# Convergence of $Q$-LEARNing: A simple proof 

Francisco S. Melo<br>Institute for Systems and Robotics, Instituto Superior Técnico,<br>Lisboa, PORTUGAL<br>fmelo@isr.ist.utl.pt

## 1 Preliminaries

We denote a Markov decision process as a tuple $(\mathcal{X}, \mathcal{A}, \mathrm{P}, r)$, where

- $\mathcal{X}$ is the (finite) state-space;
- $\mathcal{A}$ is the (finite) action-space;
- P represents the transition probabilities;
- $r$ represents the reward function.

We denote elements of $\mathcal{X}$ as $x$ and $y$ and elements of $\mathcal{A}$ as $a$ and $b$. We admit the general situation where the reward is defined over triplets $(x, a, y)$, i.e., $r$ is a function

$$
r: \mathcal{X} \times \mathcal{A} \times \mathcal{X} \longrightarrow \mathbb{R}
$$

assigning a reward $r(x, a, y)$ everytime a transition from $x$ to $y$ occurs due to action $a$. We admit $r$ to be a bounded, deterministic function.

The value of a state $x$ is defined, for a sequence of controls $\left\{A_{t}\right\}$, as

$$
J\left(x,\left\{A_{t}\right\}\right)=\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R\left(X_{t}, A_{t}\right) \mid X_{0}=x\right] .
$$

The optimal value function is defined, for each $x \in \mathcal{X}$ as

$$
V^{*}(x)=\max _{\mathcal{A}_{t}} J\left(x,\left\{A_{t}\right\}\right)
$$

and verifies

$$
V^{*}(x)=\max _{a \in \mathcal{A}} \sum_{y \in \mathcal{X}} \mathrm{P}_{a}(x, y)\left[r(x, a, y)+\gamma V^{*}(y)\right] .
$$

From here we define the optimal $Q$-function, $Q^{*}$ as

$$
Q^{*}(x, a)=\sum_{y \in \mathcal{X}} \mathrm{P}_{a}(x, y)\left[r(x, a, y)+\gamma V^{*}(y)\right] .
$$

The optimal $Q$-function is a fixed point of a contraction operator $\mathbf{H}$, defined for a generic function $q: \mathcal{X} \times \mathcal{A} \longrightarrow \mathbb{R}$ as

$$
(\mathbf{H} q)(x, a)=\sum_{y \in \mathcal{X}} \mathrm{P}_{a}(x, y)\left[r(x, a, y)+\gamma \max _{b \in \mathcal{A}} q(y, b)\right]
$$

This operator is a contraction in the sup-norm, i.e.,

$$
\begin{equation*}
\left\|\mathbf{H} q_{1}-\mathbf{H} q_{2}\right\|_{\infty} \leq \gamma\left\|q_{1}-q_{2}\right\|_{\infty} \tag{1}
\end{equation*}
$$

To see this, we write

$$
\begin{aligned}
& \left\|\mathbf{H} q_{1}-\mathbf{H} q_{2}\right\|_{\infty}= \\
& =\max _{x, a}\left|\sum_{y \in \mathcal{X}} \mathrm{P}_{a}(x, y)\left[r(x, a, y)+\gamma \max _{b \in \mathcal{A}} q_{1}(y, b)-r(x, a, y)+\gamma \max _{b \in \mathcal{A}} q_{2}(y, b)\right]\right|= \\
& =\max _{x, a} \gamma\left|\sum_{y \in \mathcal{X}} \mathrm{P}_{a}(x, y)\left[\max _{b \in \mathcal{A}} q_{1}(y, b)-\max _{b \in \mathcal{A}} q_{2}(y, b)\right]\right| \leq \\
& =\max _{x, a} \gamma \sum_{y \in \mathcal{X}} \mathrm{P}_{a}(x, y)\left|\max _{b \in \mathcal{A}} q_{1}(y, b)-\max _{b \in \mathcal{A}} q_{2}(y, b)\right| \leq \\
& =\max _{x, a} \gamma \sum_{y \in \mathcal{X}} \mathrm{P}_{a}(x, y) \max _{z, b}\left|q_{1}(z, b)-q_{2}(z, b)\right|= \\
& =\max _{x, a} \gamma \sum_{y \in \mathcal{X}} \mathrm{P}_{a}(x, y)\left\|q_{1}-q_{2}\right\|_{\infty}= \\
& =\gamma\left\|q_{1}-q_{2}\right\|_{\infty} .
\end{aligned}
$$

