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Abstract— We consider the problem of sensor-aware path
planning for a robot in a Networked Robot System, in particular
in urban environments equipped with a network of surveillance
cameras. A robot can use observations from the camera
network to improve its own localization performance, but also
needs to take into account the specifics of its local sensors. We
model our problem in the Markov Decision Process framework,
which forms a natural way to express concurrent and possibly
conflicting objectives – such as reaching a goal quickly, keeping
the robot localized, keeping the target in sight – each with their
own priority. We show how we can successfully prioritize the
different objectives in a flexible way by changing the reward
function, based on the sensory needs of the system.

I. I NTRODUCTION

Robots are leaving the research labs and operating more
often in human-inhabited environments, such as urban pedes-
trian areas. The main idea of the URUS (Ubiquitous Net-
working Robotics In Urban Settings) Project [1], [2] is to
incorporate a network of intelligent components, e.g., robots,
sensors, devices and communications in order to improve
quality of life in urban areas. The scenario we consider in our
work is a group of robots assisting humans in a car-free area,
a so-called Networked Robot System (NRS). The pedestrian
area in which the robots operate is equipped with surveillance
cameras providing the robot with more information. Imple-
menting such a system requires addressing many scientific
and technological challenges such as cooperative localization
and navigation, map building, human-robot interaction, and
wireless networking, to name but a few. In this paper, we
focus on one particular problem, namely how to plan paths
for robots taking into account the coverage of the camera
network as well as the robots’ own sensors.

In many NRS, surveillance cameras will run a set of
event detection algorithms, for instance observing events
such as people waving, people lying on the floor, fires, or
other emergencies, each with a different priority. However,
the network of cameras will have a limited coverage and
accuracy. In particular, the environment might contain blind
spots that are not observed by any fixed camera. As such,
though the camera network is supposed to cover the scene,
employing mobile robots for visual coverage is a need.
A camera network might cover a lab environment, but
providing full coverage for urban environments is a difficult
task. There are often obstacles both natural and man-made in
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the environment which make parts of the environment hidden
from the camera network. Even if we could employ a large
number of cameras to have an environment fully in view,
dynamic obstacles still can create new hidden patches.

Furthermore, other areas might be observed by a camera,
but not with sufficient resolution for accurate event detec-
tions. In this case, we send mobile robots to positions where
higher resolution images are required. In NRS the interaction
between the system and humans will largely be achieved
through human-robot interaction, which in general requires
a robot to be close to a human subject. In this work, we
consider the problem of a robot planning a path to reach
a target location. For instance, consider a situation where
a robot needs to reach a human for interaction purposes.
The robot should take into account available sensory ca-
pabilities provided by a robot’s mounted sensors as well
as by the network of surveillance cameras. In particular, a
robot can use observations from the camera network for its
own localization, or take into account the specifics of its
mounted sensors to plan an approach to a target location
that maximizes the information its sensors will give it about
the target.

We use a Markov Decision Process (MDP) framework to
address our sensor-aware path planning problem [3], [4]. A
decision-theoretic framework such as the MDP forms a nat-
ural way to express concurrent and possibly conflicting ob-
jectives such as reaching the goal quickly, keeping the robot
localized, keeping the target in sight, each with their own
priority. Given the partially observable nature of the problem,
modeling it as a partially observable MDP (POMDP) would
be appropriate. However, given the scale and level of detail
of the problems we are targeting, with many states, and, more
importantly, a large number of possible observations and a
high planning horizon, this is beyond current state-of-the-art
approximate POMDP planners.

II. RELATED WORK

In related work, the Coastal Navigation algorithm models
the problem of navigating a robot while keeping localization
uncertainty low as a POMDP [5]. It converts the POMDP
into an augmented MDP, which has an extended state space
composed of robot locations and discretized entropy levels.
The entropy is used as a measure for the uncertainty of the
robot’s localization. In our case, we keep the size of the state
space constant, focusing on modifying the reward function
instead. This is a flexible way of incorporating different
objectives, beyond only caring about the robot’s localization
certainty: we also consider the visibility of the target by
the robot. Keeping a constant state space allows for quick



solving of the MDPs. The environment, the costs and the
rewards can be modeled in advance and the optimal path
can be determined for all destinations. Moreover, if there
are changes in the environment, updating the MDP model
even with a large number of states is quite fast. We have a
good initial estimate of the value functions which causes the
algorithm to converge quickly.

