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Abstract— In this work we focus on the problem of prob-
abilistic sensor fusion in Multi-Robot Multi-Sensor Systems
(MRMS), taking into account that some sensors might fail
or produce erroneous information. We study fusion methods
that can successfully cope with situations of agreement, partial
agreement, and disagreement between sensors. We define a set
of specifications for fusion methods appropriate for MRMS
environments. In light of these specifications, we review two
popular algorithms for probabilistic sensor fusion, Linear
Opinion Pool (LOP) and Logarithmic Opinion Pool (LGP).
To overcome difficulties of applying them to a MRMS setting,
a new method is introduced, p-norm Opinion Pool (POP).
Comparing to LOP and LGP, POP is more compatible with the
specifications and more flexible, successfully handling situations
of agreement and disagreement between sensors. Through simu-
lation and real-world experiments, we check performance of the
POP and compare it with LOP and LGP. We also implement a
real-world experiment through which the performance of POP

is examined.

I. INTRODUCTION

Autonomous robots depend on information provided by

their sensors to interact with the environment. However,

sensors in general provide noisy and uncertain information,

and might even fail completely in certain situations. Sensor

fusion is a strategy to reduce inherent uncertainty of informa-

tion provided by sensors. In our work, the goal is to find an

axiomatic fusion method to combine the measurements re-

ceived from several probabilistic sensors, taking into account

that some of them might fail. Fusion of such information

can lead to disagreement among sensors and generates large

error.

To motivate our work, the following example shows how

some fusion methods, e.g., using Weighted Linear Combi-

nation of observations (WLC 1) [1] and standard Bayesian

methods are sensitive to sensor failure. In this example,

we attempt to track a robot by the information provided

by the robot odometry sensor and a number of ceiling

mounted cameras. All information is routed to a central

processing unit. Sensors noise is considered to be Gaussian.

To estimate the robot position, first, the information received

from the cameras is fused. Then, by using a filter, the fused
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information and the odometry, the position of the robot is

estimated. In Fig.1(a), the real path and two estimated paths

are shown. The first estimation is obtained when WLC is

used to fuse the information and standard Kalman filter

is used to determine the final estimation. For the second

estimation, a standard Bayesian method is used to fuse the

information and particle filter is used to estimate the path.

In this simulation, we assume that the sensors are unbiased.

As we can see from the figure, the estimated path is a good

approximation of the actual path. Now, to see the effect of

sensor failure, 30% of the cameras observing the robot are

biased. A biased sensor is considered as a model for sensor

failure. Fig.1(b) shows the real and estimated paths. Similar

examples are ran 100 times. Comparing to the previous

case, if we use WLC and the Kalman filter, we get a 10

times increase in estimation error and if we use the standard

Bayesian fusion method and particle filter, we have 17 times

increase in error. This shows that excluding the erroneous

measurements and resolving the disagreement is a crucial

issue.

In this work, first, we define the basic requirements of

a fusion method. By that we mean the properties that a

fusion method should have in order to produce desirable

results. An important issue in information fusion in such a

environment is sensor disagreement and failure. The sensor

fusion method should be able to recognize and filter out these

faulty measurements and also resolve disagreement among

the information sensors.

Linear Opinion Pool (LOP) and Logarithmic Opinion Pool

(LGP) are two popular probabilistic sensor fusion methods

which have been widely utilized [10], [11], [13], [14].

However, using these methods in a MRMS environment

might be problematic. To overcome their disadvantages, we

introduce a probabilistic sensor fusion algorithm for fusion of

information which generalizes LOP and LGP. In particular,

we use p-norm (also called lp-norm) to fuse the information.

We call this method p-norm opinion pool (POP) and check

its compliance with the defined specifications.

Throughout the paper, we assume a probabilistic model for

sensors. In other words, sensor delivers its measurement in

the form of a probability mass function (pmf). Moreover, all

observations are assumed to refer to a common global frame.

We also assume that the majority of sensors is unbiased.

This is a very weak assumption comparing to assumption

(all sensors are unbiased and independent) [1].

This paper is organized as follows. First, some basic

concepts are explained in Section II. The fusion problem

and the fusion specifications are defined in Section III.

