
Planning with Continuous Actions in Partially
Observable Environments

Matthijs T. J. Spaan and Nikos Vlassis
Informatics Institute, University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{mtjspaan,vlassis}@science.uva.nl

Abstract— We present a simple randomized POMDP al-
gorithm for planning with continuous actions in partially
observable environments. Our algorithm operates on a set of
reachable belief points, sampled by letting the robot interact
randomly with the environment. We perform value iteration
steps, ensuring that in each step the value of all sampled belief
points is improved. The idea here is that by sampling actions
from a continuous action space we can quickly improve the
value of all belief points in the set. We demonstrate the
viability of our algorithm on two sets of experiments: one
involving an active localization task and one concerning robot
navigation in a perceptually aliased office environment.

I. INTRODUCTION

Planning is a central problem in robotics: it involves
computing a sequence of actions that accomplish a task
as effectively as possible. Classical motion planning [1]
for instance computes a series of motor commands which
will move a robot to a desired location. In this paper we
specifically focus on planning for robots which have a con-
tinuous set of actions at their disposal. Example scenarios
include navigating to an arbitrary location, or rotating a
pan-and-tilt camera at any desired angle. Moreover, in the
type of domains we are considering the robot is uncertain
about the exact effect of its action; it might for instance
end up at a different location than it aimed for, because of
errors in the robot motion. Furthermore, in most realistic
scenarios the robot cannot determine with full certainty
the true state of the environment with a single sensor
reading, i.e., the environment is only partially observable
to the robot. Not only are its sensors likely to suffer
from noise, the robot’s environment is often “perceptually
aliased”. This phenomenon occurs when different parts of
the environment appear similar to the sensor system of the
robot, but require different actions.

Partially observable Markov decision processes
(POMDPs) provide a rich mathematical framework
for acting optimally in such partially observable
environments [2]. The POMDP defines a sensor model
specifying the probability of observing a particular sensor
reading in a specific state and a stochastic transition
model which captures the uncertain outcome of executing
an action. The robot’s task is defined by the reward it
receives at each time step, and its goal is to maximize
the discounted cumulative reward it gathers. Assuming a

discrete state space, the POMDP framework allows for
capturing all uncertainty introduced by the transition and
observation model by defining and operating on the belief
state of a robot. A belief state is a probability distribution
over all states and summarizes all information regarding
the past.

Computing optimal planning solutions for POMDPs is
an intractable problem for any reasonably sized task [3],
[4], calling for approximate solution techniques [5], [6]. A
recent line of research on approximate POMDP algorithms
focuses on the use of a sampled set of belief points on
which planning is performed [6], [7], [8], [9], [10], [11].
The idea is that instead of planning over the complete
belief space of the robot (which is intractable for large
state spaces), planning is carried out only on a limited
set of prototype beliefs that have been sampled by letting
the robot interact (randomly) with the environment. The
computed policy generalizes over the complete belief space
via a set of hyperplanes that cause nearby beliefs to share
the same policy.

In previous work [10] we developed a simple random-
ized point-based POMDP algorithm called PERSEUS. We
applied it to robotic planning problems featuring large state
spaces and high dimensional observations, but with discrete
action spaces. In PERSEUS we perform value iteration
steps, ensuring that in each step the value of all sampled
belief points is improved, by only updating the value and its
gradient of a randomly selected subset of points. Extending
this scheme, we propose in this paper CA-PERSEUS, an
algorithm for planning with continuous actions in partially
observable environments, which is particularly relevant in
robotics. Obviating the need to discretize a robot’s action
space allows for more precise control. Most work on
POMDP solution techniques targets discrete action spaces.
Exceptions include the application of a particle filter to a
continuous state and action space [12] and certain policy
search methods [13]. We report on experiments in an ab-
stract active localization domain in which a robot can con-
trol its range sensors to influence its localization estimate,
and on results from a navigation task involving a mobile
robot with omnidirectional vision in a perceptually aliased
office environment. We will demonstrate that CA-PERSEUS
can compute successful policies for these domains.

