
High level coordination of agents based on multiagent
Markov decision processes with roles

Matthijs T. J. Spaan Nikos Vlassis Frans C. A. Groen

Intelligent Autonomous Systems group, Informatics Institute,
Faculty of Science, University of Amsterdam, The Netherlands
{mtjspaan,vlassis,groen}@science.uva.nl

Abstract

We present an approach for coordinating the actions of
a team of real world autonomous agents on a high level.
The method extends the framework of multiagent Markov
decision processes with the notion of roles, a flexible and
natural way to give each member of the team a clear de-
scription of its task. A role in our framework defines the
set of actions and the policy of an agent. Roles are a natu-
ral way of introducing domain prior knowledge to a mul-
tiagent problem and reduce the complexity of the prob-
lem. We have applied this method in the robotic soccer
domain of the RoboCup middle-size league, and present
empirical results obtained at an actual tournament.

1 Introduction

In the field of cooperative robotics several people have
used the concept of assigning roles to agents as a way to
simplify the coordination of the team of agents. We inves-
tigate a formal way to reason about roles and present an
application of them. In this paper we present an approach
for coordinating a team of real world autonomous agents
based on multiagent Markov decision processes. We ex-
tend this framework with the notion of roles, a flexible
and natural way to give each member of the team a clear
description of its task. Roles can be seen as a form of in-
tentional cooperation as they attribute higher level capa-
bilities to the agents and allow for heterogeneous teams.
We assume that explicit communication is possible be-
tween team members to simplify coordination.

We start by reviewing multiagent Markov decision pro-
cesses, extend them with roles and apply them to the
RoboCup middle-size league domain. Next we present
some related work in RoboCup, results from actual
matches and finish with some concluding remarks.

2 Multiagent Markov decision processes

A proper way to formalize a multiagent problem is
to model it as a multiagent Markov decision process

(MMDP) [1] which is an extension of the Markov deci-
sion process framework to multiple agents. An MMDP
can be described as a tuple 〈S,N, {Ai}i∈N , P r,R〉
where S is a set of world states, N is a finite set of agents,
Ai denotes a finite set of actions available to agent i,
Pr : S × A1 × . . . × An × S 7→ [0, 1] is a transition
function and R : S 7→ R denotes a real-valued reward
function. The transition function describes the probabil-
ity Pr(st,×i∈Nai, st+1) of ending up in state st+1 when
executing the joint action of all agents ×i∈Nai in starting
state st. The reward function returns the reward R(s) the
team of agents receives in state s.

Given such an MMDP each agent should choose its ac-
tion so as to maximize the expected future reward of its
team. The selection of an agent’s next action is deter-
mined by its policy, which is a mapping πi : S 7→ Ai.
The policy specifies which action ai agent i should take
in state s. The joint policy π is a vector of the individual
policies {πi}i∈N and specifies a mapping from states to
joint actions.

The task of a team of agents in an MMDP setting is to find
the joint optimal policy π∗ which maximizes the expected
reward according to some optimality criterion. The most
straightforward way of tackling this problem is to regard
the group as one single agent and let some central con-
troller compute π∗. Techniques for finding the optimal
policy in single MDP settings can be applied here.

3 Roles in MMDP

Before giving a rationale why one would like to add
the notion of roles to a multiagent problem we first
extend the MMDP framework with the concept of
roles. An MMDP with roles is defined as a tuple
〈S,N,M, {Am}m∈M , F, Pr,R〉 where S, N and R are
defined as above, M is a finite set of roles, Am de-
notes a finite set of actions associated with role m,
F : S × N 7→ M is a role assignment function and
Pr : S ×AF (s,1) × . . .×AF (s,n) × S 7→ [0, 1] is a tran-
sition function. The role assignment function returns the
role F (s, i) assigned to agent i in state s. Note that mul-

tiple agents can be assigned the same role but no agent
can have more than one role assigned to it.

Each agent i no longer has its own policy πi but instead its
policy is determined by its role m obtained using F (s, i).
So an agent’s policy is defined as πF (s,i) : S 7→ AF (s,i), a
mapping from states to actions associated with the agent’s
particular role. The joint policy π is a vector of the poli-
cies of the assigned roles {πF (s,i)}i∈N .