In this section, we also explain LOP and LGP methods,
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Fig. 1. Results of the motivation example. A tracking scenerio is considered
in which a robot is tracked by a number of fixed cameras. The left plot is the
result of tracking using two well known methods when sensors are unbiased.
The right plot is the result of tracking when 30% of the sensors are biased.

evaluate the compatibility of these two fusion methods with

respect to the specifications. In the next section, the POP

method is introduced and properties of this method are

examined. In this section we compare the performance of the

POP method with the other two. In Section V, we explain

the experiments and results. In Section VI we present our

conclusions and suggest future work.

II. DEFINITIONS

Here and henceforth, we assume the information provided

by the sensors is a pmf over the state space. We use a

probability column vector to represent the pmf. For instance,

sensor i provides a pmf Pi over the state space as its

measurement. Each element of the vector is a probability

assigned to a state. Therefore, Pi = [Pi1, ..., PiM ] denotes

the measurement of ith sensor, Pij is the probability assigned

by ith sensor to state j,
∑M

j=1
Pij = 1, 0 ≤ Pij ≤ 1 and M

is number of states in the state space.

A. Agreement and Disagreement

There is agreement between the observations P1 and P2

of two sensors if:

d(P1,P2) ≤ ξ (1)

where d(.) is a distance measure between the two observa-

tions and ξ is a positive number. The distance measure can

be defined as Kullback-Leibler distance [2], Bhattacharrya

distance [3] or other. Otherwise we say that the two sensors

disagree.

B. Measure of Observations Uncertainty

A major problem in sensor fusion is how to measure

observations uncertainty. When the uncertainty has Gaussian

form, the covariance matrix can represent the uncertainty.

When the form of uncertainty is non-Gaussian, we use

entropy [4] to measure the amount of uncertainty, e.g., for

Pi:

H(Pi) = −

M∑

j

Pij lnPij (2)

Entropy is a positive number. When entropy is zero we are

fully certain about the outcome of the sensor. As the value

of H increases we become less certain.

C. Measure of Observation Quality

We assign a weight to each sensor observation. Weights

express our certainty in observations. We assign larger

weights to less uncertain observations when fusing them.

Entropy can be interpreted as the quantification of the

uncertainty associated to an observation [5], [6], [7]. For

N measurements P1,P2, ...,PN , a weight wi is assigned to

observation Pi such that:

wi =
1

H(Pi)k
(3)

where 1 ≤ i ≤ N and k ≥ 0. Larger k assign larger relative

importance to more certain observations.

III. PROBLEM STATEMENT AND PROPOSED FUSION

METHOD

A. Problem statement

Consider a scenario where a group of N distributed

sensors are measuring a quantity of interest. In general, the

sensor measurements are assumed to be uncertain. Sensor i

provides a pmf Pi over the state space as its measurement

model. The sensor observations are fused together using

fusion method f :

f : P1,P2, ...,PN 7−→ P (4)

where P is also a pmf. The main problem is to find an

appropriate function f . Actually, there can be an unlimited

number of candidates for function f . It can be a simple ana-

lytical function, e.g., arithmetic or geometric mean. To limit

the number of candidates, we define a set of specifications.

Based on these specifications, we evaluate the fusion method.

1) The fusion specifications: Now, we define a set of

specifications that a fusion algorithm should comply with.

These specifications play the role of constraints that limit

the number of potential candidates for f in (4). These

specifications are considered for a MRMS environment.

Based on these specifications, we evaluate the fusion

method. In general, it might not be possible to find a

function that fully satisfies all of them. So, we should find

a fusion method that has maximum compatibility with the

specifications.

1-Uncertainty reduction: A fusion rule should be defined

in such a way that the uncertainty of fused observation is

less than minimum uncertainty of the original observations

if there is a general agreement among observations. For two

observations P1,P2:

d(P1,P2) ≤ ξ ⇒ Ψ(f(P1,P2)) < min(Ψ(P1),Ψ(P2))
(5)

where Ψ is a measure for the uncertainty, e.g. the entropy and

min stands for minimum. If there is disagreement among

the measurements, depending on the number of disagree-

ments and amount of disagreement, uncertainty of fused

observation can be larger than the uncertainty of the best

observation. Fusing inconsistent observations creates more

hypotheses, which cause an increase in uncertainty of the

fused observation.



2-Fault tolerance: One important issue in sensor fusion is

detecting and excluding faulty measurements. Faulty mea-

surements are defined as measurements whose distance from

actual value is more than a given threshold. To come up

with this difficulty, we assume the majority of the sensors

are unbiased.