Some researchers studied this problem under a path plan-
ning framework. Choi et al [6] used Q-learning to find the
path which can maintain good kinematic isotropic property
while avoiding obstacles. Singh [7] et al introduce a greedy
search approach for motion planning in order to maximize
the amount of information collected while placing bounds on
their resources. Since the original algorithm, calledrecursive
greedy, is computationally expensive, an approximate algo-
rithm is used which decomposes the state space in a uniform
grid in order to reduce the computational complexity. The
algorithm is suboptimal and is still expensive to apply to real-
time applications. In [8], a gradient-search-based algorithm
is used to provide a suboptimal solution for sensor position
selection to realize the best observation of a moving target
in an environment with no obstacles. Comparing to our
work, the authors only considered the localization certainty
as a parameter that affects the robot path. Moreover, the
algorithm only considers one step ahead rewards based on
the other robots’ position prediction. Park [9] proposes a
real-time path planning by combining probabilistic roadmap
and reinforcement learning to deal with uncertain dynamic
environments and similar environments. To avoid obstacles,
the Q values in the states occupied by the obstacles are set
to zero. This is one shortcoming of this work because the
planned path might not be optimal anymore, specially if the
environment is highly dynamic.

III. B ACKGROUND ON MARKOV DECISION PROCESSES

We will briefly introduce the Markov Decision Process
(MDP) framework [3], [4]. MDPs provide strong mathemat-
ical tools for decision making under uncertainty, in case the
state of the environment is observable to the robot. It is
formally specified by a four tuple(S,A, T,R) whereS is
a (finite) set of states,A is a (finite) set of atomic actions,
T is the transition model andR is a reward function. Each
element ofS describes the state of the system at a given
time instant. Each action elementa ∈ A represents the action
that agent takes, at any time step. A value function defined
as V : S → R determines the sum of total expected future
reward from being in a states: V (s) = E [

∑

∞

t=0
γtRt(s, a)],

where0 ≤ γ ≤ 1 is a discount factor. A policy is a function
π : S → A which maps states to actions.π(s) states the
action that should be taken in states and the value of the
policy Vπ(s) is the expected cumulative discounted future
reward that the agent gets if it executesπ. The optimal
policy π∗ tells us which action to take at each state in order
to maximize the expected reward, and can be implemented
using the optimal value functionV ∗. It is known thatV ∗

verifies

V ∗(s) = max
a∈A

{

R(s, a) + γ
∑

s′∈S

T (s, a, s′)V ∗(s′)

}

.

(1)

In order to computeV ∗, dynamic programing techniques
such as value iteration can be used [3], [4].

IV. COSTS ANDREWARDS FORACTIVE COOPERATIVE

PERCEPTION

We will implement our ideas on decision-theoretic robot
guidance by defining the MDP’s reward function. This is
a flexible way for the user of the system to specify the
relative importance of the considered factors. In particular,
the idea of taking the best path is directly related to costs
and rewards. By rewards, we mean what the agents receive
along the path or at destination. The costs are defined as
the amount of resource consumption, effort, loss necessary
to achieve the goal or the risk, e.g., risk of bumping into
an obstacle due to taking a narrow path. In our scenario,
localization certainty, visibility of the target location, as well
as reaching the destination are considered as the rewards.
Maneuvering risk and traveling are considered as costs, i.e.,
as negative rewards. Each of them are explained below in
detail.

Before going into details, it is necessary to mention that
the world is discretized in a number of states. Each state is
specified by its position and its orientation. The orientation
space is divided into eight equal sectors and the first startsat
zero radian. There are three atomic actions possible in each
state: stay in the same state but change the orientation±π
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,

or move forward.

A. Goal Reward

The goal rewardρG is defined as the reward the agent
receives when it reaches the goal state. This reward may
vary based on the degree of our interest in the goal and
the situation. For example, if the camera network detects
a fire and the system deploys the robot to provide more
details, considering the urgency of the case, the system only
considers the rewards which result in generating the fastest
path to the goal and ignores other possible rewards.

