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Abstract. Applying multi-agent systems in real world scenarios re-
quires several essential research questions to be answered. Agents have
to perceive their environment in order to take useful actions. In a multi-
agent system this results in a distributed perception of partial informa-
tion, which has to be fused. Based on the perceived environment the
agents have to plan and coordinate their actions. The relation between
action and perception, which forms the basis for planning, can be learned
by perceiving the result of an action. In this paper we focus these three
major research questions

First, we investigate distributed world models that describe the aspects of
the world that are relevant for the problem at hand. Distributed Percep-
tion Networks are introduced to fuse observations to obtain robust and
efficient situation assessments. Second, we show how coordination graphs
can be applied to multi-robot teams to allow for efficient coordination.
Third, we present techniques for agent planning in uncertain environ-
ments, in which the agent only receives partial information (through its
sensors) regarding the true state of environment.

1 Introduction

Service robots, transportation systems, exploration of hazardous environments,
homeland security and rescue in disaster scenarios [23] are examples where in-
telligent multi-agent systems could be deployed in real world situations. The
societal and economical benefits of making such systems are huge, while at the
same time there are still important research questions to be answered before
these systems can be applied. Building these systems requires the integration of
many technologies such as mechatronics, control theory, computer vision, self-
learning systems and cooperative autonomous systems [16]. These agents are
“intelligent on-line embedded systems” which are able to operate in dynamic
environments inhabited by humans. Local intelligence and mutual communica-
tion make systems robust to erroneous perception or malfunctioning of robots.

How to evaluate these complex systems is not an easy question. The current
trend to enable comparison of algorithms for parts of the system is to make the
data used available on Internet, besides reporting on the algorithms and their
results in scientific journals. However, the evaluation of complete real world
multi-agent systems is much more complex because it is almost impossible to



capture dynamic real-world aspects in static data on the Internet. Simulation is
certainly useful in this respect, but these are only an abstraction of reality, and
robust comparisons require the deployment of systems in real world scenarios.
It has been recognized that international challenges may play an important role
in those evaluations. An example is the DARPA Grand Challenge: a race for
autonomous ground vehicles through desert-like terrain. A challenge formulated
in multi-agent collaboration is the RoboCup challenge [6, 15]: to have in 2050 a
team of humanoid robots playing a soccer match against a human team.

In section 2 we will discuss challenges for real world multi-agent systems
and the research topics involved. To interact with their environment agents have
to perceive it. In a multi-agent system this results in a distributed perception
of partial information, which has to be fused. Next, Agents have to plan and
coordinate their actions, which are based on the perceived environment. The
relation between action and perception, forming the basis for planning, can be
learned by perceiving the result of an action. In this paper we focus these three
research questions, which are addressed in the successive sections in more detail.
In section 3 we will discuss distributed world models. Such models form the basis
for planning and learning to coordinate the multi-robot team. In robocup these
distributed models are shared maps, which form the basis of localization and
navigation of the robot-agents. In crisis management scenario’s distributed world
models facilitate efficient and reliable situation assessment relevant for real world
decision making processes. We introduce distributed perception networks [12],
that use distributed causal models to interpret large amounts of information.
Section 4 explores the framework of coordination graphs for solving multi-agent
coordination problems in continuous environments such as RoboCup, as well
as how learning can be performed in such settings. Section 5 addresses a sec-
ond problem, planning under uncertainty, and here we are investigating solution
techniques for partially observable Markov decision processes. Finally, section 6
wraps up with conclusions and avenues for future developments.

2 Challenges for real world multi-agent systems

In this paper we address some of the challenges of two types of real world multi
agent settings: real world robots and distributed situation assessment systems. A
challenge should be sufficiently rich so that the different aspects of the problem
are well represented. Challenges should not change every year but should have a
stable component so that ideas or even best algorithms can be adopted by other
competitors, ensuring that a rapid development takes place over the years and
incorporating all groups involved.

