Markov chains and stochastic stability

Francisco S. Melo

fmelo@isr.ist.utl.pt

Reading group on Sequential Decision Making

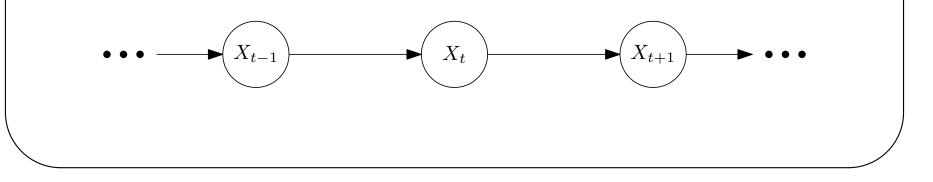
- Markov chains as dynamic models
- Transition probabilities
- Irreducibility and $\psi\text{-}\mathrm{irreducibility}$
- Cyclic behavior
- Transience and recurrence
- Stationarity and invariance
- Ergodicity

Markov chains as dynamic models

• Markov chains generalize the (discrete-time) dynamic model

$$X_{t+1} = f(X_t); \tag{1}$$

- In a Markov chain, the state X_t at time t depends only on the state at time t − 1;
- Unlike dynamic models such as that in (1), X_t is not a deterministic function of X_{t-1} (stochastic process).



Markov chains as dynamic models (2)

Purposes of the presentation:

- Describe several "interesting behaviors" of a Markov chain (cyclic behavior, recurrence, etc.);
- Generalize the idea of *stability* to the Markov chain framework;
- Refer a Lyapunov-like criterion for stability (if there is time);
- Refer some important applications (LLN, CLT, LIL, Poisson equation, etc).

- Markov chains as dynamic models
- Transition probabilities
- Irreducibility and ψ -irreducibility
- Cyclic behavior
- Transience and recurrence
- Stationarity and invariance
- Ergodicity

Markov chains and transition probabilities

Definition 1. A homogeneous Markov chain is a stochastic process $\{X_t\}$, where each random variable X_t is defined in a set \mathcal{X} (the state-space) and verifying

$$\mathbb{P}\left[X_{t+1} \in U \mid \mathcal{F}_t\right] = \mathbb{P}\left[X_{t+1} \in U \mid X_t = x\right] = \mathsf{P}(x, U).$$

We will consider 2 different cases:

- Countable state-space (P is a probability matrix);
- General state-space (P is a probability kernel).

Markov chains and transition probabilities (2)

A Markov chain is defined from:

- The state-space \mathcal{X} ;
- The transition probabilities in P;
- An initial distribution μ_0 .

Often μ_0 is implicit. The Markov chain can then be referred as a pair $(\mathcal{X}, \mathsf{P})$.

n-skeleton chain

The kernel P^n , defined recursively as

$$\mathsf{P}^{1}(x,z) = \mathsf{P}(x,z); \qquad \mathsf{P}^{n+1}(x,z) = \sum_{y \in \mathcal{X}} \mathsf{P}(y,z) \mathsf{P}^{n}(x,y),$$

or

$$\mathsf{P}^{1}(x,U) = \mathsf{P}(x,U) \qquad \mathsf{P}^{n+1}(x,U) = \int_{\mathcal{X}} \mathsf{P}(y,U) \mathsf{P}^{n}(x,dy),$$

determines the n-step transition probabilities

$$\mathsf{P}^{n}(x,U) = \mathbb{P}\left[X_{t+n} \in U \mid X_{t} = x\right].$$

n-skeleton chain (2)

The definition of P^n leads to the known *Chapman-Kolmogorov* equations. For any m < n,

$$P^{n}(x,z) = \sum_{y \in \mathcal{X}} \mathsf{P}^{m}(x,y) P^{n-m}(y,z)$$

or

$$P^{n}(x,U) = \int_{\mathcal{X}} \mathsf{P}^{m}(y,U) P^{n-m}(x,dy).$$

Also, the pair $(\mathcal{X}, \mathsf{P}^n)$ is a new Markov chain—the *n*-skeleton chain for the chain $(\mathcal{X}, \mathsf{P})$.

