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Markov chains as dynamic models

e Markov chains generalize the (discrete-time) dynamic model
Xir1 = f(Xe); (1)
e In a Markov chain, the state X; at time ¢ depends only on the state
at time ¢t — 1;

e Unlike dynamic models such as that in (1), X; is not a deterministic

function of X;_; (stochastic process).
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Markov chains as dynamic models (2)

Purposes of the presentation:

e Describe several “interesting behaviors” of a Markov chain (cyclic
behavior, recurrence, etc.);

e Generalize the idea of stability to the Markov chain framework;
e Refer a Lyapunov-like criterion for stability (if there is time);

e Refer some important applications (LLN, CLT, LIL, Poisson
equation, etc).
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Markov chains and transition probabilities

Definition 1. A homogeneous Markov chain is a stochastic process

{X:}, where each random variable X; is defined in a set X (the
state-space) and verifying

P[Xt_|_1EU‘ft]:P[Xt+1EU‘Xt:.CC]:P(ZC,U).

We will consider 2 different cases:
e Countable state-space (P is a probability matrix);

e General state-space (P is a probability kernel).

N /

January 11th, 2007 Slide 6




-

Markov chains and transition probabilities (2)

A Markov chain is defined from:
e The state-space X;
e The transition probabilities in P;
e An initial distribution L.

Often ug is implicit. The Markov chain can then be referred as a pair
(X,P).
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n-skeleton chain

The kernel P™, defined recursively as

P (2, 2) = P(z, 2); Pr(z,2) = > P(y, 2)P"(x,y),

yeX

or

P'(z,U) = P(x,U) P”H(:z:,U):/XP(y,U)P”(x,dy),

determines the n-step transition probabilities

Pn(CU,U):P[Xt+n€U’Xt:ZC]
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n-skeleton chain (2)

The definition of P™ leads to the known Chapman-Kolmogorov

equations. For any m < n,

P™(z,2) = Y P™(x,y)P"""(y,2)

or

P”(a:,U):/XPm(y, U)P" ™ (x,dy).

Also, the pair (X, P™) is a new Markov chain—the n-skeleton chain for
the chain (X, P).
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Irreducibility

Case 1: Countable state-space X

e A state y is accessible from x (denoted x — y) if
P"(z,y) >0
for some n:
e If x — yand y — z, z and y communicate (denoted = < y);

e The relation “<" partitions X into disjoint classes Cq,...,C,,;

e The chain (X, P) is irreducible it m =1, i.e., , x < y for any
x,y € X.
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Irreducible chain

N

Irreducibility (2)

N

on-irreducible chain
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Case 2: General state-space X

e Foraset U C X, let 7y be the first return time to U,
v =min{t > 0| X; € U};

e A Markov chain (X, P) is y-irreducible if there is a measure ¢ such
that
Plry <oo| Xg=2] >0

for any set U with ¢(U) > 0 and any x € &;

o If (X,P) is p-irreducible, there is a maximal irreducibility measure v
such that

b(U)=0 = p{zeX|Plry <ool|Xy=a]>0})=0.

///ﬁ y-Irreducibility \\\
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-Irreducibility (2)

e Any set U with ¥)(U) > 0 is reached in finite time from any point
xr e X;

e Any set U with ¢(U) = 0 is not reached in finite time except for an

“insignificant” set of points.
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Cyclic behavior

Case 1: Countable state-space X

e Given a state y, the period of y, d(y), is

d(y) = g.c.d-{n | P"(y,y) > 0} .

o If z,y €C;, dlx)=d(y);
o If (X,P) isirreducible, d = d(x) for any x is the period of the chain;

e The chain is aperiodic if d = 1 and periodic otherwise.
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Cyclic behavior (2)

e If the chain (X, P) has period d, X can be partitioned into a family

D of d sets, D ={D1,...,Dg4}, such that

P(ZIJ, Di—f-l) — ]-7

for all z € D;.

e The family D is called a d-cycle for the chain (X, P).

i=1,....,d—1 (modd),

~
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Cyclic behavior (3)

Case 2: General state-space X

Though technically more elaborate, for a 1-irreducible chain (X, P), we
can define a maximal family D of sets, D = {D1,..., Dy}, such that:

e P(x,D;y1) =1, i=1,...,d—1 (modd), for all z € D;;
° QD(X — UzDZ) = 0.

The family D is also a d-cycle for the chain (X, P); the chain is
aperiodic if d =1 and periodic otherwise.