II. POMDP PLANNING

We start by reviewing briefly the POMDP framework
from a robotic point of view, followed by techniques to
(approximately) solve POMDPs. The POMDP framework
allows one to define a task for a robot with noisy sensors
and stochastic actions. At any time step the environment
is in a state s ∈ S. A robot inhabiting this environment
takes an action a ∈ A and receives a reward r(s, a) from
the environment as a result of this action. The environment
switches to a new state s′ according to a known stochastic
transition model p(s′|s, a). The transition model is often
assumed Gaussian when a is a movement action, reflecting
errors in the robot motion. The robot then perceives an
observation o ∈ O that depends on its action. This obser-
vation provides the robot with information about the state
s′ through a known stochastic observation model p(o|s, a).
The observation model captures the sensory capabilities
of the robot. The sets S, O and A are assumed discrete
and finite here, but we will generalize to continuous A in
Section III.

In order for a robot to choose its actions successfully
in such a partially observable environment some form of
memory is needed. In belief based POMDP solving we
maintain a discrete probability distribution b(s) over states
s that summarizes all information about the past. This
distribution, or belief, is a Markovian state signal and can
be updated using Bayes’ rule each time the robot takes an
action a and receives an observation o, as follows:

bo
a(s′) =

p(o|s′, a)

p(o|a, b)

∑

s∈S

p(s′|s, a)b(s), (1)

where p(o|a, b) =
∑

s′∈S p(o|s′, a)
∑

s∈S p(s′|s, a)b(s) is
a normalizing constant.

Given such a belief space, the planning task becomes
one of computing an optimal policy, a mapping from
beliefs to actions that maximizes the expected discounted
future reward of the robot E[

∑∞
t γtr(st, at)], where γ is

a discount rate, 0 ≤ γ < 1. A policy can be defined by
a value function, which defines the expected amount of
future discounted reward for each belief state. The value
function of an optimal policy is called the optimal value
function and is denoted by V ∗, which satisfies the Bellman
optimality equation V ∗ = HV ∗, or

V ∗(b) = max
a∈A

[

∑

s∈S

r(s, a)b(s) + γ
∑

o∈O

p(o|a, b)V ∗(bo
a)

]

,

(2)
with bo

a given by (1), and H is the Bellman backup
operator [14]. When (2) holds for every b in the belief
space we are ensured the solution is optimal.

A. Value iteration in POMDPs

A classical method for solving POMDPs is value iter-
ation. This method iteratively builds better estimates of
V ∗ by applying the operator H to an initially piecewise

linear and convex value function V0 [15]. The intermediate
estimates V1, V2, . . . will then also be piecewise linear and
convex. We will throughout assume that a value function
Vn at step n is represented by a finite set of vectors
(hyperplanes) {α1

n, α2
n, . . .}. Additionally, with each vector

an action a(αi
n) ∈ A is associated, which is the optimal

one to take in the current step, assuming optimal actions are
executed in following steps. Given a set of vectors {αi

n}
|Vn|
i=1

in Vn, the value of a belief b is given by

Vn(b) = max
{αi

n}i

b · αi
n, (3)

where (·) denotes inner product. The gradient of the value
function at b is given by the vector αb

n = arg max{αi
n}i

b ·

αi
n, and the policy at b is given by π(b) = a(αb

n).
The main idea behind many value iteration algorithms

for POMDPs is that for a given value function Vn and a
particular belief point b we can easily compute the vector
αb

n+1 of HVn such that

αb
n+1 = arg max

{αi
n+1

}i

b · αi
n+1 (4)

where {αi
n+1}i is the (unknown) set of vectors for HVn.

We will denote this operation α = backup(b). It computes
the optimal vector for a given belief b by back-projecting
all vectors in the current horizon value function one step
from the future and returning the vector that maximizes
the value of b. In particular, defining ra(s) = r(s, a), it
is straightforward to show that combining (1), (2), and (3)
gives [11]:

Vn+1(b) = max
a

[

b · ra + γ
∑

o

max
{gi

a,o}i

b · gi
a,o

]

, with (5)

gi
a,o(s) =

∑

s′

p(o|s′, a)p(s′|s, a)αi
n(s′). (6)

Applying the identity maxj b·αj = b·arg maxj b·αj in (5)
twice, we can compute the vector backup(b) as follows:

backup(b) = arg max
{gb

a}a∈A

b · gb
a, with (7)

gb
a = ra + γ

∑

o

arg max
{gi

a,o}i

b · gi
a,o. (8)

Note that the backup operator in (7) requires enumerating
all actions, which is not feasible in practice when the action
space is continuous.