In [6] a role is defined as an abstract specification of the
set of activities an individual or subteam undertakes in
service of the team’s overall activity. In our framework
a role m records vital clues regarding the desired behav-
ior of the agent by defining the set of possible actions
Am and by specifying the policy πm. This way an agent
can choose its actions with respect to the world state and
its role without having to coordinate the actions with its
teammates all the time. The roles are a form of high level
coordination to prevent the necessity of having to do more
coordination on a lower level. In the soccer domain roles
could for instance describe a striker, a defender or a goal-
keeper. The concept of assigning roles to agents is ap-
plicable in many multiagent domains, i.e. in a cleaning
task where roles exist like vacuum cleaner, sweeper and
mopper.

There are two main advantages of an MMDP with roles
over an MMDP without roles. The first advantage is
that roles are a flexible way of introducing domain prior
knowledge to the problem. In soccer for instance, one
might not be able to predict when the other team will
attack but it is useful to have an agent in a defending
role standing by just in case. In the cleaning task exam-
ple one can imagine that an agent in “Vacuum cleaner”
role should be restricted to vacuuming carpets while an
agent in a “Mopper” role may only clean linoleum sur-
faces floors. Another use of roles might be in partitioning
the building which needs cleaning and having each role
clean a part of it.

Second advantage is that by restricting the action space to
actions fit for a certain task roles reduce the complexity
of the problem. In an application where rapid responses
to changes in the environment are necessary this can be a
crucial factor. By keeping Am small and πm simple one
can make roles fast and more easy to build. However,
a role could also be comprised of a complex policy and
elaborate action set. The set of roles can be anywhere
on this spectrum depending on the application domain.
In robot soccer for instance the role of a striker could be
simple: it needs to find the ball and try to score. A de-
fending role however requires a more complicated policy
as it should assume a good position based on the locations
of its teammates and opponents.

3.1 Assigning roles

A question which remains is how the role assignment
function F operates. On the one side F could impose

a fixed mapping from agents to roles which reduces the
MMDP with roles to one without them. On the other
extreme F could pose no or little restrictions on the map-
ping, which results in a group of agents each pursuing the
role its sees fit without any form of coordination. Both
alternatives are not to our liking, we want both the flex-
ibility of roles as well as some form of coordination in
the team. F should implement a form of dynamic assign-
ment of roles to agents, depending on the capabilities of
each agent, the state of the environment and possibly the
internal state of the other agents in the team.

One solution satisfying the two conditions above is to
have F specify which roles in M will be assigned and
in what order the distribution takes place. F determines
a sequence M ′ of roles where |M ′| ≥ |N |. The se-
quence represents a preference ordering over the roles:
the first role of M ′ is the most important role and should
be assigned first, next the second role should be assigned
etc. This way we are able to dynamically assign roles to
agents and the team can switch configuration upon rel-
evant changes in the world state or team makeup. The
preference ordering in M ′ with regard to the relevance
of a role to the common goal ensures the most important
roles are assigned first and among the biggest group of
available agents, i.e. the most important role can be as-
signed to any of the |N | agents while for a less important
role less agents are available.

Taking this approach for F requires a way to judge what
agent is most suited for a certain role. For this purpose
each role m has a utility function Fm : S × N 7→ R

associated with it. It calculates a utility value Fm(s, i)
which is a real-valued estimate of the utility of agent i

in role m in the current world state s, i.d. how suitable
or useful would agent i be in role m given state s. Fm

depends primarily on an agent’s local perception of the
world state but could be enhanced by information from a
shared world model if available. Another component of
Fm could be the agent’s current role: continuing in the
same role might be stimulated to counter oscillations in
the switching of roles.

When a soccer robot for instance notices the ball is very
close in front, its Fm will be high for those m’s which
describe offensive roles. For defensive roles Fm could
depend on a robot’s bearing and location on the field: de-
fenders are generally close to their own goal and face the
opponent’s goal. If a cleaning robot is in a room with a
dirty carpet it FVacuum cleaner will be high. However if a
lot of dead leafs have been blown inside through an open
window its FSweeper will be even higher.