N /

January 11th, 2007 Slide 18




Outline of the presentation

Markov chains as dynamic models

Transition probabilities

Irreducibility and -irreducibility

Cyclic behavior

Transience and recurrence

Stationarity and invariance

Ergodicity

/

January 11th, 2007

Slide 19



/ Transience and recurrence \

Case 1: Countable state-space X

e A state y € X is transient if
E | I,(Xy)| < oo
t=1
e On the other hand, it is recurrent if
I Z]Iy(Xt) = O,
t=1

e If the chain (X, P) is irreducible, then either all states in X are
transient or all are recurrent:

e An irreducible chain is transient or recurrent, according to all its

\ states being transient or recurrent. /
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/ Transience and recurrence (2) \

Case 2: General state-space X

e Foraset U C X, let ny be the occupation time of U,
=Y Ty (Xy);
t—=1

o Aset U C X is transient if
Elny | Xo=2] < o0
for all x € X and recurrent if

Enu | Xo = x| =00

\ for all z € &; /
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Transience and recurrence (3)

e A chain (X, P) is recurrent if it is ¢-irreducible and
Enu | Xo =12] = ¢
for every x € X and every set U such that ¢(U) > 0;

e It is transient if X is transient.
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Transience and recurrence (4)

Summarizing,
e A recurrent chain (expectedly) visits each state infinitely often;

e A transient chain (expectedly) visits each state only a finite number
of times.

In terms of long-term behavior of the chain, recurrent chains are more
Interesting.
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Stationarity and invariance

Case 1: Countable state-space X

e A probability distribution 1 over X is invariant if

p(y) = > Pz,y)u(z).

reX
e Such distribution remains unchanged after a transition;

e Given any initial distribution pg over X, if the limit distribution

o= lim u'P?

t— o0

exists, it must be invariant;
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Stationarity and invariance (2)

Invariant distributions describe stationary behavior as do equilibrium
points in dynamic systems;

A Markov chain for which there is an invariant probability
distribution 1 is said to be positive.

A recurrent chain (X, P) is positive if
E [ | Xo = 2] < o0,
i.e., every state is returned upon in finite time;

In this case, the invariant distribution u is uniquely defined.

/

January 11th, 2007 Slide 26



/ Stationarity and invariance (3) \

Case 2: General state-space X

e A probability measure 1 over X is invariant if
u(©) = | Pla.V)dnto)

e A Markov chain for which there is an invariant probability measure 1

is said to be positive.

e A recurrent chain (X, P) is positive if there is a set C' verifying some

technical conditions and such that

E [ro | Xo = x| < o0,

\ for every c € C. /
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Ergodicity

Ergodicity is related with the “convergence” of the chain to stationarity.
Definition 2. A Markov chain (X,P) is ergodic if
[P*(z,) = wU)]| = 0

for any x € X and any U C X.
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Further definitions of ergodicity

Definition 3. A Markov chain (X, P) is geometrically ergodic if,
given any initial measure L,

oo

Zrt H,uoPt — ,LL*H < 00
t=0

where r is some constant such that r > 1.
Definition 4. An ergodic Markov chain (X, P) is uniformly ergodic
if

sup |[P(z, ) = p| — 0

as t — oQ.
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The use of ergodicity

Ergodicity of Markov chains is central in many aspects of RL:

e The implicit stationarity assumption of many on-line learning
methods can be stated in terms of ergodicity of the underlying
Markov chain [2];

e In advanced algorithms [6, 7, 8], geometric ergodicity is required to
ensure that the “transient” of the chain quickly vanishes;

e Stochastic approximation algorithms (of which many RL methods
are examples) strongly rely on geometric ergodicity to ensure

convergence [1, 3, 4].
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/ The use of ergodicity \

More fundamentally,

e Ergodicity allows the derivation of several limit theorems such as [5]:
— Law of Large Numbers (LLN)
— Law of the Iterated Logarithm (LIL)
— Central Limit Theorem (CLT)

applied to any measurable real-function H defined on X.

e |t provides conditions for the existence of solutions for the Poisson
equation

(I-Plv(z) = H(x) — (uH),

a fundamental tool to evaluate approximation errors along sample

\ paths. /
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If there is time...

Several results identify the conditions under which a Markov chain is
ergodic/geometrically ergodic. Two simple theorems are

Theorem 5. Every irreducible, aperiodic, positive Markov chain

(X, P) defined on a countable space X is ergodic.

Theorem 6. Fvery ergodic Markov chain (X, P) defined in a

countable space X 1s geometrically ergodic.

N
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If there is time... (2)

e For general state-spaces, these results can be generalized, but require

several more elaborate concepts that have not been covered here.

e However, one criterium for (geometric) ergodicity relies on the

existence of a non-negative, real function V' defined on X such that

(AV)(x) < =BV (z) + bla(x).

e Roughly speaking, the function V' can be interpreted as a Lyapunov

function for the chain!

~
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