The $Q$-learning algorithm determines the optimal $Q$-function using point samples. Let $\pi$ be some random policy such that

$$
\mathbb{P}_{\pi}\left[A_{t}=a \mid X_{t}=x\right]>0
$$

for all state-action pairs $(x, a)$. Let $\left\{x_{t}\right\}$ be a sequence of states obtained following policy $\pi,\left\{a_{t}\right\}$ the sequence of corresponding actions and $\left\{r_{t}\right\}$ the sequence of obtained rewards. Then, given any initial estimate $Q_{0}, Q$-learning uses the following update rule:

$$
Q_{t+1}\left(x_{t}, a_{t}\right)=Q_{t}\left(x_{t}, a_{t}\right)+\alpha_{t}\left(x_{t}, a_{t}\right)\left[r_{t}+\gamma \max _{b \in \mathcal{A}} Q_{t}\left(x_{t+1}, b\right)-Q_{t}\left(x_{t}, a_{t}\right)\right]
$$

where the step-sizes $\alpha_{t}(x, a)$ verify $0 \leq \alpha_{t}(x, a) \leq 1$. This means that, at the $(t+1)^{\text {th }}$ update, only the component $\left(x_{t}, a_{t}\right)$ is updated. ${ }^{1}$

This leads to the following result.

[^0]Theorem 1. Given a finite $\operatorname{MDP}(\mathcal{X}, \mathcal{A}, \mathrm{P}, r)$, the $Q$-learning algorithm, given by the update rule

$$
\begin{equation*}
Q_{t+1}\left(x_{t}, a_{t}\right)=Q_{t}\left(x_{t}, a_{t}\right)+\alpha_{t}\left(x_{t}, a_{t}\right)\left[r_{t}+\gamma \max _{b \in \mathcal{A}} Q_{t}\left(x_{t+1}, b\right)-Q_{t}\left(x_{t}, a_{t}\right)\right] \tag{2}
\end{equation*}
$$

converges w.p. 1 to the optimal $Q$-function as long as

$$
\begin{equation*}
\sum_{t} \alpha_{t}(x, a)=\infty \quad \sum_{t} \alpha_{t}^{2}(x, a)<\infty \tag{3}
\end{equation*}
$$

for all $(x, a) \in \mathcal{X} \times \mathcal{A}$.
Notice that, since $0 \leq \alpha_{t}(x, a)<1$, (3) requires that all state-action pairs be visited infinitely often.

To establish Theorem 1 we need an auxiliary result from stochastic approximation, that we promptly present.

Theorem 2. The random process $\left\{\Delta_{t}\right\}$ taking values in $\mathbb{R}^{n}$ and defined as

$$
\Delta_{t+1}(x)=\left(1-\alpha_{t}(x)\right) \Delta_{t}(x)+\alpha_{t}(x) F_{t}(x)
$$

converges to zero w.p. 1 under the following assumptions:

- $0 \leq \alpha_{t} \leq 1, \sum_{t} \alpha_{t}(x)=\infty$ and $\sum_{t} \alpha_{t}^{2}(x)<\infty ;$
- $\left\|\mathbb{E}\left[F_{t}(x) \mid \mathcal{F}_{t}\right]\right\|_{W} \leq \gamma\left\|\Delta_{t}\right\|_{W}$, with $\gamma<1$;
- $\operatorname{var}\left[F_{t}(x) \mid \mathcal{F}_{t}\right] \leq C\left(1+\left\|\Delta_{t}\right\|_{W}^{2}\right)$, for $C>0$.