B. Localization Certainty Reward

Often, the pose of a target, e.g., a robot, a person, etc.
is an important piece of information we need to know. For
example, when the robot should approach a person to let
the person to interact with the robot, in order to prevent
collision, having an accurate relative localization of robot
and the person is very important. In another word, if the
person is localized but with a large uncertainty, the robot can
use its sensors in order to help the camera network to better
localize the person. Therefore, if the localization uncertainty
of the robot is not good enough, while it is traveling toward
the person, it has to give more priority to paths with larger
Certainty Reward than to other paths, e.g., shorter paths but
with a large localization uncertainty.



Fig. 1. The figure shows a robot in several positions. The reward in
Positions P1 and P4 is zero but in P2 and P3 is not zero. The reward value
depends on the relative distance and the angle receives.

The observation model of the surveillance cameras is
assumed Gaussian, with the mean centered at the real value.
The covariance increases proportionally with the relative
distance between the camera and object of interest. To each
state in state space we assign a real numberρL which is
called Localization Certainty and is defined as:

ρL =
1

1 + σi

(2)

whereσi is defined as:

σi =
1

eT Σ−1e
(3)

wheree = [1, 1, ..., 1]T is a1×N vector, N is the number of
cameras that can observe the state andΣ is the covariance
matrix of cameras which cover the state.

C. Visibility Reward

One important issue in our scenario is the visibility issue.
The visibility is defined as feasibility of observing the object
of interest at a specific position and angle. We explain this
concept by providing an example which is drawn in Fig. 1.
In this example, a robot with an on-board camera in several
positions is shown. The robot in P1 is not able to see the
object of interest which is depicted by a circle because its line
of sight is blocked by the obstacle on the way. However, in
P2, the robot is potentially able to view the object. It means
that although the object may not be in robot camera view
field, there is no obstacle that blocks the robot line of sight.
The robot in P3 can see the target and we give a higher
visibility reward compared to P2 because as it is closer to
the object and the visibility is less sensitive to change in
the orientation. Moreover, in P4, a zero visibility reward is

Fig. 2. Illustration of the maneuvering cost function. Giving more attention
to maneuvering cost than the traveling cost, in absence of other costs and
rewards, forces the robot to take path P1-P2-P6-P7 instead of P1-P2-P3-P4-
P5, although P1-P2-P3-P4-P5 is shorter.

assigned. Although it is closer to the object than the robot in
P2, considering its orientation, the target is not in the robot’s
line of sight.
Formally, ρV is defined as:

ρV =
αvi

∆p
(4)

αvi = 0 if ∆p > η, |∆θ| > ξ, line of the sight is
blocked by an obstacle placed between the state and the
goal or an obstacle is in the state; Otherwiseαvi = 1.
∆p is defined as the Euclidean distance between the goal
and the state andη is a positive number representing the
maximum visibility radius.∆θ is the relative angle between
the robot’s orientation and the line of the sight to the goal and
ξ representing the maximum visibility angle. The visibility
and the robot sensor range are related but visibility is a
different concept, as it is affected by the robot orientation
and, more importantly, the path characteristics. A path with
many obstacles between the goal and the robot has a low
visibility, even if the robot is equipped with a long-range
sensor.

D. Maneuvering Cost

Often, a robot needs to change its orientation. To do so, it
needs space. In larger spaces, the maneuvering risk is smaller.
For a robot, it is less possible to bump into an obstacle when
it has a larger free space to maneuver. The places closer
to the obstacle are more risky for changing the orientation.
Moreover, a narrow passage is more risky to take than a
wider passage. Therefore, the maneuvering costρM of each
state is defined as a function of two factors:

ρM =
αM

λ
+ (1 − αM ) ∗ ϑ (5)



(a) (b)

Fig. 3. The left figure shows the schematic diagram of the URUS test bed which is located in UPC Nord campus, Barcelona. The right figure presents
the free spaces and obstacles. The places marked with yellow filled squares are the obstacles and the rest is the free space.

where0 ≤ αM ≤ 1 is used to balance the importance of
passage width (first term) versus the number of surrounding
obstacles (second term) andϑ is the number of surrounding
obstacles.λ is defined as:

λ =
λi

λmax

(6)

λi is the cell size ofithcell andλmax is the largest cell size.
To make things clear, a scenario is explained in Fig. 2.
Considering a higher cost for maneuvering, the robot is
forced to take path P1-P2-P6-P7 instead of taking the path
P1-P2-P3-P4-P5, even though the second path is shorter.