3-Zero preservation: If probability of the fused measure-

ment for a state is zero then all sensors should assign zero

probability to the state.

Pj = f(P1j , ..., PNj) = 0 ⇒ ∀i Pij = 0 (6)

where Pij represents the probability that its sensor assigns

to the state.

4-Non-zero preservation: If the probability of fused obser-

vation for a state is non-zero then then at least one of the

measurements should assign a non-zero probability to the

state.

Pj = f(P1j , ..., PNj) 6= 0 ⇒ ∃i Pij 6= 0 (7)

By providing an example, we show the importance of this

specification. Consider N sensors are measuring a quantity

of interest. Suppose all of them except one (which assigns

a zero probability for a particular state) report a non-zero

probability for that state. Logically, the fused observation

should not assign a zero probability to the state, specially if

N is large. This property is very important, especially when

some sensors are faulty but we can not tell which ones.

Unfortunately, some fusion approaches, e.g., Bayesian-like

approaches do not comply with this specification.

5-Sequential updating: a fusion specification is called se-

quentialy updating if the result of fusing N sensor measure-

ments is the same as fusing N−1 sensor measurements with

an N th sensor measurement.

f(P1, ...,PN−1,PN ) = f(f(P1, ...,PN−1),PN ) (8)

6-Monotonicity: Let P = f(P1, ...,Pi, ...,PN ) and

P
′ = f(P1, ...,P

′

i, ...,PN ). f is monotone if Pij < P ′

ij

then Pj < P ′

j . In other words, this property says any

change in one of the measurements should directly and

proportionally affect the fused observations.

B. Linear and Logarithmic Opinion Pool

1) Logarithmic Opinion Pool: If we assign a weight to

each observation, measuring its uncertainty, then, for N

observations, LGP [13], [14] is defined as:

P =
P

w1

1
◦Pw2

2
◦ ... ◦PwN

N

(Pw1

1
◦Pw2

2
◦ ... ◦PwN

N )e
(9)

where e = [1, 1, ..., 1]T is a 1 ×m vector, wis are weights

as in (3), and ◦ is the Hadamard product2 of two matrices.

The standard Bayesian fusion is a special case of LGP when

all w′

is are set to 1.

2For two matrices A and B, Hadamard product of two matrices A =
[aij ] and B = [bij ] of the same size is just their element-wise product
A ◦B ≡ [aijbij ].

2) Linear Opinion Pool: For N observations

P1,P2, ...,PN , LOP [10], [11] is defined as:

P =

n∑

i=1

wiPi (10)

where P is a PV and wis are weights wi ≥ 0 that add up to

one, as in (3).

3) LOP and LGP compliance: LOP complies with mono-

tonicity, sequential updating, zero preservation and non-

zero preservation specifications. Despite that, the uncertainty

reduction and fault tolerance are not satisfied. LGP complies

with monotonicity, sequential updating, zero preservation and

uncertainty reduction specifications. However, it does not

satisfy non-zero preservation and fault tolerance.

IV. PROPOSED FUSION METHOD

In this section, first we propose and formalize the POP

method. Then, we check and compare POP compliance

with LOP and LGP. Here, we also introduce a method to

automatically adjust and set the POP parameters. We also

check the POP method in presence of sensor failure through

the simulation.

A. P-Norm Opinion Pool

In subsection III-A.1 a set of specifications is defined to

ensure the fusion function possesses certain properties and

found out that LOP and LGP do not satisfy some of the

specifications. Besides these, in a MRMS, the fusion speci-

fication should be able to cope with different situations. For

example, in situations where there is a general disagreement

among the sensors, LOP is preferred over LGP (because

LGP does not comply with non-zero preservation). There

are situations where there is agreement among the sensors

and LGP is preferred (because LOP does not comply with

uncertainty reduction). However, in some situations using

only one of them may not be the solution. To overcome the

difficulties of LOP and LGP and also provide a more generic

and flexible probabilistic fusion method appropriate for a

MRMS environment, another probabilistic fusion method is

introduced.

Here, first, we formalize the fusion problem as an opti-

mization problem. After checking the compliance with the

defined specifications, the solution can be used as a fusion

method.