- Markov chains as dynamic models
- Transition probabilities
- Irreducibility and $\psi\text{-}\mathrm{irreducibility}$
- Cyclic behavior
- Transience and recurrence
- Stationarity and invariance
- Ergodicity

Irreducibility

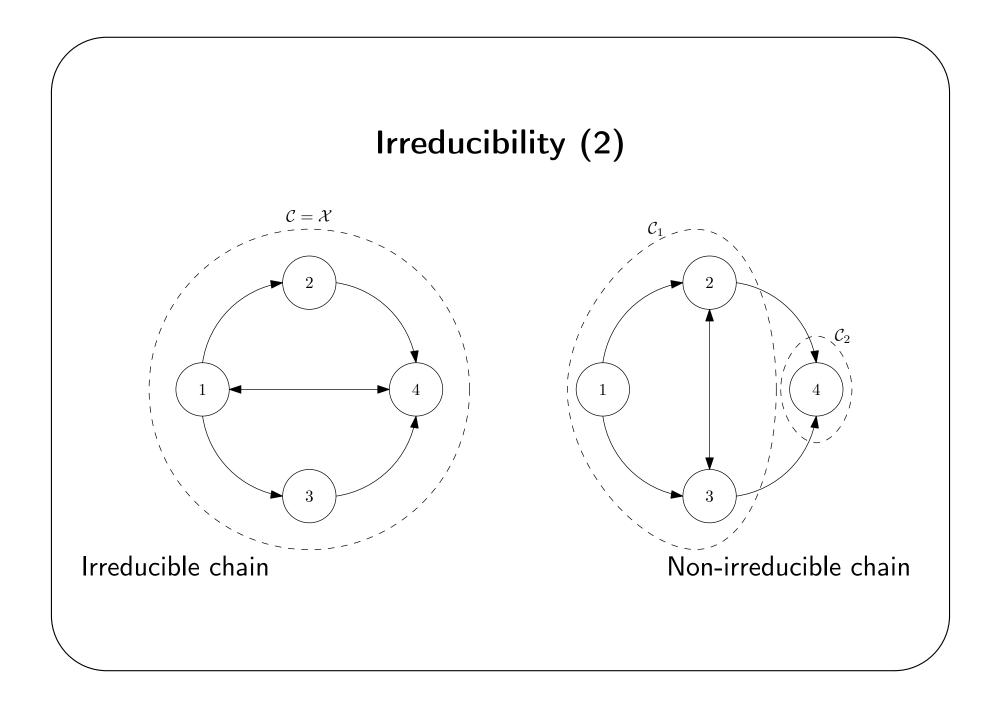
Case 1: Countable state-space \mathcal{X}

• A state y is accessible from x (denoted $x \to y$) if

 $P^n(x,y) > 0$

for some *n*;

- If $x \to y$ and $y \to x$, x and y communicate (denoted $x \leftrightarrow y$);
- The relation " \leftrightarrow " partitions \mathcal{X} into disjoint classes $\mathcal{C}_1, \ldots, \mathcal{C}_m$;
- The chain $(\mathcal{X}, \mathsf{P})$ is *irreducible* if m = 1, *i.e.*, , $x \leftrightarrow y$ for any $x, y \in \mathcal{X}$.



ψ -Irreducibility

Case 2: General state-space \mathcal{X}

• For a set $U \subset \mathcal{X}$, let τ_U be the first return time to U,

$$\tau_U = \min\{t > 0 \mid X_t \in U\};$$

• A Markov chain (\mathcal{X},P) is $\varphi\text{-irreducible}$ if there is a measure φ such that

