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Outline of the presentation

• Markov chains as dynamic models

• Transition probabilities

• Irreducibility and ψ-irreducibility

• Cyclic behavior

• Transience and recurrence

• Stationarity and invariance

• Ergodicity
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Markov chains as dynamic models

• Markov chains generalize the (discrete-time) dynamic model

Xt+1 = f(Xt); (1)

• In a Markov chain, the state Xt at time t depends only on the state
at time t− 1;

• Unlike dynamic models such as that in (1), Xt is not a deterministic
function of Xt−1 (stochastic process).

Xt−1 Xt Xt+1
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Markov chains as dynamic models (2)

Purposes of the presentation:

• Describe several “interesting behaviors” of a Markov chain (cyclic
behavior, recurrence, etc.);

• Generalize the idea of stability to the Markov chain framework;

• Refer a Lyapunov-like criterion for stability (if there is time);

• Refer some important applications (LLN, CLT, LIL, Poisson
equation, etc).
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Markov chains and transition probabilities

Definition 1. A homogeneous Markov chain is a stochastic process
{Xt}, where each random variable Xt is defined in a set X (the
state-space) and verifying

P [Xt+1 ∈ U | Ft] = P [Xt+1 ∈ U | Xt = x] = P(x,U).

We will consider 2 different cases:

• Countable state-space (P is a probability matrix);

• General state-space (P is a probability kernel).

January 11th, 2007 Slide 6



'

&

$

%

Markov chains and transition probabilities (2)

A Markov chain is defined from:

• The state-space X ;

• The transition probabilities in P;

• An initial distribution µ0.

Often µ0 is implicit. The Markov chain can then be referred as a pair
(X ,P).
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n-skeleton chain

The kernel Pn, defined recursively as

P1(x, z) = P(x, z); Pn+1(x, z) =
∑
y∈X

P(y, z)Pn(x, y),

or

P1(x,U) = P(x,U) Pn+1(x,U) =
∫
X

P(y, U)Pn(x, dy),

determines the n-step transition probabilities

Pn(x, U) = P [Xt+n ∈ U | Xt = x] .
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n-skeleton chain (2)

The definition of Pn leads to the known Chapman-Kolmogorov
equations. For any m < n,

Pn(x, z) =
∑
y∈X

Pm(x, y)Pn−m(y, z)

or

Pn(x,U) =
∫
X

Pm(y, U)Pn−m(x, dy).

Also, the pair (X ,Pn) is a new Markov chain—the n-skeleton chain for
the chain (X ,P).
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Irreducibility

Case 1: Countable state-space X

• A state y is accessible from x (denoted x→ y) if

Pn(x, y) > 0

for some n;

• If x→ y and y → x, x and y communicate (denoted x↔ y);

• The relation “↔” partitions X into disjoint classes C1, . . . , Cm;

• The chain (X ,P) is irreducible if m = 1, i.e., , x↔ y for any
x, y ∈ X .
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Irreducibility (2)

1 4

2

3

1 4

2

3

C = X C1

C2

Irreducible chain Non-irreducible chain
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ψ-Irreducibility

Case 2: General state-space X

• For a set U ⊂ X , let τU be the first return time to U ,

τU = min {t > 0 | Xt ∈ U} ;

• A Markov chain (X ,P) is ϕ-irreducible if there is a measure ϕ such
that

P [τU <∞ | X0 = x] > 0

for any set U with ϕ(U) > 0 and any x ∈ X ;

• If (X ,P) is ϕ-irreducible, there is a maximal irreducibility measure ψ
such that

ψ(U) = 0 ⇒ ψ({x ∈ X | P [τU <∞ | X0 = x] > 0}) = 0.
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ψ-Irreducibility (2)

• Any set U with ψ(U) > 0 is reached in finite time from any point
x ∈ X ;

• Any set U with ψ(U) = 0 is not reached in finite time except for an
“insignificant” set of points.

ψ(U) > 0

U

x1

τU <∞

ψ(U) = 0

U

x

τU =∞

x3

x2

x4
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Cyclic behavior

Case 1: Countable state-space X

• Given a state y, the period of y, d(y), is

d(y) = g.c.d. {n | Pn(y, y) > 0} .

• If x, y ∈ Ci, d(x) = d(y);

• If (X ,P) is irreducible, d = d(x) for any x is the period of the chain;

• The chain is aperiodic if d = 1 and periodic otherwise.
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Cyclic behavior (2)

• If the chain (X ,P) has period d, X can be partitioned into a family
D of d sets, D = {D1, . . . , Dd}, such that

P(x,Di+1) = 1, i = 1, . . . , d− 1 (mod d),

for all x ∈ Di.

• The family D is called a d-cycle for the chain (X ,P).
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Cyclic behavior (3)

Case 2: General state-space X

Though technically more elaborate, for a ψ-irreducible chain (X ,P), we
can define a maximal family D of sets, D = {D1, . . . , Dd}, such that:

• P(x,Di+1) = 1, i = 1, . . . , d− 1 (mod d), for all x ∈ Di;

• ψ(X − ∪iDi) = 0.