As we mentioned before, the output of the sensors is con-

sidered as a pmf. Let P1,P2, ...,PN be a set of PV related

to observations of N sensors S1, S2, ..., SN respectively. Let

P represents the fused pmf. Let d(.) represents the distance

between two pmfs. We define the following objective func-

tion:

f =

N∑

i=1

wid(P,Pi) (11)

where d(P,Pi) is the distance between the fused measure-

ment and ith sensor measurement and 0 ≤ wi ≤ 1 and∑N

i=1
wi = 1. wi is a weight assigned to d(P,Pi) to

represents the importance of the ith sensor measurement over



other measurements. Actually, f is a function that measures

average weighted distance between the original observation

and the fused one. If f is minimized, P will become the

closest pmf to all the measurements:

P = argminP f = argminP

N∑

i=1

wid(P,Pi) (12)

Now, the problem is to consider an appropriate distance

function. It can be defined as:

d(P,Pi) = (Pκ −P
κ
i )(P

κ −P
κ
i )

T (13)

and −∞ ≤ κ ≤ +∞. 3 Here κ plays an important role.

It allows us to conclude the different fusion rules under a

similar framework. Replacing (13) in (12) and solving the

minimization problem results in:

f =

N∑

i=1

wi(P
κ −P

κ
i )(P

κ −P
κ
i )

T

P = POP(P1,P2, ...,PN ) = η(

N∑

i=1

(wiP
κ
i ))

κ−1

(14)

It is designated as P-norm Opinion Pool (POP). η is a

normalization factor that is determined by the requirement

that P is a PV. Once again, wis weight the measurement

uncertainty of sensor i.

LGP and LOP are particular cases of POP. In fact, if we

make κ → 0, we obtain LGP , while if we make κ = 1, we

get LOP.

`
`

`
`
`
`
`
`
`
`

Specification
Method

LOP LGP POP

Uncertainty reduction NO YES YES
Fault tolerance NO NO YES
Zero preservation YES YES YES
Non−zero preservation YES NO YES
Sequential updating YES YES YES
Monotonicity YES YES YES

TABLE I

COMPARING PROBABILISTIC FUSION METHOD PROPERTIES

B. POP compliance

POP satisfies monotonicity, sequential updating, zero-

preservation, non-zero preservation, uncertainty reduction

and fault tolerance. In Table (I), the compliance of LOP,

LGP and POP are specified.

3Ab raise each element of A, A(i) to the power b (vector element-wise
power operator).

Algorithm set κ(O,α, β)

A: Group The Observations
To each observation ok ∈ O assign an index i and let I = {i},
1 ≤ i ≤ N be the set of indexes.
Calculate D = {d(oj , ok)}, 1 ≤ j, k ≤ N, j 6= k where d(.) is
a distance (e.g., Bhattacharrya distance [3]) and oj , ok ∈ O.
forever do

Find the closest observations (the smallest member of set D,
dmin = argminD) and return the observation indexes

(oi1 , oi2 ).
if dmin > α

break
else

Remove observations oi1 and oi2 from the set O, add
oi1i2 = {oi1 , oi2} to set O.
Remove d(oi1 , oj) and d(oi2 , oj) from D, add
d(oi1i2 , oj) = mean(d(oi1 , oj), d(oi2 , oj)), 1 ≤ j ≤ N .
Remove indexes i1 and i2 from set I , add new index i1i2 to I .

endif
B: Remove The Outliers

find µ, the size of the largest subset of set O.
Remove subsets of O whose size is smaller than βµ.

C: Fuse Information Within Subgroups
Do for each subgroup

Fuse subgroup observations using POP. Proportional to the
maximum distance between subgroup members, choose a value
for κ.

end Do

D: Fuse Information Between Subgroup
Using POP, fuse subgroup representatives. Take κ = 1

TABLE II

ALGORITHM FOR GROUPING OBSERVATIONS AND REMOVING FAULTY

OBSERVATIONS

C. POP and the Motivation Example

Here, we consider the robot localization example (in

Section I) and evaluate POP using the example. We use

the same configuration (same sensor and error models, failure

rates) except that we use a particle filter to track the robot.

We use POP to fuse the observations. The result of simu-

lation is shown in Figure 2(a). The estimate is considered

to be the weighted average particle. This example shows

that comparing to a standard method such as WLC which

considers covariance-based average, POP provides a better

and less erroneous estimate.

(a) (b)

Fig. 2. The figures represent the results of the tracking example but this
time we use POP and the particle filter. The left figure shows the result
when we use a fixed κ (κ = .1). In the right figure κ is dynamically
set using the auto-adjusting algorithm TableII. Compared to Fig.1(b), a
noticable reduction in estimation error can be seen.



