑

t αt(x) = ∞ and
∑

t α2
t (x) < ∞;

• ‖E [Ft(x) | Ft]‖W ≤ γ ‖∆t‖W , with γ < 1;

• var [Ft(x) | Ft] ≤ C(1 + ‖∆t‖2W ), for C > 0.

Proof See [1]. 2

We are now in position to prove Theorem 1.

Proof of Theorem 1 We start by rewriting (2) as

Qt+1(xt, at) = (1− αt(xt, at))Qt(xt, at) + αt(xt, at)
[
rt + γ max

b∈A
Qt(xt+1, b)

]
.

Subtracting from both sides the quantity Q∗(xt, at) and letting

∆t(x, a) = Qt(x, a)−Q∗(x, a)

yields

∆t(xt, at) = (1− αt(xt, at))∆t(xt, at))+

+ αt(x, a)
[
rt + γ max

b∈A
Qt(xt+1, b)−Q∗(xt, at)

]
.

If we write

Ft(x, a) = r(x, a,X(x, a)) + γ max
b∈A

Qt(y, b)−Q∗(x, a),

3



where X(x, a) is a random sample state obtained from the Markov chain (X ,Pa),
we have

E [Ft(x, a) | Ft] =
∑
y∈X

Pa(x, y)
[
r(x, a, y) + γ max

b∈A
Qt(y, b)−Q∗(x, a)

]
=

= (HQt)(x, a)−Q∗(x, a).

Using the fact that Q∗ = HQ∗,

E [Ft(x, a) | Ft] = (HQt)(x, a)− (HQ∗)(x, a).

It is now immediate from (1) that

‖E [Ft(x, a) | Ft]‖∞ ≤ γ ‖Qt −Q∗‖∞ = γ ‖∆t‖∞ .

Finally,

var [Ft(x) | Ft] =

= E
»“

r(x, a, X(x, a)) + γ max
b∈A

Qt(y, b)−Q∗(x, a)− (HQt)(x, a) + Q∗(x, a)
”2

–
=

= E
»“

r(x, a, X(x, a)) + γ max
b∈A

Qt(y, b)− (HQt)(x, a)
”2

–
=

= var

»
r(x, a, X(x, a)) + γ max

b∈A
Qt(y, b) | Ft

–
which, due to the fact that r is bounded, clearly verifies

var [Ft(x) | Ft] ≤ C(1 + ‖∆t‖2W )

for some constant C.
Then, by Theorem 2, ∆t converges to zero w.p.1, i.e., Qt converges to Q∗

w.p.1. 2

References
[1] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the con-

vergence of stochastic iterative dynamic programming algorithms. Neural
Computation, 6(6):1185–1201, 1994.

[2] Carlos Ribeiro and Csaba Szepesvári. Q-learning combined with spreading:
Convergence and results. In Proceedings of the ISRF-IEE International Con-
ference: Intelligent and Cognitive Systems (Neural Networks Symposium),
pages 32–36, 1996.

4


	Preliminaries