Although computing the vector backup(b) for a given
b is straightforward, locating all vectors ∪bbackup(b) of
HVn typically requires linear programming and is therefore
costly in high dimensions [2]. A promising way to sidestep
this issue is to sample in advance a set of belief points
from the belief simplex, and then perform value updates
on these points only [5], [6], [7], [9], [10], [11]. Point-
based solution techniques are justified by the fact that in
most robotic problem settings the belief simplex is sparse,
in the sense that only a limited number of belief points

can ever be reached when the robot directly interacts with
the environment. In these cases, one would like to plan
only for those reachable beliefs instead of planning over
the complete belief simplex.

In [10] we described PERSEUS, a simple approximate
point-based algorithm for solving POMDPs which we have
applied to robotic planning. The key idea is that, in each
value iteration step, we can improve the value of all points
in the belief set by only updating the value and its gradient
of a randomly selected subset of the points. We performed
experiments in benchmark problems from literature, and
PERSEUS turns out to be very competitive to state-of-the-
art methods in terms of solution quality and computation
time. We show here that this scheme of ‘partial’ value
updates is also very well suited for handling problems with
continuous action spaces.

III. PLANNING WITH CONTINUOUS ACTIONS

In [10] our PERSEUS POMDP algorithm assumed dis-
crete action sets. Here we extend PERSEUS to handle prob-
lems with continuous action spaces. Instead of considering
a finite and discrete action set A we parameterize the
robot’s actions on a set of k, problem-specific parameters
θ = {θ1, θ2, . . . , θk}. These parameters are real valued and
can for instance denote the angle by which the robot ro-
tates. Computing a policy containing such actions requires
modifying the backup operator defined in Section II-A,
since A now contains an infinite numbers of actions (and
therefore maximization over these is not straightforward).
The idea here is that instead of maximizing over all a ∈ A,
we sample actions at random from A, compute their backed
up vectors, and check whether one of the resulting vectors
improves the value of the corresponding belief point. The
backup operator as defined in (7) is replaced by a backup
operator α = backup′(b):

backup′(b) = arg max
{gb

a}a∈A′

b

b · gb
a, with (9)

A′
b = {ai : ai is drawn from A}, (10)

and gb
a as defined in (8). We draw at random a set A′

b from
the continuous set A, in particular specific θ vectors which
define actions and which in turn define the gb

a vectors. We
can easily incorporate such a backup operator in PERSEUS
as we will show next.

We first let the robot randomly explore the environment
and collect a set B of reachable belief points. Our CA-
PERSEUS algorithm performs a number of backup stages.
In each backup stage, given a value function Vn, we
compute a value function Vn+1 that improves the value
of all b ∈ B. Often, a small number of vectors will be
sufficient to improve Vn(b) ∀b ∈ B (especially in the first
steps of value iteration), and we compute these vectors
in a randomized greedy manner by sampling from B. We
initialize the value function V0 as a single vector with all
its components equal to 1

1−γ
mins,a r(s, a) [16]. Starting

with V0, we perform a number of value function update
stages until convergence (which is guaranteed [11], [7]).
In particular, given Vn, a backup stage is as follows:

CA-PERSEUS backup stage

1) Set Vn+1 = ∅. Initialize B̃ = B.
2) Sample a belief point b uniformly at random from B̃

and compute α = backup′(b).
3) If b · α ≥ Vn(b) then add α to Vn+1, otherwise add

α′ = arg maxα∈Vn
b · α to Vn+1.

4) Compute B̃ = {b ∈ B : Vn+1(b) < Vn(b)} . If
B̃ = ∅ then stop, otherwise go to 2.

The algorithm tries in each backup stage to improve the
value of all points in B (step 4). If some points are not
improved yet (set B̃), one of them is selected at random
and a corresponding vector is generated (step 2). If the
vector improves the value of the selected point b we add it
to Vn+1 and update Vn+1(b) for all b ∈ B. If not, we
ignore the vector and insert a copy of the maximizing
vector of b from Vn in Vn+1. Adding a vector improves
the value of hopefully many non-improved points, and the
process continues until all points are improved. Essentially
our value update scheme defines an approximate Bellman
backup operator that improves (instead of maximizes) the
value of all belief points in each iteration, and turns out to
be very successful in practice. It is exactly this “improve-
only” principle that justifies the use of the randomized
operator backup′ (9) in step 2 of the algorithm instead
of the deterministic operator backup (7).