2.1 Real World Robotics

Multi-robot systems in dynamic environments have to cope with several sub-
stantial problems. These are summarized in RoboCup which introduces standard
challenge settings that allow for an objective comparison of different solutions.
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Fig.1. Two RoboCup leagues: on the left the middle-size robots, on the right the
simulated soccer agents.

RoboCup’s main challenge is to develop a team of humanoid robots playing soc-
cer that is capable of defeating the human world champion in 2050. Competitions
in multiple leagues offer the possibility to focus research on different aspects of
this challenge.

— In the small-size league each team consists of five small robots of about
15 centimeters in diameter. The ball and the robots are the color coded
to facilitate the recognition from the images of a central camera above the
field. Since the position of the robots and the ball is known quite accurately,
research focuses on robot coordination, team behavior and real time control.

— The robots in the Middle-size league are bigger (about 50 centimeters), see
Fig. 1 (left). The objects are again color coded. The main difference with
the small-size league is that there is no global vision of the field. Visual
information is received from a camera on board of each robot. To enable
cooperative team behavior robots have to know where they and the other
robots are on the field. So self-localization is a key issue.

— Similar research topics are present in the Sony Legged robot league, where
teams of four Sony AIBO’s (the well-known robotic toy dogs) compete. These
robots walk on four legs. Since every team uses the same robots, the only
difference between the teams is in the software.

— In the humanoid league research focuses on the development of robots with
a human-like body with the abilities to play soccer against each other. There
are two classes: KidSize (30-60cm height) and TeenSize (65-130cm height).
Technical challenges involve topics such as penalty kicking, dynamic walking,
dribbling and passing.

— The simulation league looks like a standard computer game (see Fig. 1
(right)), but the essential difference is that each player is its own simu-
lated robot, driven by its own program. Each agent has to decide on its own
next move. Because simulation frees the researchers from inherent physical
limitations these screen players are able to perform on a far more advanced
level. This enables the teams to concentrate on cooperative team behavior
and tactics.



2.2 Multi-agents in Automated Situation Assessment Applications

Situation assessment is indispensable for complex decision making by agents or
humans. For example, consider a crisis management scenario, where the decision
makers must react to a hazardous situation that takes place after a toxic gas
escaped from a chemical plant. Clearly, the crisis managers must be informed
about the presence of the gas as quickly as possible. Unfortunately, the gas can-
not be observed directly. Instead, situation assessment, i.e. reasoning about the
presence of toxic gases, requires interpretation of different types of observations
that might result from hidden causes.

In a typical crisis management scenario the presence of a gas could be in-
ferred through interpretation of large quantities of heterogeneous observations
obtained through the existing sensory, communication and data storage infras-
tructure. For example, relevant observations could be obtained from chemical
sensors installed in the plant’s vicinity and through human reports about smell,
haziness, irritation, etc. In addition, Unmanned Aerial Vehicles equipped with
sophisticated sensor suites could provide valuable information on the gas con-
centration in the plant’s vicinity.

Such an interpretation of the observations is not trivial, because we often have
to deal with a great number of data of different types and often of a low quality.
Clearly, the accuracy as well as the efficiency of such interpretation is crucial
for adequate decision making where misleading or delayed state estimation can
have devastating consequences.

Standardized challenge settings in this area are still being developed. An
example is Robot Rescue: the search and rescue for large scale disasters, e.g.,
searching for survivors after earth quake disasters [12]. This challenge started
as a simulation project but now also involves a real environment developed by
National Institute of Standards and Technology.

3 Distributed world models

Typical multi-agent systems in real world applications interact with their en-
vironment in different ways, which requires knowledge of the relevant states
in the world as well as general knowledge about the relevant processes. Such
knowledge is captured in appropriate world models which, dependent on the
application, make different types of knowledge explicit. To make a multi-agent
system robust to failure of an agent or of the communication, world models are
distributed throughout the system of communicating agents. Each agent com-
putes a world model by itself from its limited perception and communication
with other agents.