$$\mathbb{P}\left[\tau_U < \infty \mid X_0 = x\right] > 0$$

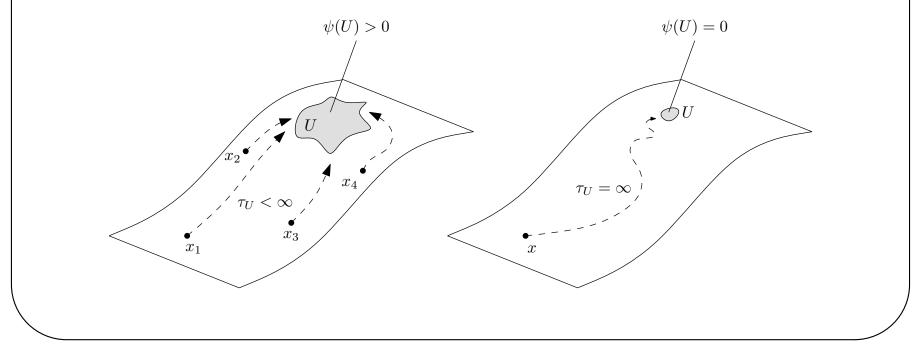
for any set U with $\varphi(U) > 0$ and any $x \in \mathcal{X}$;

• If (\mathcal{X},P) is $\varphi\text{-irreducible, there is a maximal irreducibility measure <math display="inline">\psi$ such that

 $\psi(U) = 0 \quad \Rightarrow \quad \psi(\{x \in \mathcal{X} \mid \mathbb{P} \left[\tau_U < \infty \mid X_0 = x\right] > 0\}) = 0.$

ψ -Irreducibility (2)

- Any set U with ψ(U) > 0 is reached in finite time from any point x ∈ X;
- Any set U with $\psi(U) = 0$ is not reached in finite time except for an "insignificant" set of points.



- Markov chains as dynamic models
- Transition probabilities
- Irreducibility and $\psi\text{-}\mathrm{irreducibility}$
- Cyclic behavior
- Transience and recurrence
- Stationarity and invariance
- Ergodicity

Cyclic behavior

Case 1: Countable state-space \mathcal{X}

• Given a state y, the *period* of y, d(y), is

$$d(y) = g.c.d. \{n \mid \mathsf{P}^n(y, y) > 0\}.$$

• If
$$x, y \in \mathcal{C}_i$$
, $d(x) = d(y)$;

- If $(\mathcal{X}, \mathsf{P})$ is irreducible, d = d(x) for any x is the *period* of the chain;
- The chain is *aperiodic* if d = 1 and *periodic* otherwise.

Cyclic behavior (2)

• If the chain $(\mathcal{X}, \mathsf{P})$ has period d, \mathcal{X} can be partitioned into a family \mathcal{D} of d sets, $\mathcal{D} = \{D_1, \dots, D_d\}$, such that

$$\mathsf{P}(x, D_{i+1}) = 1, \qquad i = 1, \dots, d-1 \pmod{d},$$

for all $x \in D_i$.

• The family \mathcal{D} is called a *d*-cycle for the chain $(\mathcal{X}, \mathsf{P})$.

Cyclic behavior (3)

Case 2: General state-space \mathcal{X}

Though technically more elaborate, for a ψ -irreducible chain $(\mathcal{X}, \mathsf{P})$, we can define a maximal family \mathcal{D} of sets, $\mathcal{D} = \{D_1, \dots, D_d\}$, such that:

• $P(x, D_{i+1}) = 1$, $i = 1, ..., d - 1 \pmod{d}$, for all $x \in D_i$;

•
$$\psi(\mathcal{X} - \cup_i D_i) = 0.$$

The family \mathcal{D} is also a *d*-cycle for the chain $(\mathcal{X}, \mathsf{P})$; the chain is *aperiodic* if d = 1 and *periodic* otherwise.