An alternative to sampling for handling continuous
action spaces is to discretize the action space. A com-
putational advantage of reducing the action space to a
set of discrete actions is the fact that when A is small
enough one can cache in advance the explicit tabular
representation of the transition, observation and reward
models for all a ∈ A. In contrast, when we sample a
real-valued action we have to generate from a parametric
description of these models their tabular representation,
necessary for computing (6). However, discretization has
its limits, particularly when considering scalability. The
number of discrete actions grows exponentially with k,
the number of dimensions of θ. For instance, consider a
robotic arm with a large number of joints or, as in one of
the experiments below, a robot which can control a number
of sensors at the same time: discretization would require a
number of bins that is exponential in the number of joints
or sensors, respectively. Furthermore, the discretization can
lead to worse control performance, as demonstrated in the
second set of experiments. Clearly, working directly with
continuous actions allows for more precise control.

IV. EXPERIMENTS

We applied our algorithm in two domains: an abstract
active localization domain in which a robot can control its

PSfrag replacements

reward

-1

-4

-6

-8

-10

-12

-14

-16

-18

-20

0

0.2

0.4

0.5

0.6

0.8

1

1.2

1.4

1.5

1.6

1.8

2

2.5

3

3.5

4

5

8

10

20

40

50

60

80

100

120

140

150

160

200

400

500

600

800

1000

1200

1400

1500

1600

1800

2000

2500

3000

4000

6000

8000

10000

C

V
time (s)

∆π

of vectors

Fig. 1. Environment of the ALH problem. The dots indicate the states, the
star depicts the goal state and the black square represents the robot. The
four lines show the range of its sensors when they are set to θn,e,s,w =
{0.61, 1.12, 0.81, 0.39}.

range sensors to influence its localization estimate and a
navigation task involving a mobile robot with omnidirec-
tional vision in a perceptually aliased office environment.

A. Active localization

We first tested our approach on a navigation task in a
simulated environment. The Active Localization Hallway
(ALH) environment represents a 20× 10 m hallway which
is highly perceptually aliased (see Fig. 1). The robot
inhabiting the hallway is equipped with four range sensors,
each observing one compass direction. The robot can set
the range of each sensor, up to a certain limit. We assume
a sensor can only detect whether there is a wall within its
range or not (but with perfect certainty), resulting in a total
number of 16 possible observations. The task is to reach a
goal location located in an open area where there are no
walls near enough for the robot to detect. We would like
the robot also to take into account its energy consumption.
Moving as well as using the sensor above its default range
requires energy and is penalized. The robot is initialized at
a random state in the hallway with no knowledge regarding
its location, i.e., its belief is uniform. By moving through
the hallway and adjusting its sensors at each step the robot
receives information indicating its location. The better it
controls the range of its sensors, the more accurate it can
localize itself and the easier it is to find a path to the
goal. Thus, the robot should not only learn what movement
actions to take in order to reach the goal, but also how to
set its sensors.

The robot’s actions are defined by the parameters θ =
{θm, θn, θe, θs, θw}. At each time step the robot has to set
θm to one out of four basic motion commands {north, east,
south, west} which transports it according to a Gaussian
distribution centered on the expected resulting position
(translated one meter in the corresponding direction). It sets
the range of each its sensors {θn, θe, θs, θw} to a real value
on the interval [0, 2]m. We assume that setting a sensor’s
range higher than its default range of 0.5m costs energy and
we penalize with a reward of −0.01 per meter, resulting
in a reward of −0.06 if all sensors are fired at maximum
range. Each movement is also penalized, with a reward of

TABLE I
ACTION SAMPLING STRATEGIES TESTED IN THE ALH DOMAIN.

strategy θm θn θe θs θw

0 {n, e, s, w} 0.5 0.5 0.5 0.5

1 {n, e, s, w} [0, 2] 0.5 0.5 0.5

2 {n, e, s, w} [0, 2] [0, 2] 0.5 0.5

3 {n, e, s, w} [0, 2] [0, 2] [0, 2] 0.5

4 {n, e, s, w} [0, 2] [0, 2] [0, 2] [0, 2]