For teams of heterogeneous robots Fm can differ per
robot. In robotic soccer for instance the goalkeeper usu-
ally has hardware adapted for its specific task. Such a
goalkeeper robot should have a very high utility for role
“DefendGoal” and a very low one for the other roles. The
field player robots have zero utility for role “DefendGoal”

to make sure the goalkeeper robot always gets assigned
the correct role. In the cleaning example different robots
might have different cleaning capabilities, for instance
some may have been equipped with a vacuum cleaner and
a broom while others have a broom and a mop.

As a small example assume the sequence of roles M ′

which needs to be assigned is {m1,m4,m4,m2} and that
four agents participate in the team (|N | = 4). Explicit
communication is used to let each robot broadcast its util-
ity values for the roles in M ′, {Fm}m∈M ′ , to the team.
This way each robot can execute F to determine its own
role and the roles of its teammates.

According to the preference ordering in M ′ role m1 is the
most important role and should be assigned first. Each
agent compares its own Fm1

with the Fm1
values it re-

ceived from its teammates. The agent with the highest
Fm1

value gets assigned role m1 and is removed from the
set of available agents. Next each agent compares utility
values of the second most important role in M ′, so in
our example the Fm4

’s of the three remaining agents are
compared and the selection is made. This process repeats
until all agents have been assigned a role.

If there were only three agents ready for duty (so |N | =
3) m2 would not have been assigned, but as this is the
least important role it is acceptable. So F gracefully han-
dles the case where |M ′| > |N | which is a necessity for
some domains. In robotic soccer for instance robots are
frequently removed and inserted in the game due to ref-
eree decisions or hardware failures. The ordering of M ′

turns out to be crucial here: if only one robot remains
in the team it should assume a role as striker, with two
robots a striker and a goalkeeper seem appropriate, etc.

The exact contents of M ′ as specified by F can be fixed
for an application or depend on the state of the world as
we will see in our robotic soccer application discussed
below.

4 Application in RoboCup

We use a MMDP with roles to coordinate a team of robots
in the RoboCup middle-size league [3]. Dynamically as-
signing roles to agents is a common way of tackling the
problem in RoboCup (see section 6). We implemented a
MMDP with roles in Clockwork Orange, the Dutch Ro-
boSoccer team [4]. The team is a collaboration of the
Delft University of Technology, the Utrecht University
and the University of Amsterdam.

RoboCup middle-size league is a multiagent system con-
sisting of two teams of four autonomous real world agents
playing soccer against each other. The teams are com-
petitive of course, but the members of each team should
cooperate to achieve the common goal: score more goals
than your opponents. The domain is partially observable,
one agent cannot perceive the complete world state with
absolute certainty, but at the moment we do not explicitly

deal with this partial observability. Explicit communica-
tion is allowed but might fail and can be considered as
having a certain cost. Maintaining a shared world model
is in principle possible, but at a cost as it requires large
amounts of communication. As the game is very dynamic
and a team of opponents tries to obstruct an agent’s plans,
the latter should act quickly and respond timely to signif-
icant changes in the world state.

4.1 Team strategy and roles

Which roles need to be assigned is defined by the global
team strategy: the team autonomously switches one team
strategy to another based on ball possession. The team
strategy simply determines the contents of the sequence
of roles M ′. Either your team has the ball and attacks,
the other team has the ball and your team defends, or no-
body has ball possession and your team tries to obtain it.
Table 1 shows M ′ for each team strategy. Note that only
three roles are associated with each team strategy as the
goalkeeper does not actively participate in team play: it
has its fixed role of goalkeeper due to its fundamentally
different hardware.

A robot in role PassiveDefend (PD) waits in front of its
own goal for the opponent team to attack. Role Inter-
ceptBall (IB) chases the ball trying to obtain control over
it. Role ActiveDefend (AD) is a defensive variant of the
previous role. When a robot controls the ball it assumes
role AttackWithBall (AWB), which usually means drib-
bling with it toward the enemy goal followed by a shot.
Role AttackWithoutBall (AWoB) describes an auxiliary
attacker moving toward the enemy goal together with the
main attacker.

The Fm of each role is based on two measures: first one is
the time a robot expects it needs to reach the ball and the
second one is how well the position of a robot is suited
for the role. The first measure is relevant for the ball ori-
ented roles AttackWithBall, InterceptBall and ActiveDe-
fend while the second one is important for the non ball
oriented roles PassiveDefend and AttackWithoutBall.

