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Background

A Markov chain is a pair (X ,P) where

• X is the (general) state-space;

• P is a transition probability kernel :

P(x,U) = P [Xt+1 ∈ U | Xt = x] ;

• Positive chains admit an invariant probability measure µ;

• Geometrically ergodic chains converge exponentially fast to µ:

∞∑
t=0

ρt
∥∥Pt(x, ·)− µ(·)

∥∥ ≤ ∞,

for all x ∈ X , with ρ > 1.
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Background (2)

An MDP is a tuple (X,A,P, r, γ) where

• X is the (general) state-space;

• A is the finite action-space;

• P is a controlled transition probability kernel :

Pa(x, U) = P [Xt+1 ∈ U | Xt = x,At = a] ;

• r : X ×A×X → R is a reward function;

• γ is a discount factor.
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Background (3)

• The optimal value function is

V ∗(x) = max
{At}

E

[ ∞∑
t=0

γtR(Xt, At) | X0 = x

]
;

• V ∗ verifies the Bellman optimality equation

V ∗(x) = max
a∈A

∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy);

• The optimal Q-function is simply

Q∗(x, a) =
∫
X

[
r(x, a, y) + γV ∗(y)

]
Pa(x, dy).
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Background (4)

• TD(0) evaluates a policy δ using the update

Vt+1(Xt) = Vt(Xt) + αt

[
Rt + γVt(Xt+1)− Vt(Xt)

]
;

• Q-learning determines the optimal Q∗ using the update

Qt+1(Xt, At) = Qt(Xt, At)+αt

[
Rt+γ max

b∈A
Qt(Xt+1, b)−Qt(Xt, At)

]
.
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Some history

• Samuel’s pioneer works in machine learning (late 50’s/early 60’s)
describe an artificial checker’s player and a “feature”-based
approximation [19, 20];

• In 1992, Tesauro combined TD(λ) and non-linear function
approximation (using a neural network). Its results boosted the
interest int the problem of generalization [27, 28, 29];

• In 1993, Thrun and Schwartz discuss the use of reinforcement
learning with function approximation [30];

• Singh et al. propose the use of soft-state aggregation with
reinforcement learning, proving convergence w.p.1 of the obtained
method;
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Some history (2)

• Soft-state aggregation was further addressed by Gordon [12] and
Tsitsiklis and Van Roy [31];

• Baird [3] and Gordon [11] provide divergent counter-examples for
Q-learning and SARSA. Baird proposes the use of gradient ascent
algorithms, to overcome the convergence limitations of standard RL
methods with function approximation [2, 4];

• Boyan and Moore [7] and Sutton [23] experimentally evaluate
several approximation architectures;

• Tsitsiklis and Van Roy provide a fundamental analysis of TD(λ) with
function approximation, establishing convergence w.p.1 for linear
function approximation [32];

• The fundamental insight was further explored in other works [5, 8, 9]

Slide 10

'

&

$

%

Some history (3)

Recent days have witnessed several new and exciting works, namely:

• Functional Q-learning [6];

• Off-policy TD(λ) with established convergence [17];

• Kernel-based reinforcement learning [16];

• Interpolation based Q-learning [26];

• Other [1, 13, 15, 25].
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Main idea

• Require the sampling policy to yield a geometrically ergodic chain;

• Aproximate the algorithm

θt+1 = θt + αtH(θt, Xt+1)

by considering the “average” algorithm

θ̃t+1 = θ̃t + αtEµ [H(θt, Xt+1)] .

• Writing h(θ) = Eµ [H(θ, Xt+1)], analyze the ODE

θ̇t = h(θt).

May 7th, 2007 Slide 25



Slide 13

'

&

$

%

TD(0) with linear function approximation

• Consider a fixed policy δ;

• Aproximate the function V δ as a linear combination of basis
functions ξi, i = 1, . . . ,M :

V δ(x) ≈ Ṽ (x, θ) =
M∑
i=1

ξi(x)θi = ξ>(x)θ.

• Iterate in θ using the update

θt+1 = θt + αtξ(Xt)
[
Rt + γV (Xt+1, θt)− V (Xt, θt)

]
.
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TD(0) with linear function approximation

• Using the previous approach, the ODE becomes

θ̇t+1 = Eµ [A(Xt)] θt + Eµ [b(Xt)] ,

with a negative definite matrix A. Then,

θ∗ = −Eµ [A(Xt)]
−1 Eµ [b(Xt)]

is a globally asymptotically stable equilibrium point of the ODE;
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TD(0) with linear function approximation

The limit point is the fixed point V̂ = PVTδV̂ .

V δ

V

PVV δ

V̂ = PV(TδV̂ )
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Problems with Q-learning:

The fixed point V̂ = PVTδV̂ exists because:

• Tδ is a contraction in the 2-norm;

• PV is a non-expansion in the 2-norm;

• The combined operator PVTδ is a contraction in the 2-norm.

But the operator H associated with Q∗ is a contraction in the
sup-norm...
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Interpolation-based Q-learning

• An idea is to use a “projection-like” operator P that is a
non-expansion in the sup-norm;

• Interpolation-based Q-learning defines a set of points
I = {(x1, a1), . . . , (xM , aM )} and uses the projection-like operator

(Pq)(x, a) = Fθ(x, a),

where Fθ is a convex interpolator and θ is a vector such that
θi = q(xi, ai);
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Interpolation-based Q-learning

• The parameters θ are updated using the rule

θt+1 = (1− α)θt + αtgε(Xt, At)
[
Rt + γ max

b∈A
Fθt(Xt+1, b), θt)

]
;

• The limit point is now the fixed point Q̂ = PĤQ̂.
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