PSfrag replacements

re
w

ar
d

-1

-4

-6

-8

-10

-12

-14

-16

-18

-20

0

0

0.2

0.4

0.5

0.6

0.8

1

1.2

1.4

1.5

1.6

1.8

2

2.5

3

3.5

4

5

8

10

20

40

50

60

80

100

120

140

150

160

200 400

500

600 800 1000 1200 1400

1500

1600 1800 2000

2500

3000

4000

6000

8000

10000

C

V

time (s)

∆π

of vectors

4

4

3.5

3

3

2.5

2

2

1.5

1
1

0.5

Fig. 2. Performance in ALH domain for 5 different strategies, averaged
over 5 runs. The y-axis depicts the expected discounted reward (estimated
by sampling 1, 000 trajectories) and the x-axis indicates CPU time used
by CA-PERSEUS in seconds.

−0.12 per step. The reward obtainable at the goal location
is 10. As our algorithm assumes a finite and discrete set S

we need to discretize the state space (and consequently the
transition model), which is defined as the robot’s location.
For discretizing the positions in the map of the environment
we performed a straightforward k-means clustering on a
random subset of all possible positions, resulting in a grid
of 100 positions, depicted in Fig. 1.

To test the feasibility of our algorithm, i.e., whether it
can compute successful policies by sampling actions at
random, we ran it with several different action sampling
strategies. At each backup a single action is sampled
uniformly at random (|A′

b| = 1 in (10)). The sampling
strategy determines from what range each parameter in θ

is sampled, and here it defines how many sensors the robot
can control. Strategy 0 restricts the robot to only setting
θm, with θn,e,s,w fixed at the default range, while strategy
4 allows full control of all sensors. Table I summarizes the
five strategies we tested. Note that strategy 0 in fact reduced
the action space to a discrete set of four actions. For each
strategy a belief set B of 10, 000 points was gathered by
simulating a random walk of the robot through the hallway.
We ran our algorithm 5 times (with different random seeds)
for each strategy and the plots are averaged over these five
runs. To evaluate the computed value function estimates
we collected rewards by sampling 10 trajectories from 100

PSfrag replacements

reward

-1

-4

-6

-8

-10

-12

-14

-16

-18

-20

0

0.2

0.4

0.5

0.6

0.8

1

1.2

1.4

1.5

1.6

1.8

2

2.5

3

3.5

4

5

8

10

20

40

50

60

80

100

120

140

150

160

200

400

500

600

800

1000

1200

1400

1500

1600

1800

2000

2500

3000

4000

6000

8000

10000

C

V
time (s)

∆π

of vectors

PSfrag replacements

reward

-1

-4

-6

-8

-10

-12

-14

-16

-18

-20

0

0.2

0.4

0.5

0.6

0.8

1

1.2

1.4

1.5

1.6

1.8

2

2.5

3

3.5

4

5

8

10

20

40

50

60

80

100

120

140

150

160

200

400

500

600

800

1000

1200

1400

1500

1600

1800

2000

2500

3000

4000

6000

8000

10000

C

V
time (s)

∆π

of vectors

Fig. 3. cTRC Problem: Panoramic image corresponding to a prototype
feature vector ok ∈ O, and below its induced p(s|ok). The darker the
dot, the higher the probability.

random starting locations. In our experiments we used a
discount factor γ = 0.95 and each trajectory was stopped
after a maximum of 100 steps (if the robot had not reached
the goal by then).

Fig. 2 shows the expected discounted cumulative reward
for each of the strategies. We see that allowing the robot
to control more sensors improves its performance. The
algorithm does not seem to be hampered by the increased
dimensionality of the action space, as it computes better
policies in the same amount of time (using roughly the
same amount of vectors). It learns that the advantage of a
more accurate localization outweighs the cost of increasing
the range of its sensors. We can see that the discrete
strategy 0 performs poorly, because of its limited range of
sight, even though we can cache the tabular representation
of its transition, observation and reward models. Visual
inspection of the computed policies suggests that the robot
learns that repeated switching between long and short range
settings allows it to more accurately determine the distance
to the corresponding wall.

Depending on the problem to be solved, more informed
schemes could be devised than sampling only a single
action uniformly at random at each backup. One option
would be to expand A′

b to include actions sampled from a
Gaussian distribution centered on the best known action so
far (for the particular belief b). Preliminary results suggest
that such a sampling scheme improves the control quality
in the ALH domain.