E. Traveling Cost

The cost of travelingρT has two components: the relative
distance and rotation. It is considered as a linear combination
of the two costs:

ρT = αT ∗ ∆p + (1 − αT ) ∗ ∆θ, (7)

where0 ≤ αT ≤ 1.
The first component is calculated based on the relative

Euclidean distance∆p the robot needs to take to travel from
one state to another. The second component is determined
by calculating the absolute difference∆θ between the orien-
tation of the two states. We usually give the higher relative
importance to the second term as for our robots changing
the orientation needs more resources in terms of energy and
time.

V. DECISION-THEORETICROBOT GUIDANCE

We use the concepts defined in the previous section to
plan paths using value iteration (Section III). Value iteration
considers all the quantitative rewards and computes the best
path. We model the environment, cost and rewards and then,
using a simulated environment, we determine the optimal

path for all possible goal states off-line. One important issue
with this method is the change in the environment. Since
the environment is dynamic, we may experience changes
in the environment, e.g., an unforeseen obstacle appears on
the robot path and blocks it. In this case we recalculate
the value function. As we have a good initial starting value
for value functions, in a few iterations the algorithm might
converges. Because of that we call this methodactive cost-
reward based robot guidance since we can change the optimal
path according to changes in the environment and also our
needs. We define the rewards as:

ρ = βGρG + βV ρV + βLρL + βT ρT + βMρM (8)

Choosingβ is based on the robot mission. To limit the
search space ofρ’s, we normalize the cost and rewards,ρ ∈
[0,1].

VI. EXPERIMENTS

To verify the performance of the proposed method, we
ran a series of simulations. Fig. 3(a) shows the schematic
diagram of the URUS test bed which is located in UPC
Nord campus, Barcelona. The area size is about 1 hectare,
which we divided in equal size2×2 m2 squares as depicted
in Fig. 3(b). In each cell, we considered 8 different robot
orientations. The first orientation is at 0 radian and the step is
π
4

. The total number of states is 20000. However, part of them
are occupied by obstacles and we only deal with the free
states. Fig. 3(b) presents the free spaces and obstacles. The
places marked with yellow filled squares are the obstacles
and the rest is the free space. A discrete MDP is used to
model the path generation. The reward function is considered
according to (8). The basic atomic actions are either to stayin
the same cell and only change the orientations±π

4
or move



(a) {βG = 100, βV = 0, βL = 0} (b) {βG = 100, βV = 0, βL = 0}

(c) {βG = 100, βV = 0, βL = 100} (d) {βG = 100, βV = 100, βL = 0}

(e) {βG = 100, βV = 0, βL = 300} (f) {βG = 100, βV = 100, βL = 100}

Fig. 4. The figures represents the generated path in different situations. In the figures, the dashed rectangle corresponds to a region covered by cameras,
while the yellow squares are obstacles. To make the results better visible, only part of the scene shown in 3(b) in which thescenarios take place are shown.
For all above cases, we setβT = −1 andβM = 0.



forward. Here we assume deterministic actions, however it
is trivial to extend the work to noisy actions, as the same
value iteration procedure can be applied. In Fig. 4, the goal
position is specified by ’G’ and the area under the camera
coverage is shown by a rectangle with a dashed edge.

Consider the case when the network of cameras detects a
fire. The robot should be deployed in such a way it gets to
the place in the shortest possible time. Another situation is
where the robot is asked to approach and provide a service
for a person who is localized but with large uncertainty. To
do so, robot has to know its own localization very well in
order to find out the position of the person using the relative
localization for further operation. This is the situation where
robot has to take a path under camera coverage and with
acceptableρL. The aim of the experiments are to evaluate
the effect of different parameters on the generated path.
Fig. 4(a) shows a scenario where we have a camera which
covers the area marked with the dashed rectangle. We check
the behavior of the system, the generated optimal path, by
changing the values ofβL and βT while βV is set to zero.
First, we setβL to zero. Naturally, the generated path is
the path with the lowest traveling cost. In Fig. 4(a), the
generated path is shown. In Fig. 4(c), we kept allβ’s the
same but changeβL. IncreasingβL causes a different path to
be considered for the robot. The generated path goes through
the area covered by the camera. To see the further effect of
increasingβL, we use the same setting but increaseβL. This
time the system changes the generated path in such a way
it stays longer under the area covered by the camera. The
result is shown in Fig. 4(e). It can be seen that even when we
change the robot orientation, due to a largeβL, the system
still guides the robot to the area covered by the camera.
The next scenario is designed to see the effect ofβV andβT