- Markov chains as dynamic models
- Transition probabilities
- Irreducibility and ψ -irreducibility
- Cyclic behavior
- Transience and recurrence
- Stationarity and invariance
- Ergodicity

Transience and recurrence

Case 1: Countable state-space \mathcal{X}

• A state $y \in \mathcal{X}$ is *transient* if

$$\mathbb{E}\left[\sum_{t=1}^{\infty} \mathbb{I}_y(X_t)\right] < \infty;$$

• On the other hand, it is *recurrent* if

$$\mathbb{E}\left[\sum_{t=1}^{\infty} \mathbb{I}_y(X_t)\right] = \infty;$$

- If the chain (X, P) is irreducible, then either *all states* in X are transient or all are recurrent;
- An irreducible chain is *transient* or *recurrent*, according to all its states being transient or recurrent.

Transience and recurrence (2)

Case 2: General state-space \mathcal{X}

• For a set $U \subset \mathcal{X}$, let η_U be the occupation time of U,

$$\eta_U = \sum_{t=1}^{\infty} \mathbb{I}_U(X_t);$$

• A set $U \subset \mathcal{X}$ is *transient* if

$$\mathbb{E}\left[\eta_U \mid X_0 = x\right] < \infty$$

for all $x \in \mathcal{X}$ and *recurrent* if

$$\mathbb{E}\left[\eta_U \mid X_0 = x\right] = \infty$$

for all $x \in \mathcal{X}$;

Transience and recurrence (3)

• A chain $(\mathcal{X}, \mathsf{P})$ is *recurrent* if it is ψ -irreducible and

$$\mathbb{E}\left[\eta_U \mid X_0 = x\right] = \infty$$

for every $x \in \mathcal{X}$ and every set U such that $\psi(U) > 0$;

• It is *transient* if \mathcal{X} is transient.

Transience and recurrence (4)

Summarizing,

- A recurrent chain (expectedly) visits each state infinitely often;
- A transient chain (expectedly) visits each state only a finite number of times.

In terms of long-term behavior of the chain, recurrent chains are more interesting.

- Markov chains as dynamic models
- Transition probabilities
- Irreducibility and $\psi\text{-}\mathrm{irreducibility}$
- Cyclic behavior
- Transience and recurrence
- Stationarity and invariance
- Ergodicity

Stationarity and invariance

Case 1: Countable state-space \mathcal{X}

• A probability distribution μ over ${\mathcal X}$ is *invariant* if

$$\mu(y) = \sum_{x \in \mathcal{X}} \mathsf{P}(x, y) \mu(x).$$

- Such distribution *remains unchanged* after a transition;
- Given any initial distribution μ_0 over \mathcal{X} , if the limit distribution

$$\bar{\mu} = \lim_{t \to \infty} \mu^\top \mathsf{P}^t$$

exists, it must be invariant;

Stationarity and invariance (2)

- Invariant distributions describe *stationary behavior* as do equilibrium points in dynamic systems;
- A Markov chain for which there is an invariant probability distribution μ is said to be *positive*.
- A recurrent chain (\mathcal{X},P) is positive if

$$\mathbb{E}\left[\tau_x \mid X_0 = x\right] < \infty,$$

i.e., every state is returned upon in finite time;

• In this case, the invariant distribution μ is uniquely defined.

Stationarity and invariance (3)

Case 2: General state-space \mathcal{X}

• A probability measure μ over \mathcal{X} is *invariant* if

$$\mu(U) = \int_{\mathcal{X}} \mathsf{P}(x, U) d\mu(x).$$

- A Markov chain for which there is an invariant probability measure μ is said to be *positive*.
- A recurrent chain $(\mathcal{X}, \mathsf{P})$ is positive if there is a set C verifying some technical conditions and such that

$$\mathbb{E}\left[\tau_C \mid X_0 = x\right] < \infty,$$

for every $c \in C$.

- Markov chains as dynamic models
- Transition probabilities
- Irreducibility and $\psi\text{-}\mathrm{irreducibility}$
- Cyclic behavior
- Transience and recurrence
- Stationarity and invariance
- Ergodicity

Ergodicity

Ergodicity is related with the "convergence" of the chain to stationarity. **Definition 2.** A Markov chain $(\mathcal{X}, \mathsf{P})$ is ergodic if

 $\left\|\mathsf{P}^{t}(x,\cdot)-\mu(U)\right\|\to 0$

for any $x \in \mathcal{X}$ and any $U \subset \mathcal{X}$.