The set of actions Am associated with each role is a sub-
set of the infinite set offered by the lower level software
responsible for executing actions. This set is infinite as
actions are defined as having a type like “move”, “drib-
ble” or “shoot” and certain continuous parameters such
as target position or heading. Am should not be too big
as we will take into consideration each am ∈ Am when
choosing the next action, and the process should not take
too much time since the robot has to respond quickly.
Next to a set of basic movement, “seek ball” and “chase
ball” actions incorporated in all five Am’s each role has
its specific actions. For instance, AAWB contains several
dribble and shoot actions while APD contains move ac-
tions.

Table 1: Distribution of roles associated with each team strategy.

Team strategy M ′

Attack [AttackWithBall, PassiveDefend, AttackWithoutBall]

Defend [ActiveDefend, PassiveDefend, ActiveDefend]

Intercept [InterceptBall, PassiveDefend, InterceptBall]

4.2 Real-time planning

We have not yet learned the policies πm for all roles but
started with hardwired ones. We employ a form of real-
time planning: for each action am ∈ Am in state st

find the most probable st+1, multiply the reward R(st+1)
with the estimated probability of success to get the utility
of executing am. Execute the action with the maximum
resulting utility. If the shared world model is operational
first run this scenario for each of your teammates and then
for yourself to take their actions into consideration.

The world state is composed of the position, heading and
speed of all known moving objects (plus an estimate of
the uncertainty in these measurements), ball possession
(our team, their team, nobody/unknown) and the current
distribution of roles over the agents. In a continuous
real world domain like RoboCup middle-size league with
complex agents estimating a complete and accurate tran-
sition function Pr is intractable. Therefore we have cho-
sen to simplify Pr: given current state st and action a Pr

calculates only one resulting state st+1 but Pr does esti-
mate the probability of success of a. Our reward function
R takes into account several soccer heuristics: whether
the ball is in one of the goals, ball possession, strate-
gic positioning and how well the location of the robot is
suited for its role. The latter can be considered as part of
the policy πm.

5 Results

Clockwork Orange successfully participated in the
RoboCup 2001 tournament in Seattle, USA reaching the
quarterfinals and at the German Open 2002 tournament
the team became fourth. At RoboCup 2001 seven games
were played, resulting in three victories, one draw and
three losses. At the German Open 2002 tournament
Clockwork Orange played eight matches: four victories,
two draws and two losses. Results regarding team coor-
dination will be presented from the last four and a half1

games from RoboCup 2001 and all German Open 2002
matches. The outcomes of these matches can be found in
table 2.

Next we will discuss a 30 second fragment from the
RoboCup 2001 match against GMD, shown in figure 1.
This fragment gives an example of how our coordina-

1During the half-time interval of the third game the team coordina-
tion implementation was frozen for the rest of the tournament.

tion mechanism works under good conditions: the world
model is consistent at an acceptable degree. The robots
in our team are called Caspar, Ronald and Nomada.

At the start of the fragment Caspar has control over the
ball and each robot believes the team strategy is attack, as
they should. The team has correctly assigned the Attack-
WithBall role to Caspar and the AttackWithoutBall role
to Ronald while Nomada is standing close to the own goal
area in role PassiveDefend. Then Caspar loses the ball,
the team switches to team strategy intercept and the two
attacking robots switch to role InterceptBall. Between
t = 115 and t = 118 there is some confusion whether or
not the opponent controls the ball which leads to oscilla-
tions between team strategies intercept and defend.

At about the same time as Ronald gains possession of the
ball Nomada is neatly shut down and removed from the
game. This means the team has lost its defender and one
of the other two should fill the gap. Ronald does so by
switching to role PassiveDefend at t = 124, after having
been in error for a short while: it was at the same time
as Caspar in role AttackWithBall although it was really
Caspar which controlled the ball.

Figure 1 shows the good performance of our team co-
ordination mechanism under good conditions, but even
then inconsistencies sometimes occur. For instance at
t = 131 Caspar briefly switches to role InterceptBall
when it shouldn’t. The reason is that Caspar’s world
model has not received a position update from Ronald’s
world model for a while, as Ronald has no estimate of
its own position that is accurate enough to communicate.
From Caspar’s point of view it is the only active member
of the team and it should thus fulfill the most important
role in team strategy intercept : InterceptBall. These kind
of problems are common and should be properly dealt
with.