D. Computational Cost

Here, the computational cost of calculating the weights

is not considered because it depends on the way we assign

weight to observations. Moreover, the weight allocation cost

is the same for all three methods. Among the three methods,

LOP is computationally the cheapest and POP is the most

expensive one. However, the difference is not considerable,

especially if the number of states is large enough. If N and

M represent the number of observations and the size of PV

respectively, computational cost of LOP is O(M(2N − 1)).
Computational cost LGP and POP is O(M(2N + 1) − 1)
and O(2M(N + 1)) respectively. It is clear when N ≫ 1,

the three methods impose the same cost. When N is small,

there is a difference, although it is negligible.

E. Mechanism For determining κ

An important issue is how to choose an appropriate

value for κ. As we explained earlier, different κ generates

different results. Therefore, we need a mechanism to set κ

automatically. The algorithm in TableII can be used to set κ.

V. EXPERIMENT

In order to evaluate the POP fusion method, we run one

real world experiments. In this experiment, we try to estimate

position of a mobile robot which is manually driven through

our lab. There are 10 ceiling-mounted fixed camera, each of

which observes part of the lab. Parts of the lab are covered

by more than one camera. On the other hand, there are areas

which are not covered by any of the cameras. The cameras

are networked. Each camera in the network has a frame rate

of 30 fps, and a resolution of 640×480 pixels. A background

subtraction algorithm is used to detect the robot positions.

A 2-D Gaussian model is considered for the cameras. More

details on the experimental setup are provided in [16]. The

robot is equipped with a Sick laser scanner and odometry

sensor. A particle filter is used to combine the data. The filter

estimate is considered as the ground truth for localization of

the robot. We use POP in combination with a particle filter

with 500 particles to track the robot. POP with a fixed

κ (κ = 0.1) is used to fuse the information when more

than one camera observes the target. The weighted average

particle is chosen as the final estimation. To compare the

results, two methods are chosen as bench marks: WLC in

combination with a standard Kalman filter and a Bayesian

method in combination with a particle filter. First, we fuse

the observations if there are more than one camera observing

the robot. Then a filter is used to determine the final estimate.

We randomly biased 30% of the cameras detecting the robot

(the number of the cameras should be more than 2). In Figs.

3(a) and 3(d), the results of tracking using Kalman filter and

WLC are drawn (To have a better visibility, the robot path

is depicted in two different figures). The solid (green) line

represents the robot real path (generated by laser scanner)

and markers represent the estimated path. Different markers

are used to represent the number of cameras observing the

robots for each time instant. For a similar senerio, the result

of standard Bayesian in combination with a particle filter are

shown in Figs.3(b) and 3(e). POP and particle filter results

are drawn in Figs. 3(c) and 3(f). Error histogram of three

different methods are compared in Fig.4(a). As we can see

from the figures, POP and Particle Filter results are much

better than the other two. On the average, combination of

POP and particle filter compared to WLC and Kalman filter

reduces the estimation error by more than 20% and compared

to Bayesian method and particle filter reduces the estimation

error by more than 35%. As we mentioned above, a fixed κ is

used to fuse the information using POP. In IV-E, we explain

an algorithm for automatically adjusting κ. Now, we evaluate

the POP algorithm using the auto adjusting algorithm. Fig.

4(b) compares the error histogram auto adjusting and fixed

κ. From the figure, we can conclude that POP with auto

adjusting κ generates better results than POP with a fixed

κ. Figure 4(c) represents variation of within-group κ during

the process.

VI. CONCLUSION AND FUTURE WORK

In this paper we defined a series of specifications for evalu-

ating a fusion method in MRMS environments. Two popular

methods of sensor fusion, LOP and LGP, are overviewed

and evaluated based on the specifications. A new method to

overcome the difficulties of LOP and LGP is introduced. This

new method complies with the defined specifications. The

computational cost of POP is compared to the other two.

Also an algorithm is provided to set the POP parameters.

Results from the simulation and real world experiments

shows that, comparing to WLC and Bayesian method, POP

reduces the error in the presence of sensor failures. Based

on the simulations and experimental results, we can conclude

the POP is a reliable method and a good substitute for LOP

and LGP.

For future works we consider to use the method in a

more complex environment. For the environment with large

amount of states, we will investigate solutions based on

POP with less computational burden.
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