3.1 Distributed Perception Networks

Distributed world models play a central role in Distributed perception networks,
which are multi-agent Systems for the fusion of large amounts of heterogeneous



and uncertain information [12]. A Distributed Perception Network is essentially
an organization of agents which support robust and efficient situation assessment
through interpretation of information that can be accessed through sensory sys-
tems, databases, GSM networks and the world wide web.

The interpretation of the observations is based on causal Bayesian networks,
probabilistic models which describe uncertain causal relationships between differ-
ent phenomena. In a large class of situation assessment problems we can identify
sequences of hidden events causing observable events !. For example, the pres-
ence of a toxic gas will result in a specific conductivity of ionized air which can be
measured with sensors, exposed persons will perceive a typical smell and might
develop certain health symptoms, which in turn will result in reports. Bayesian
networks provide theoretically rigorous and compact mappings between hidden
causes of interest and observable effects. By using these networks we can infer
hidden causes through backward reasoning, from symptoms to their causes.

Moreover, such causal models are distributed throughout systems of commu-
nicating agents. Agents implement local world models encoded through Bayesian
Networks, which represent basic modeling building blocks. In other words, each
agent supports a limited expertise about the domain. Each agent updates its
belief over events represented by a single variable. An agent computes a proba-
bility distribution over a local variable by using the local causal Bayesian network
and a set of inputs. The inputs might be observations (e.g. sensor reports) or
probability distributions over certain random variables supplied by other agents.

Belief propagation in a system of agents can be viewed as a combination of
several types of algorithms, handling different types of fusion problems [2]. Such
belief propagation supports exact inference which (i) is independent of the order
of evidence instantiations, (ii) does not require any centralized fusion control
and (iii) can efficiently cope with changing network structures at runtime. This
is achieved by designing local Bayesian networks in such a way that each agent
can compute a probability distribution over its fusion result by processing its
local input independently of other agents.

By distributing the world models as well as the inference processes through-
out systems of agents, we can often prevent processing and communication bot-
tlenecks as well as a single point of failure.

Also, each Distributed Perception Network is specialized for a particular fu-
sion task, which requires a specific world model that explicitly captures every
piece of available evidence and maps it to the hypotheses of interest. Since we
deal with applications where the information sources are not known in advance
and their constellations can change at runtime, it is impossible to find an ade-
quate causal model prior to the operation. Instead, the information sources are
discovered at runtime and the agents assemble local probabilistic world models
into adequate distributed Bayesian networks on the fly. In other words, a domain
model is assembled out of basic building blocks with clear interfaces on an as
needed basis.

! In this paper an event is synonymous to a realization of a certain situation (ie. a
state)
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Fig. 2. A Distributed Perception Network that fuses information about the existence
of high concentration of a toxic gas. Each dotted rectangle represents an agent. Thick
dashed lines represent communication between agents, sharing partial fusion results.
Each agent makes use of a local Bayesian Network.

In addition, through the modularity of Distributed Perception Network the
design and maintenance of fusion systems are simplified. Simple partial world
models can be obtained from different experts or machine learning processes. By
complying to few design conventions, simpler models can easily be integrated into
complex fusion structures that support very robust belief propagation. Thus, we
avoid coordination of many different experts, which would be necessary if the fu-
sion were based on centralized (not distributed) Bayesian networks. In addition,
smaller models are easier to generate and fusion systems consisting of Distributed
Perception Networks agents can easily be maintained. If the expertise about a
certain sub-domain changes, only the local Bayesian networks implementing that
expertise need to be replaced. Also, rigorous probabilistic causal models facilitate
efficient approaches to distributed resource allocation [10].

Moreover, Distributed Perception Networks support accurate reasoning even
if the information sources are very noisy and the modeling parameters deviate
significantly from the true distributions between the modeled events. This is
very relevant for real world applications, like detecting a high concentration of
” Ammonia” (see Fig. 2, where we often cannot obtain precise models and infor-
mation sources are not perfect. With the help of the Inference Meta Model [13],
we show that Distributed Perception Network can form distributed Bayesian net-
works which are inherently robust w.r.t. the modeling parameters and facilitate
localization of modeling parameters that do not support accurate interpreta-
tion in a given situation. Thus, we can estimate the fusion quality and signal
potentially misleading results.