B. Arbitrary heading navigation

To evaluate our algorithm on a more realistic prob-
lem and compare against discretized action sampling we
also include the cTRC domain. In this problem a mobile
robot with omnidirectional vision has to navigate a highly

PSfrag replacements

re
w

ar
d

-1

-4

-6

-8

-10

-12

-14

-16

-18

-20

0

0.2

0.4

0.5

0.6

0.8

1

1.2

1.4

1.5

1.6

1.8

2

2.5

3

3.5

4

5

8

10

20

40

50

60

80

100

120

140

150

160

200

400

500

600

800

1000

1200

1400

1500

1600

1800

2000 2500 3000

4000

6000

8000

10000

C

V

time (s)

∆π

of vectors

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0

(a) Reward.

PSfrag replacements

reward

-1

-4

-6

-8

-10

-12

-14

-16

-18

-20

0

0.2

0.4

0.5

0.6

0.8

1

1.2

1.4

1.5

1.6

1.8

2

2.5

3

3.5

4

5

8

10

20

40

50

60

80

100

120

140

150

160

200

400

500

600

800

1000

1200

1400

1500

1600

1800

2000 2500 3000

4000

6000

8000

10000

C

V

time (s)

∆π

#
of

ve
ct

or
s

140

120

100

80

60

40

20

0
0

(b) Number of vectors.

Fig. 4. Performance in cTRC domain, averaged over 5 runs. Top figure
depicts the expected discounted reward and the bottom shows the number
of vectors in the value function. In both figures the x-axis indicates CPU
time used by CA-PERSEUS in seconds.

perceptually aliased office environment (see Fig. 3). It is
a variation of the TRC problem introduced in [10], but
with a continuous action space. The robot can decide to
move 5 meters in an arbitrary direction, i.e., its actions are
parameterized by θ = θα ranging on [0, 2π]. We assume a
Gaussian error on the resulting position.

For our observation model we used the MEMORABLE1

robot database that contains a set of approximately 8000
panoramic images collected manually by driving the robot
around in a 17 × 17 meters office environment. As in [10],
we compressed the images with Principal Component
Analysis and applied k-means clustering to create 10 three-
dimensional prototype feature vectors {o1, . . . , o10}. Fig. 3
shows the inverse of the observation model p(o|s) for one

1The MEMORABLE database has been provided by the Tsukuba
Research Center in Japan, for the Real World Computing project.

observation, together with the image in the database closest
to this particular prototype observation. We used the same
technique as in the ALH domain to grid our state space
in 200 states. The task is to reach a certain goal state at
which a reward of 10 can be obtained; each action yields
a reward of −0.12. We used belief sets of 10, 000 points,
γ = 0.95 and other parameters are the same as in ALH.

We compared CA-PERSEUS to two discretized versions
of this problem, in which we allowed the robot to sample
actions from a set of 4 or 8 headings with equal sepa-
ration (offset with a fixed random angle to prevent any
bias resulting from the orientation of the corridors in the
map). Fig. 4 displays results for our algorithm, sampling a
continuous A (“C”) and the two discretized A (“4” and
“8”). In particular, Fig. 4(a) shows the superior control
quality of the continuous A, accumulating more reward
than the discrete cases. Even after 3000s strategy 4 does
not reach the goal in 100% of the cases, while the other
two strategies do. However, CA-PERSEUS when employing
strategy C exploits its ability to move in an arbitrary angle
to find a better policy than both discrete cases. Fig. 4(b)
plots the number of vectors in the value function for each
strategy. Typically this number grows with time, reflecting
the need for a more complex plan representation when the
planning horizon increases. Interestingly, this figure shows
that our algorithm can discover that after a certain planning
horizon, a smaller number of vectors suffice to improve all
points in the belief set.

V. DISCUSSION AND CONCLUSIONS

We presented CA-PERSEUS, a simple randomized
POMDP algorithm for planning with continuous actions in
partially observable environments. CA-PERSEUS operates
on a set of reachable belief points, sampled by letting the
robot interact randomly with the environment. We perform
value iteration steps, ensuring that in each step the value of
all sampled belief points is improved by only updating the
value (and its gradient) of a random subset of the points.
The key point of our algorithm is that we can sample
actions from a continuous action space and use them to
improve the value of all beliefs in a belief set.