on the generated path while eitherβL is fixed or changed.
There are situations where sending the robot to the position
where the object is in robot line of sight has the top priority
e.g., the camera detects an intruder and has to send the robot
to track. In other words, the priority is that the robot reaches
to a point in which it can observe the person as quickly as
possible. Using a robot equipped with a laser range finder,
the system can then track the person. Fig. 4(b) shows the
case where we set allβV andβL to zero. This is similar to
Fig. 4(a) but the starting and goal locations are different.The
generated path has the lowest traveling cost. In the second
case we gave more priority toβV over βT . As we can see
in Fig. 4(d), the robot is provided with a different path.
Only considering the traveling cost, this path is more costly.
However, taking this path, causes the robot to reach earlier
a point at which the object is in its line of sight. We have
an area under camera coverage close to starting state. For
improving robot localization uncertainty, giving some weight
to βL, causes the path generated to become longer but pass
through the area covered by the camera. This is depicted in
Fig. 4(f).

VII. C ONCLUSION AND FUTURE WORK

In this paper we address the problem of generating an
optimal path for a robot taking into account available sensory
capabilities, both provided by a robot’s own sensors and
by a network of surveillance cameras. By changing some
parameters we can guide the robot to the same position but
taking different paths. The urban environments we target
are highly dynamic environments in which demands change
rapidly. Sometimes a robot should reach the goal as fast
as possible, sometimes it should consider other factors such
as its localization uncertainty and sometimes for an optimal
path we should consider the positions of both the object of
interest and the robot. We model the path planning problem
as Markov Decision Process, which allows to prioritize
the different objectives in a flexible way by changing the
reward function. We also can solve the MDP in real time
using value iteration. Since main focus of the NRS is to
employ a network of cooperative robots in order to assist and
provide services for human beings, extending this solutionto
the multi-robot and multi-goal active guidance is necessary.
Since the number of robots is limited and we might have
more demands for services at the same time than available
resources, we have to prioritize our planning based on degree
of our interest in the objects, the costs and rewards explained
in this paper. In other words, the challenge will be to tell the
system which robot should take which path and in which
order.

REFERENCES

[1] A. Sanfeliu and J. Andrade-Cetto, “Ubiquitous networking robotics in
urban settings,” inProceedings of the IEEE/RSJ IROS Workshop on
Network Robot Systems, 2006.

[2] M. Barbosa, A. Bernardino, D. Figueira, J. Gaspar, N. Gonçalves, P. U.
Lima, P. Moreno, A. Pahliani, J. Santos-Victor, M. T. J. Spaan, and
J. Sequeira, “ISRobotNet: A testbed for sensor and robot network
systems,” inProc. of International Conference on Intelligent Robots
and Systems, 2009, to appear.

[3] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduction.
MIT Press, 1998.

[4] D. P. Bertsekas,Dynamic Programming and Optimal Control, 2nd ed.
Belmont, MA: Athena Scientific, 2000.

[5] N. Roy and S. Thrun, “Coastal navigation with mobile robots,” in
Advances in Neural Information Processing Systems 12. MIT Press,
2000.

[6] M. Choi, W. Kim, and B.-J. Yi, “Trajectory planning in 6-degrees-
of-freedom operational space for the 3-degrees-of-freedom mechanism
configured by constraining the stewart platform structure,” Control,
Automation and Systems, 2007. ICCAS ’07. International Conference
on, pp. 1222–1227, Oct. 2007.

[7] A. Singh, A. Krause, C. Guestrin, W. Kaiser, and M. Batalin, “Efficient
planning of informative paths for multiple robots,” inInternational Joint
Conference on Artificial Intelligence (IJCAI), January 2007.

[8] T. Chung, V. Gupta, J. Burdick, and R. Murray, “On a decentralized
active sensing strategy using mobile sensor platforms in a network,”
Decision and Control, 2004. CDC. 43rd IEEE Conference on, vol. 2,
pp. 1914–1919 Vol.2, Dec. 2004.

[9] J.-J. Park, J.-H. Kim, and J.-B. Song, “Path planning for arobot ma-
nipulator based on probabilistic roadmap and reinforcement learning,”
International Journal of Control, Automation, and Systems, vol. 5, no. 6,
pp. 674–680, 2007.