The family D is also a d-cycle for the chain (X ,P); the chain is
aperiodic if d = 1 and periodic otherwise.
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Transience and recurrence

Case 1: Countable state-space X

• A state y ∈ X is transient if

E

[ ∞∑
t=1

Iy(Xt)

]
<∞;

• On the other hand, it is recurrent if

E

[ ∞∑
t=1

Iy(Xt)

]
= ∞;

• If the chain (X ,P) is irreducible, then either all states in X are
transient or all are recurrent;

• An irreducible chain is transient or recurrent, according to all its
states being transient or recurrent.
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Transience and recurrence (2)

Case 2: General state-space X

• For a set U ⊂ X , let ηU be the occupation time of U ,

ηU =
∞∑

t=1

IU (Xt);

• A set U ⊂ X is transient if

E [ηU | X0 = x] <∞

for all x ∈ X and recurrent if

E [ηU | X0 = x] = ∞

for all x ∈ X ;
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Transience and recurrence (3)

• A chain (X ,P) is recurrent if it is ψ-irreducible and

E [ηU | X0 = x] = ∞

for every x ∈ X and every set U such that ψ(U) > 0;

• It is transient if X is transient.
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Transience and recurrence (4)

Summarizing,

• A recurrent chain (expectedly) visits each state infinitely often;

• A transient chain (expectedly) visits each state only a finite number
of times.

In terms of long-term behavior of the chain, recurrent chains are more
interesting.

January 11th, 2007 Slide 23



'

&

$

%

Outline of the presentation

• Markov chains as dynamic models

• Transition probabilities

• Irreducibility and ψ-irreducibility

• Cyclic behavior

• Transience and recurrence

• Stationarity and invariance

• Ergodicity

January 11th, 2007 Slide 24



'

&

$

%

Stationarity and invariance

Case 1: Countable state-space X

• A probability distribution µ over X is invariant if

µ(y) =
∑
x∈X

P(x, y)µ(x).

• Such distribution remains unchanged after a transition;

• Given any initial distribution µ0 over X , if the limit distribution

µ̄ = lim
t→∞

µ>Pt

exists, it must be invariant;
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Stationarity and invariance (2)

• Invariant distributions describe stationary behavior as do equilibrium
points in dynamic systems;

• A Markov chain for which there is an invariant probability
distribution µ is said to be positive.

• A recurrent chain (X ,P) is positive if

E [τx | X0 = x] <∞,

i.e., every state is returned upon in finite time;

• In this case, the invariant distribution µ is uniquely defined.
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Stationarity and invariance (3)

Case 2: General state-space X

• A probability measure µ over X is invariant if

µ(U) =
∫
X

P(x,U)dµ(x).

• A Markov chain for which there is an invariant probability measure µ
is said to be positive.

• A recurrent chain (X ,P) is positive if there is a set C verifying some
technical conditions and such that

E [τC | X0 = x] <∞,

for every c ∈ C.
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Ergodicity

Ergodicity is related with the “convergence” of the chain to stationarity.

Definition 2. A Markov chain (X ,P) is ergodic if∥∥Pt(x, ·)− µ(U)
∥∥ → 0

for any x ∈ X and any U ⊂ X .
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Further definitions of ergodicity

Definition 3. A Markov chain (X ,P) is geometrically ergodic if,
given any initial measure µ0,

∞∑
t=0

rt
∥∥µ0P

t − µ∗
∥∥ <∞

where r is some constant such that r > 1.
Definition 4. An ergodic Markov chain (X ,P) is uniformly ergodic
if

sup
x∈X

∥∥Pt(x, ·)− µ
∥∥ → 0

as t→∞.
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The use of ergodicity

Ergodicity of Markov chains is central in many aspects of RL:

• The implicit stationarity assumption of many on-line learning
methods can be stated in terms of ergodicity of the underlying
Markov chain [2];

• In advanced algorithms [6, 7, 8], geometric ergodicity is required to
ensure that the “transient” of the chain quickly vanishes;

• Stochastic approximation algorithms (of which many RL methods
are examples) strongly rely on geometric ergodicity to ensure
convergence [1, 3, 4].
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The use of ergodicity

More fundamentally,

• Ergodicity allows the derivation of several limit theorems such as [5]:

– Law of Large Numbers (LLN)

– Law of the Iterated Logarithm (LIL)

– Central Limit Theorem (CLT)

applied to any measurable real-function H defined on X .

• It provides conditions for the existence of solutions for the Poisson
equation

(I− P)ν(x) = H(x)− (µH),

a fundamental tool to evaluate approximation errors along sample
paths.
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If there is time...

Several results identify the conditions under which a Markov chain is
ergodic/geometrically ergodic. Two simple theorems are

Theorem 5. Every irreducible, aperiodic, positive Markov chain
(X ,P) defined on a countable space X is ergodic.

Theorem 6. Every ergodic Markov chain (X ,P) defined in a
countable space X is geometrically ergodic.
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If there is time... (2)

• For general state-spaces, these results can be generalized, but require
several more elaborate concepts that have not been covered here.

• However, one criterium for (geometric) ergodicity relies on the
existence of a non-negative, real function V defined on X such that

(∆V )(x) ≤ −βV (x) + bIC(x).

• Roughly speaking, the function V can be interpreted as a Lyapunov
function for the chain!
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