The next table illustrates the mean times between role
changes at the two tournaments together with their stan-
dard deviation and the total period of time concerned:

mean std dev total (hrs:min)

RoboCup 2001 2.50 4.41 3:24

German Open 2002 2.98 4.33 6:33
A plot of the logarithm of these times resembles the
normal distribution N(0, 1).

When preparing for the German Open 2002 tournament
we adjusted the team play of Clockwork Orange to let the

Table 2: Results of Clockwork Orange matches on two international tournaments. Scores should read as Clockwork
Orange vs. opponent team.

RoboCup 2001 German Open 2002

Trackies 0-8 Philips CFT 1-0 Ulm Sparrows 6-0

Fun2maS 5-0 FU-Fighters 4-0 Attempto Tübingen 3-1

Artisti Veneti 3-0 CoPS Stuttgart 0-0 CS Freiburg 2002 (semifinal) 0-7

GMD 1-4 CS Freiburg 2002 0-0 GMD-Musashi 0-3

CS Freiburg 0-4 (round robin match)

Figure 1: Visualization of team strategy, role distribution and ball possession during a 30 second period of the RoboCup
2001 game against GMD. The x-axis displays the wall clock time in seconds since the start of the game. The robots
involved are Ronald, Caspar and Nomada (removed from the game 118.88 seconds after game start). Their role and
team strategy are shown on the y-axis. When one of them has ball possession a line is drawn in the bottom part of the
graph.

Table 4: The portion of time each robot spent in each role against specific opponents.

RoboCup 2001 PD AD IB AWB AWoB Total (s)

Trackies 1050.45

Fun2maS 2256.67

Artisti Veneti 2638.13

GMD 2467.76

CS Freiburg 2843.96

German Open 2002 PD AD IB AWB AWoB Total (s)

Philips CFT 2967.55

FU Fighters 2207.88

CoPS Stuttgart 3729.60

CS Freiburg 2002 (1st) 3300.57

Ulm Sparrows 2676.32

Attempto Tübingen 2286.03

CS Freiburg 2002 (2nd) 2460.83

GMD-Musashi 3314.93

Table 3: Portion of time spent in a certain team strategy.

Attack Defend Intercept

RoboCup 2001

German Open 2002

team follow a more defensive strategy. Table 1 was not
modified, but a restriction was added to the transition of
one team strategy to another. Moving from Defend to In-
tercept was forbidden, which means the team can only
leave the defensive team strategy by obtaining control
over the ball. Table 3 shows the effect of this change: at
the German Open 2002 tournament the paramount team
strategy was Defend in contrast to the RoboCup 2001
tournament where team strategy Intercept was used most
of the time.

The distribution of roles over robots can be found in ta-
ble 4. The difference between the RoboCup 2001 and
German Open 2002 matches is immediately clear: a shift
from role InterceptBall (most important role of Intercept)
to role ActiveDefend (most important role of Defend) has
taken place as was to be expected after the team play ad-
justment. The table also shows that the AttackWithout-
Ball role has been assigned only a small amount of time.
It is the least important role of team strategy Attack which
means it will only be used if there are three field players
active and one of them has ball possession.

To see the influence of a robot’s role on its action selec-
tion we have included tables 5 and 6. They show what
type of actions have been chosen while the robot was in a
certain role. The tables demonstrate that a robot’s role
influences the kind of actions it takes. Chase actions,
whose purpose it is to obtain the ball, are not used as
much in roles PassiveDefend and AttackWithoutBall as
in the other roles, which one would expect given their na-
ture. The AttackWithBall role is the only role which uses
Dribble actions often which fits with the definition of the
role: try to dribble with the ball to the opponent team’s
goal and shoot. Even AttackWithBall only shoots a very
small amount of time, but that seems consistent with hu-
man soccer.

6 Related work

Distributing roles among the field players is quite com-
mon in RoboCup middle-size league. The players of CS
Freiburg distribute roles amongst themselves, namely an
active, support and strategic role [7]. The active robot
tries to get the ball, a support player attempts to assist
by positioning itself appropriately and a strategic player
occupies a defending position. Each robot determines its
utility to pursue a certain role and informs its teammates.