The assembly of theoretically sound domain models at runtime is a unique
feature of Distributed Perception Networks, which allows efficient fusion of very
heterogeneous information obtained from changing information source constel-
lations.

While other recently proposed approaches to distributed information fusion
[11,24] support more general domain models than Distributed Perception Net-



Fig. 3. Coordination graph for a typical RoboCup soccer simulation situation. On the
left a coordinated defense is shown, and on the right an offense maneuver is planned.

works, they require a complete knowledge of the available information sources,
which makes them unsuitable for certain types of applications, such as detection
of critical situations in crisis management processes relying on ad-hoc informa-
tion source constellations.

4 Coordinating a multi-robot team

How can intelligent multi-agent systems cooperatively solve a task? The agents
interact with each other and coexist in an environment, that they perceive,
resulting in a distributed world model. We are interested in fully cooperative
multi-robot systems in which all robots have a common goal. Sharing the world
model can facilitate the cooperation within such robot teams. We have shown in
the past how to coordinate the actions of a multi-robot team by assigning roles
to the robots and applying a coordination graph to the problem [7]. Roles are
a natural way of introducing domain prior knowledge to a multi-agent problem
and provide a flexible solution to the problem of distributing the global task of
a team among its members. The role assignment not only reduces the number
of actions that have to be considered for each agent, but can also be used to
determine which agents depend on each other. In the soccer domain for instance
one can easily identify several roles ranging from ‘active’ or ‘passive’ depending
on whether an agent is in control of the ball or not, to more specialized ones
like ‘striker’, ‘defender’, ‘goalkeeper’, etc. Such an assignment of roles provides a
natural way to parametrize a coordination structure over a continuous domain.
The intuition is that, instead of directly coordinating the agents in a particular
situation, we assign roles to the agents based on this situation and subsequently
try to ‘coordinate’ the set of roles.

One approach to efficiently perform this coordination involves the use of a
coordination graph [3]. In this graph, each node represents an agent, and an
edge indicates that the corresponding agents have to coordinate their actions.
Payoff functions, defined over the actions of the connected agents, determine the
effect of specific local action combinations. In order to reach a jointly (global)



optimal action, a variable elimination algorithm is applied that iteratively solves
the local coordination problems. For this, messages are propagated through the
graph. In a context-specific coordination graph the topology of the graph is
first dynamically updated based on the current state of the world before the
elimination algorithm is applied [4]. Figure 3 shows such an updated coordination
for a typical RoboCup situation, where the defense and offense of the game are
automatically separated by conditioning on the context: the location of the ball.

We applied coordination graphs successfully in our RoboCup simulation team
by manually specifying both the coordination dependencies and the associated
payoffs using value rules [7]. This resulted in the world champion title in the
RoboCup-2003 soccer simulation league, illustrating that such a representation
can capture very complex and effective policies.

Recently we extended this work by allowing the agents to learn the value
of the different coordination rules [8]. We have demonstrated how Q-learning, a
well known reinforcement learning technique [21], can be efficiently applied to
such multi-agent coordination problems. In many problems agents only have to
coordinate with a subset of the agents when in a certain state (e.g., two cleaning
robots cleaning the same room). We have proposed a multi-agent Q-learning
technique, Sparse Cooperative Q-learning, that allows a group of agents to learn
how to jointly solve a task given the global coordination requirements of the
system [9].

5 Robotic planning in uncertain environments

Besides coordination agents have to plan their actions. This requires the need for
tractable ways of planning under uncertainty. In order for a robot to execute its
task well in a real world scenario it has to deal properly with different types of
uncertainty: a robot is unsure about the exact consequence of executing a certain
action and its sensor observations may be noisy. Robotic planning becomes even
harder when different parts of the environment cannot be distinguished by the
sensor system of the robot. In these partially observable domains a robot needs
to reason with uncertainty explicitly in order to successfully carry out a given
task.