Relatively little work has been done on the topic of
planning with continuous actions in POMDPs. Policy
search methods like [13] and particle filters [12] have
been applied to POMDP domains with a continuous state
and action space. As the continuous state space precludes
the computation of a traditional belief state, many nice
properties (e.g., known shape of the value function) are lost.
While we acknowledge the importance of planning over
continuous state spaces, in this work we chose to discretize
our state space. This allows us to take advantage of the
successful point-based belief solution machinery. It could
be a subject of further study how Monte Carlo techniques
can be combined with (point-based) value iteration, or how
to generalize value iteration to continuous state POMDPs.

We evaluated our algorithm on two sets of experiments:
one involving an active localization task and the other
set involved a robot navigating a perceptually aliased
office environment. We demonstrated that our algorithm
can compute successful policies for these domains while
sampling from a continuous set of actions. By obviating
the need to discretize the robot’s action space more precise
control can be achieved. To our knowledge, CA-PERSEUS
is the first (point-based) value iteration algorithm that can
directly handle continuous actions in POMDPs.

Acknowledgments
This research is supported by PROGRESS, the embed-

ded systems research program of the Dutch organization for
Scientific Research NWO, the Dutch Ministry of Economic
Affairs and the Technology Foundation STW, project AES
5414.

REFERENCES

[1] J. Latombe, Robot Motion Planning. Kluwer Academic Publishers,
1991.

[2] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning
and acting in partially observable stochastic domains,” Artificial
Intelligence, vol. 101, pp. 99–134, 1998.

[3] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov
decision processes,” Mathematics of operations research, vol. 12,
no. 3, pp. 441–450, 1987.

[4] O. Madani, S. Hanks, and A. Condon, “On the undecidability
of probabilistic planning and infinite-horizon partially observable
Markov decision problems,” in Proc. 16th National Conf. on Artifi-
cial Intelligence, Orlando, Florida, July 1999.

[5] W. S. Lovejoy, “Computationally feasible bounds for partially ob-
served Markov decision processes,” Operations Research, vol. 39,
no. 1, pp. 162–175, 1991.

[6] M. Hauskrecht, “Value function approximations for partially observ-
able Markov decision processes,” Journal of Artificial Intelligence
Research, vol. 13, pp. 33–95, 2000.

[7] K.-M. Poon, “A fast heuristic algorithm for decision-theoretic plan-
ning,” Master’s thesis, The Hong-Kong University of Science and
Technology, 2001.

[8] N. Roy and G. Gordon, “Exponential family PCA for belief com-
pression in POMDPs,” in Advances in Neural Information Processing
Systems 15. Cambridge, MA: MIT Press, 2003.

[9] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration:
An anytime algorithm for POMDPs,” in Proc. Int. Joint Conf. on
Artificial Intelligence, Acapulco, Mexico, Aug. 2003.

[10] M. T. J. Spaan and N. Vlassis, “A point-based POMDP algorithm for
robot planning,” in Proceedings of the IEEE International Conference
on Robotics and Automation, New Orleans, Louisiana, 2004, pp.
2399–2404.

[11] ——, “Perseus: randomized point-based value iteration for
POMDPs,” Informatics Institute, University of Amsterdam, Tech.
Rep. IAS-UVA-04-02, Nov. 2004.

[12] S. Thrun, “Monte Carlo POMDPs,” in Advances in Neural Infor-
mation Processing Systems 12, S. Solla, T. Leen, and K.-R. Müller,
Eds. MIT Press, 2000, pp. 1064–1070.

[13] A. Y. Ng and M. Jordan, “PEGASUS: A policy search method
for large MDPs and POMDPs,” in Proc. of Uncertainty in Artificial
Intelligence, 2000.

[14] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming.
Belmont, MA: Athena Scientific, 1996.

[15] E. J. Sondik, “The optimal control of partially observable Markov
decision processes,” Ph.D. dissertation, Stanford University, 1971.

[16] N. L. Zhang and W. Zhang, “Speeding up the convergence of value
iteration in partially observable Markov decision processes,” Journal
of Artificial Intelligence Research, vol. 14, pp. 29–51, 2001.