Based on these utilities a robot chooses his role.

Roles are also distributed among the players of ART [2].
The roles they define are a main attacker which demands
ball possession, a supporting attacker and a defender. The
protocol for distribution of the roles among the players is
based on two utility functions. Every cycle each robot
computes both utility functions based on its perception
of the world and sends the results to its teammates. The
robot with the lowest result for the first utility function
becomes the main attacker while the remaining two field
players compare the value of the second utility function.
The one with the lowest value takes the role of supporting
attacker and the other one becomes defender.

Dynamic role assignment based on utility functions
seems a flexible way for achieving cooperation, but most
of the standard role distributing schemes as designed by
other middle-size league teams seem to specify just three
roles and focus on attacking. Adding the concept of a
global team strategy allows us to guide the team better in
circumstances which e.g. ask for defensive instead offen-
sive play. Our team strategy extends the concept of for-
mation as defined in [5] by assigning priorities to the roles
to cope with a variable number of participating agents.

7 Conclusions

We have presented an approach for coordinating the ac-
tions of a team of real world agents on a high level, its
application on the robotic soccer domain and empirical
results obtained at an actual tournament. The extension
of multiagent Markov decision processes with the con-
cept of roles seems justified: they provide a flexible so-
lution to the problem of distributing the global task of a
team among its members. Roles reduce the amount of
low level coordination necessary and they clearly influ-
ence the actions an agent takes. Future work includes
dealing with the partial observability of the domain and
moving from hand coded policies to ones obtained by re-
inforcement learning.

Acknowledgments

This research is supported by PROGRESS, the embed-
ded systems research program of the Dutch organisation
for Scientific Research NWO, the Dutch Ministry of Eco-
nomic Affairs and the Technology Foundation STW.

References

[1] Craig Boutilier. Planning, learning and coordination in mul-
tiagent decision processes. In Theoretical Aspects of Ratio-
nality and Knowledge, pages 195–201, 1996.

[2] C. Castelpietra, L. Iocchi, M. Piaggio, A. Scalzo, and
A. Sgorbissa. Communication and coordination among het-
erogeneous mid-size players: ART99. In P. Stone, T. Balch,
and G. Kraetzschmar, editors, RoboCup 2000: Robot Soccer
World Cup IV. Springer-Verlag, 2001.

Table 5: The portion of time spent executing an action of a certain type while in a certain role. Data is from all field
player robots during the last four and a half games of RoboCup 2001.

Turn Move Dribble Shoot Seek Chase Total (s)

PD 3529.41

AD 1325.78

IB 4238.73

AWB 1812.27

AWoB 326.89

Table 6: Same type of table as 5, only the data has been obtained at the German Open 2002 tournament.

Turn Move Dribble Shoot Seek Chase Total (s)

PD 5955.67

AD 9603.47

IB 2629.04

AWB 2472.25

AWoB 337.72

[3] M. T. J. Spaan and F. C. A. Groen. Team coordination among
robotic soccer players. In G. Kaminka, P. U. Lima, and
R. Rojas, editors, RoboCup 2002. Springer-Verlag, to appear.

[4] M. T. J. Spaan, M. Wiering, R. Bartelds, R. Donkervoort,
P. Jonker, and F. Groen. Clockwork Orange: The Dutch Ro-
boSoccer Team. In A. Birk, S. Coradeschi, and S. Tadokoro,
editors, RoboCup 2001. Springer-Verlag, to appear.

[5] P. Stone and M. Veloso. Task decomposition, dynamic role
assignment, and low-bandwidth communication for real-
time strategic teamwork. Artificial Intelligence, 110, 1999.

[6] M. Tambe. Towards flexible teamwork. Journal of Artificial
Intelligence Research, 7:83–124, 1997.

[7] Th. Weigel, W. Auerbach, M. Dietl, B. Dümler, J. Gut-
mann, K. Marko, K. Müller, B. Nebel, B. Szerbakowski, and
M. Thiel. CS Freiburg: Doing the right thing in a group. In
P. Stone, T. Balch, and G. Kraetzschmar, editors, RoboCup
2000: Robot Soccer World Cup IV. Springer-Verlag, 2001.