As such this planning problem can be seen as a Partially Observable Markov
Decision Process (POMDPs) [5], with several applications in operations re-
search [18], artificial intelligence [5], and robotics [17,1,22]. The POMDP de-
fines a sensor model specifying the probability of observing a particular sensor
reading in a specific state, and a stochastic transition model which captures the
uncertain outcome of executing an action. In many situations a single sensor
reading does not provide enough evidence to determine the complete and true
state of the system. The framework allows for successfully handling such situ-
ations by defining and operating on the belief state of a robot. A belief state
is a probability distribution over all states of the environment and summarizes
all information regarding the past. Solving a POMDP now means computing a
policy—i.e., a mapping from belief states to actions—that maximizes the aver-



Fig. 4. Delivery task in an office environment. On the top left an example observation,
below the corresponding observation model, relating observations to states. The darker
the dot, the higher the probability. On the right example trajectories computed by
Perseus. Start positions are marked with x and the last state of each trajectory is
denoted by a A.

age collected reward of the robot in the task at hand. Such a policy prescribes
for every belief state the action that maximizes the expected reward a robot can
obtain in the future. The reward function encodes the robot’s task and as such
will be provided by the robot’s designer.

Unfortunately, solving a POMDP in an exact fashion is an intractable prob-
lem. Intuitively speaking, looking one time step deeper into the future requires
considering each possible action and each possible observation. A recent line of
research on approximate algorithms involves the use of a sampled set of belief
points on which planning is performed (see e.g., [14]). The idea is that instead
of planning over the complete belief space of the robot (which is intractable for
large state spaces), planning is carried out only on a limited set of prototype be-
liefs that have been sampled by letting the robot interact with the environment.
We have developed along this line a simple randomized approximate algorithm
called Perseus that is very competitive to other state-of-the-art methods in terms
of computation time and solution quality [20].

We applied this approach to an office delivery task involving a mobile robot
with omnidirectional vision in a highly perceptually aliased office environment,
where the number of possible robot locations is in the order of hundreds [19].
Figure 4 (left) shows the office environment, together with one of the omnidi-
rectional camera images. We have shown how Perseus can be applied to such
robotic planning problems. Robots typically have to deal with large state spaces,
high dimensional sensor readings, perceptual aliasing and uncertain actions. We
defined a mail delivery task in which a simulated robot has to deliver mail in an



office environment. We used principle component analysis to project the omnidi-
rectional camera images the robot observes to a low-dimensional space, in order
to able to handle them efficiently. The POMDP requires a discrete observation
space, thus we perform clustering in the projected space to extract observation
prototypes. We have shown our algorithm can successfully solve the resulting
POMDP model. Figure 4 (right) plots two example trajectories. They show the
computed policy directs the robot to first move to the pickup states, pick up the
mail, and then move to the delivery locations in order to successfully deliver the
mail.

6 Conclusions and future developments

In this paper we have reported on our research on several aspects of real world
multi-agent systems.

In this field robot soccer can be seen as a real scientific challenge, which is
representative for the application of real world multi-agent systems in practical
dynamic situations. Robot soccer competitions is an example of a platform to
compare different approaches to these problems and to evaluate them in practice.

We presented our research on coordination within teams of robots which
focuses on the use of coordination graphs [7] and extended it by allowing the
agents to learn the value of coordination rules [8]. We described our approach
to planning in an environment in which a robot is unsure about the exact con-
sequence of executing a certain action and in which its sensor observations are
noisy [20].

A multi-agent system result in a distributed perception of partial infor-
mation, which has to be fused for situation assessment in real world appli-
cations [2,12]. We show that the distributed approaches to situation assess-
ment (distributed perception networks), can cope with uncertain domain models
and noisy/subjective information sources. In particular, we investigate how dis-
tributed causal world models can be used for efficient and reliable interpretation
of large quantities of uncertain and heterogeneous information. A strong empha-
sis is put on the robustness of information fusion using Bayesian networks [13].
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