# Reinforcement learning: Examples and proofs

Francisco S. Melo

fmelo@isr.ist.utl.pt

Reading group on Sequential Decision Making

- A simple problem
- Dynamic programming (DP)
- Q-learning
- Convergence of DP
- Convergence of Q-learning
- Further examples

### A simple problem

#### Problem:

An autonomous robot must learn how to transport material from a deposit to a building facility.



#### The Markov decision process model

Markov Decision Process: (S, A, P, r)

• States: 
$$S = \{1_U, 2_U, 3_U, 1_L, 2_L, 3_L\};$$

 $1_U$  Robot in position 1 (unloaded);

 $2_U$  Robot in position 2 (unloaded);

$$3_U$$
 Robot in position 3 (unloaded);

$$1_L$$
 Robot in position 1 (loaded);

$$2_L$$
 Robot in position 2 (loaded);

$$3_L$$
 Robot in position 3 (loaded)

• Actions: 
$$\mathcal{A} = \{ Left, Right, Load, Unload \};$$

#### The Markov decision process model (2)

 Transition probabilities: "Left"/"Right" move the robot in the corresponding direction; "Load" loads material (only in position 1); "Unload" unloads material (only in position 3).

Ex:

 $\begin{array}{ll} (2_L, {\sf Right}) & \to 3_L; \\ (3_L, {\sf Unload}) & \to 3_U; \\ (1_L, {\sf Unload}) & \to 1_L. \end{array}$ 

• Reward: We assign a reward of +10 for every unloaded package (payment for the service).

- A simple problem
- Dynamic programming (DP)
- $\bullet$  Q-learning
- Convergence of DP
- Convergence of Q-learning
- Some more examples



# Dynamic programming (2)

• The reward r(s, a, s') can also be represented as a matrix Ex:



Recall that

$$Q^*(s,a) = \sum_{s' \in \mathcal{S}} \mathsf{P}_a(s,s') \big[ r(s,a,s') + \gamma \max_{b \in \mathcal{A}} Q^*(s',b) \big].$$

From  $Q^*$  we can compute the optimal policy  $\pi^*$ :

 $\pi^*(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} Q^*(s, a),$ 

and the optimal value function

$$V^*(s) = \max_{a \in \mathcal{A}} Q^*(s, a).$$

# Dynamic programming (4)

Since S and A are finite,  $Q^*(s, a)$  is a matrix.

Iterations of DP:

### Dynamic programming (5)

Iterations of DP:

$$Q_{5} = \begin{bmatrix} 0 & 0 & 8.57 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 8.57 & 9.03 & 8.57 & 8.57 \\ 8.57 & 9.5 & 9.03 & 9.03 \\ 9.03 & 9.5 & 9.5 & 10 \end{bmatrix} Q_{20} = \begin{bmatrix} 18.53 & 17.61 & 19.51 & 18.54 \\ 18.53 & 16.73 & 17.61 & 17.61 \\ 17.61 & 16.73 & 16.73 & 16.73 \\ 19.51 & 20.54 & 19.51 & 19.51 \\ 19.51 & 21.62 & 20.54 & 20.54 \\ 20.54 & 21.62 & 21.62 & 26.73 \end{bmatrix}$$

## Dynamic programming (6)

```
Final Q^* and policy:
```

| $Q^* =$ | 30.75 | 29.21 | 32.37 | 30.75 | $\pi^* =$ | - Load                   | ] |
|---------|-------|-------|-------|-------|-----------|--------------------------|---|
|         | 30.75 | 27.75 | 29.21 | 29.21 |           | Left                     |   |
|         | 29.21 | 27.75 | 27.75 | 27.75 |           | Left                     |   |
|         | 32.37 | 34.07 | 32.37 | 32.37 |           | Right<br>Right<br>Unload |   |
|         | 32.37 | 35.86 | 34.07 | 34.07 |           | Right                    |   |
|         | 34.07 | 35.86 | 35.86 | 37.75 |           | Unload                   |   |
|         |       |       |       |       |           |                          |   |

- A simple problem
- Dynamic programming (DP)
- Q-learning
- Convergence of DP
- Convergence of Q-learning
- Some more examples



$$Q_{t+1}(s,a) = Q_t(s,a) + \alpha_t(s,a) \big( r + \gamma \max_{b \in \mathcal{A}} Q_t(s',b) - Q_t(s,a) \big).$$

- A simple problem
- Dynamic programming (DP)
- Q-learning
- Convergence of DP
- Convergence of Q-learning
- Some more examples

#### Convergence of DP

Given a general function  $q: S \times A \longrightarrow \mathbb{R}$ , define the operator H as

$$(\mathbf{H}q)(s,a) = \sum_{s' \in \mathcal{S}} \mathsf{P}_a(s,s') \big[ r(s,a,s') + \gamma \max_{b \in \mathcal{A}} q(s',b) \big].$$

This operator is a contraction in the norm  $\|\cdot\|_{\infty}$ :

$$\left\|\mathbf{H}q_1 - \mathbf{H}q_2\right\|_{\infty} \leq \gamma \left\|q_1 - q_2\right\|_{\infty}.$$

#### Convergence of DP (2)

 $Q^*$  is a vector in  $\mathbb{R}^{|S| \times |\mathcal{A}|}$ , a complete metric space endowed with the metric  $d(q_1, q_2) = \|q_1 - q_2\|_{\infty}$ . Then, convergence of DP is an immediate consequence of

**Theorem 1** (Banach fixed point theorem). Let (X, d) be a non-empty complete metric space. Let  $\mathbf{H} : X \longrightarrow X$  be a contraction mapping on X. Then the map  $\mathbf{H}$  admits one and only one fixed point  $x^*$  in X (this means  $\mathbf{H}(x^*) = x^*$ ). Furthermore, this fixed point can be found as follows: start with an arbitrary element  $x_0 \in X$  and define an iterative sequence by  $x_n = \mathbf{H}(x_{n-1})$  for  $n = 1, 2, 3, \ldots$  This sequence converges, and its limit is  $x^*$ .

- A simple problem
- Dynamic programming (DP)
- Q-learning
- Convergence of DP
- Convergence of *Q*-learning
- Some more examples

#### **Convergence of** *Q*-learning

Convergence of Q-learning uses the following simple convergence theorem: **Theorem 2.** The random process  $\{\Delta_t\}$  in  $\mathbb{R}^n$  defined as

$$\Delta_{t+1}(x) = (1 - \alpha_t(x))\Delta_t(x) + \alpha_t(x)F_t(x)$$

converges to zero w.p.1 under the following assumptions:

• 
$$0 \le \alpha_t \le 1$$
,  $\sum_t \alpha_t(x) = \infty$  and  $\sum_t \alpha_t^2(x) < \infty$ ;

- $\|\mathbb{E}[F_t(x) \mid \mathcal{F}_t]\|_W \leq \gamma \|\Delta_t\|_W$ , with  $\gamma < 1$ ;
- $\operatorname{var}[F_t(x) \mid \mathcal{F}_t] \leq C(1 + ||\Delta_t||_W^2), \text{ for } C > 0.$