Proof See [1].
We are now in position to prove Theorem 1.
Proof of Theorem 1 We start by rewriting (2) as

$$
Q_{t+1}\left(x_{t}, a_{t}\right)=\left(1-\alpha_{t}\left(x_{t}, a_{t}\right)\right) Q_{t}\left(x_{t}, a_{t}\right)+\alpha_{t}\left(x_{t}, a_{t}\right)\left[r_{t}+\gamma \max _{b \in \mathcal{A}} Q_{t}\left(x_{t+1}, b\right)\right]
$$

Subtracting from both sides the quantity $Q^{*}\left(x_{t}, a_{t}\right)$ and letting

$$
\Delta_{t}(x, a)=Q_{t}(x, a)-Q^{*}(x, a)
$$

yields

$$
\begin{aligned}
\Delta_{t}\left(x_{t}, a_{t}\right)= & \left.\left(1-\alpha_{t}\left(x_{t}, a_{t}\right)\right) \Delta_{t}\left(x_{t}, a_{t}\right)\right)+ \\
& +\alpha_{t}(x, a)\left[r_{t}+\gamma \max _{b \in \mathcal{A}} Q_{t}\left(x_{t+1}, b\right)-Q^{*}\left(x_{t}, a_{t}\right)\right]
\end{aligned}
$$

If we write

$$
F_{t}(x, a)=r(x, a, X(x, a))+\gamma \max _{b \in \mathcal{A}} Q_{t}(y, b)-Q^{*}(x, a)
$$

where $X(x, a)$ is a random sample state obtained from the Markov chain $\left(\mathcal{X}, \mathrm{P}_{a}\right)$, we have

$$
\begin{aligned}
\mathbb{E}\left[F_{t}(x, a) \mid \mathcal{F}_{t}\right] & =\sum_{y \in \mathcal{X}} \mathrm{P}_{a}(x, y)\left[r(x, a, y)+\gamma \max _{b \in \mathcal{A}} Q_{t}(y, b)-Q^{*}(x, a)\right]= \\
& =\left(\mathbf{H} Q_{t}\right)(x, a)-Q^{*}(x, a)
\end{aligned}
$$

Using the fact that $Q^{*}=\mathbf{H} Q^{*}$,

$$
\mathbb{E}\left[F_{t}(x, a) \mid \mathcal{F}_{t}\right]=\left(\mathbf{H} Q_{t}\right)(x, a)-\left(\mathbf{H} Q^{*}\right)(x, a)
$$

It is now immediate from (1) that

$$
\left\|\mathbb{E}\left[F_{t}(x, a) \mid \mathcal{F}_{t}\right]\right\|_{\infty} \leq \gamma\left\|Q_{t}-Q^{*}\right\|_{\infty}=\gamma\left\|\Delta_{t}\right\|_{\infty}
$$

Finally,

$$
\begin{aligned}
& \operatorname{var}\left[F_{t}(x) \mid \mathcal{F}_{t}\right]= \\
& =\mathbb{E}\left[\left(r(x, a, X(x, a))+\gamma \max _{b \in \mathcal{A}} Q_{t}(y, b)-Q^{*}(x, a)-\left(\mathbf{H} Q_{t}\right)(x, a)+Q^{*}(x, a)\right)^{2}\right]= \\
& =\mathbb{E}\left[\left(r(x, a, X(x, a))+\gamma \max _{b \in \mathcal{A}} Q_{t}(y, b)-\left(\mathbf{H} Q_{t}\right)(x, a)\right)^{2}\right]= \\
& =\operatorname{var}\left[r(x, a, X(x, a))+\gamma \max _{b \in \mathcal{A}} Q_{t}(y, b) \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

which, due to the fact that $r$ is bounded, clearly verifies

$$
\operatorname{var}\left[F_{t}(x) \mid \mathcal{F}_{t}\right] \leq C\left(1+\left\|\Delta_{t}\right\|_{W}^{2}\right)
$$

for some constant $C$.
Then, by Theorem 2, $\Delta_{t}$ converges to zero w.p.1, i.e., $Q_{t}$ converges to $Q^{*}$ w.p.1.

## References

[1] Tommi Jaakkola, Michael I. Jordan, and Satinder P. Singh. On the convergence of stochastic iterative dynamic programming algorithms. Neural Computation, 6(6):1185-1201, 1994.
[2] Carlos Ribeiro and Csaba Szepesvári. $Q$-learning combined with spreading: Convergence and results. In Proceedings of the ISRF-IEE International Conference: Intelligent and Cognitive Systems (Neural Networks Symposium), pages 32-36, 1996.


[^0]:    ${ }^{1}$ There are variations of $Q$-learning that use a single transition tuple ( $x, a, y, r$ ) to perform updates in multiple states to speed up convergence, as seen for example in [2].