Further definitions of ergodicity

Definition 3. A Markov chain $(\mathcal{X}, \mathsf{P})$ is geometrically ergodic if, given any initial measure μ_0 ,

$$\sum_{t=0}^{\infty} r^t \left\| \mu_0 \mathsf{P}^t - \mu^* \right\| < \infty$$

where r is some constant such that r > 1. **Definition 4.** An ergodic Markov chain $(\mathcal{X}, \mathsf{P})$ is uniformly ergodic if

$$\sup_{x \in \mathcal{X}} \left\| \mathsf{P}^t(x, \cdot) - \mu \right\| \to 0$$

as $t \to \infty$.

The use of ergodicity

Ergodicity of Markov chains is central in many aspects of RL:

- The implicit stationarity assumption of many on-line learning methods can be stated in terms of ergodicity of the underlying Markov chain [2];
- In advanced algorithms [6, 7, 8], geometric ergodicity is required to ensure that the "transient" of the chain quickly vanishes;
- Stochastic approximation algorithms (of which many RL methods are examples) strongly rely on geometric ergodicity to ensure convergence [1, 3, 4].

The use of ergodicity

More fundamentally,

- Ergodicity allows the derivation of several limit theorems such as [5]:
 - Law of Large Numbers (LLN)
 - Law of the Iterated Logarithm (LIL)
 - Central Limit Theorem (CLT)

applied to any measurable real-function H defined on \mathcal{X} .

• It provides conditions for the existence of solutions for the Poisson equation

$$(\mathbf{I} - \mathsf{P})\nu(x) = H(x) - (\mu H),$$

a fundamental tool to evaluate approximation errors along sample paths.

If there is time...

Several results identify the conditions under which a Markov chain is ergodic/geometrically ergodic. Two simple theorems are

Theorem 5. Every irreducible, aperiodic, positive Markov chain $(\mathcal{X}, \mathsf{P})$ defined on a countable space \mathcal{X} is ergodic.

Theorem 6. Every ergodic Markov chain $(\mathcal{X}, \mathsf{P})$ defined in a countable space \mathcal{X} is geometrically ergodic.

If there is time... (2)

- For general state-spaces, these results can be generalized, but require several more elaborate concepts that have not been covered here.
- However, one criterium for (geometric) ergodicity relies on the existence of a non-negative, real function V defined on \mathcal{X} such that

 $(\Delta V)(x) \le -\beta V(x) + b\mathbb{I}_C(x).$

• Roughly speaking, the function V can be interpreted as a Lyapunov function for the chain!

*

References

- [1] A. Benveniste, M. Métivier, and P. Priouret. Adaptive Algorithms and Stochastic Approximations, volume 22 of Applications of Mathematics. Springer-Verlag, Berlin, 1990.
- [2] D. P. Bertsekas and J. N. Tsitsiklis. *Neuro-Dynamic Programming*. Optimization and Neural Computation Series. Athena Scientific, Belmont, Massachusetts, 1996.
- [3] B. Bharath and V. S. Borkar. Stochastic approximation algorithms: overview and recent trends. *Sādhanā*, 24(4, 5):425–452, 1999.
- [4] H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms and Applications, volume 35 of Applications of Mathematics. Springer-Verlag New York, Inc., second edition, 2003.
- [5] S. P. Meyn and R. L. Tweedie. *Markov Chains and Stochastic Stability*. Communications and Control Engineering Series. Springer-Verlag, New York, 1993.

- [6] C. Szepesvári and W. D. Smart. Interpolation-based Q-learning. In Proceedings of the 21st International Conference on Machine learning (ICML'04), pages 100–107, New York, USA, July 2004. ACM Press.
- [7] J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approximation. *IEEE Transactions on Automatic Control*, 42(5): 674–690, May 1996.
- [8] B. Van Roy. Learning and value function approximation in complex decision processes. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, June 1998.