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Reinforcement learning:
Examples and proofs
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Outline of the presentation

• A simple problem

• Dynamic programming (DP)

• Q-learning

• Convergence of DP

• Convergence of Q-learning

• Further examples
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A simple problem

Problem:

An autonomous robot must learn how to transport material from a
deposit to a building facility.

Move Left/Move Right

Load/Unload

1 2 3

Material Building facility
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The Markov decision process model

Markov Decision Process: (S,A,P, r)

• States: S = {1U , 2U , 3U , 1L, 2L, 3L};

1U Robot in position 1 (unloaded);

2U Robot in position 2 (unloaded);

3U Robot in position 3 (unloaded);

1L Robot in position 1 (loaded);

2L Robot in position 2 (loaded);

3L Robot in position 3 (loaded)

• Actions: A = {Left, Right, Load, Unload};
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The Markov decision process model (2)

• Transition probabilities: “Left”/“Right” move the robot in the
corresponding direction; “Load” loads material (only in position 1);
“Unload” unloads material (only in position 3).

Ex:

(2L,Right) → 3L;

(3L,Unload) → 3U ;

(1L,Unload) → 1L.

• Reward: We assign a reward of +10 for every unloaded package
(payment for the service).
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Dynamic programming

• For each action a ∈ A, Pa is a matrix.

Ex:

PRight =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1
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Dynamic programming (2)

• The reward r(s, a, s′) can also be represented as a matrix

Ex:

r(·, a, ·) =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 +10 0 0 0
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Dynamic programming (3)

Recall that

Q∗(s, a) =
∑
s′∈S

Pa(s, s′)
[
r(s, a, s′) + γ max

b∈A
Q∗(s′, b)

]
.

From Q∗ we can compute the optimal policy π∗:

π∗(s) = arg max
a∈A

Q∗(s, a),

and the optimal value function

V ∗(s) = max
a∈A

Q∗(s, a).
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Dynamic programming (4)

Since S and A are finite, Q∗(s, a) is a matrix.

Iterations of DP:

Q0 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


Q1 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 10
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Dynamic programming (5)

Iterations of DP:

Q5 =

266666666664

0 0 8.57 0

0 0 0 0

0 0 0 0

8.57 9.03 8.57 8.57

8.57 9.5 9.03 9.03

9.03 9.5 9.5 10

377777777775
Q20 =

266666666664

18.53 17.61 19.51 18.54

18.53 16.73 17.61 17.61

17.61 16.73 16.73 16.73

19.51 20.54 19.51 19.51

19.51 21.62 20.54 20.54

20.54 21.62 21.62 26.73

377777777775
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Dynamic programming (6)

Final Q∗ and policy:

Q∗ =

2666666666664

30.75 29.21 32.37 30.75

30.75 27.75 29.21 29.21

29.21 27.75 27.75 27.75

32.37 34.07 32.37 32.37

32.37 35.86 34.07 34.07

34.07 35.86 35.86 37.75

3777777777775
π∗ =

2666666666664

Load

Left

Left

Right

Right

Unload

3777777777775
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Q-learning

Once again,

Q∗(s, a) =
X
s′∈S

Pa(s, s′)
ˆ
r(s, a, s′) + γ max

b∈A
Q∗(s′, b)

˜
=

= E
»
r(s, a, s′) + γ max

b∈A
Q∗(s′, b)

–
.

Q-learning approximates the expectation above by point-samples: given
transition triplets (s, a, s′, r) sampled from the MDP, Q-learning follows the
update rule

Qt+1(s, a) = Qt(s, a) + αt(s, a)
`
r + γ max

b∈A
Qt(s

′, b)−Qt(s, a)
´
.
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Convergence of DP

Given a general function q : S ×A −→ R, define the operator H as

(Hq)(s, a) =
X
s′∈S

Pa(s, s′)
ˆ
r(s, a, s′) + γ max

b∈A
q(s′, b)

˜
.

This operator is a contraction in the norm ‖·‖∞:

‖Hq1 −Hq2‖∞ ≤ γ ‖q1 − q2‖∞ .
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Convergence of DP (2)

Q∗ is a vector in R|S|×|A|, a complete metric space endowed with the metric
d(q1, q2) = ‖q1 − q2‖∞. Then, convergence of DP is an immediate
consequence of

Theorem 1 (Banach fixed point theorem). Let (X, d) be a non-empty
complete metric space. Let H : X −→ X be a contraction mapping on X.
Then the map H admits one and only one fixed point x∗ in X (this means
H(x∗) = x∗). Furthermore, this fixed point can be found as follows: start
with an arbitrary element x0 ∈ X and define an iterative sequence by
xn = H(xn−1) for n = 1, 2, 3, . . .. This sequence converges, and its limit is
x∗.
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Convergence of Q-learning

Convergence of Q-learning uses the following simple convergence theorem:

Theorem 2. The random process {∆t} in Rn defined as

∆t+1(x) = (1− αt(x))∆t(x) + αt(x)Ft(x)

converges to zero w.p.1 under the following assumptions:

• 0 ≤ αt ≤ 1,
P

t αt(x) = ∞ and
P

t α2
t (x) < ∞;

• ‖E [Ft(x) | Ft]‖W ≤ γ ‖∆t‖W , with γ < 1;

• var [Ft(x) | Ft] ≤ C(1 + ‖∆t‖2
W ), for C > 0.
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