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Abstract

A wide application area for technology in healthcare is for
assistance and monitoring in the home. As the population
ages, it becomes increasingly dependent on chronic health
care, such as assistance for tasks of everyday life (washing,
cooking, dressing), medication taking, nutrition and fitness.
This paper will present a decision theoretic model for gen-
eral purpose assistance in the home, and will show how this
type of general model can be applied to a range of assistance
tasks, including prompting for activities of daily living, and
stroke rehabilitation. This model is a partially observable
Markov decision process (POMDP) that can be customized
by end users, that can integrate complex sensor information,
and that can adapt over time. These three characteristics of
the POMDP model will allow for increasing uptake and long-
term efficiency and robustness of technology for assistance.

1. Introduction
The ratio of healthcare professionals to care recipients is
dropping at an alarming rate, particularly for the older pop-
ulation. It is estimated that the number of persons with
Alzheimer’s disease worldwide, for example, will top 100
million by the year 2050. These cases will prove an insur-
mountable economic barrier in the provision of care, unless
steps are taken to reduce the need for personalised care now.
Perhaps even more interesting is the expected increase in the
hours of informal care provided for people with dementia. In
Canada, for example, this number is expected to triple (from
231 million hours to 756 million hours) by the year 2038 (of
Canada 2010). What this implies is that the burden of care
is shifting from the professional arena (e.g. hospitals and
clinics) into the home and community. As more people start
taking control of their own healthcare decisions, they will
require additional help.

Technology can play a key role in healthcare assistance in
the home, primarily by connecting providers and recipients.
This connection can take the form of telecare, of shared in-
formation, data, logs and resources, among others. The key
is that technology can increase the range or scope of care
provision. A physical therapist can monitor a large number
of clients working on their rehabilitation programs at home,
without having to be present all the time. A nurse can mon-
itor her patients aging at home, and can provide assistance
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more readily to those in need at appropriate times. Unfortu-
nately, most current technology for home care is developed
for specific applications, and is difficult to modify to suit in-
dividual user needs. Therefore, the economic and social im-
pact of technology for healthcare lies in three key factors:
Poeple/Customizability. In order for people to have control
over technology, the technology needs to be customisable.
Persons with Alzheimer’s disease, for example, have needs
that change as the disease progresses. Giving such persons
(or their carers, family members) control over technology to
help them can greatly increase the benefits.
Sensors/Generalizability. In many healthcare situations,
sensing technology must be used to provide valuable in-
formation for carers and health professionals. Examples
include monitoring patients in hospital or at home, smart-
home technology to assist persons in independent living, and
emergency response systems that detect and respond to falls.
In order to ensure uptake of technology by informal carers
and users, our models use general purpose sensor data, and
must learn from observing a person.
Decisions/Adaptivity. People require assistance with their
healthcare needs, but their requirements can change over
time. While customisation is one element of allowing people
to make technology fit their needs, the technology itself also
must be able to adapt to people over time as they change.
This is particularly true for persons who have limited cog-
nitive abilities. Therefore, technological solutions must be
able to take decisions about assistance for people, and these
decisions must be adaptive.

2. Previous work
Over the past several years, there has been an increase in
the number of new assistive technologies (AT) for health-
care that have used machine learning and artificial intelli-
gence techniques. The following is a brief overview of
some of the key projects related to the application of prob-
abilistic and decision theoretic models in cognitive assistive
technologies.

The COACH (Cognitive Orthosis for Assistive aCtivities
in the Home), is a system that can monitor and prompt
an older adult through a variety of activities of daily living.
More details on the COACH can be found in Section 4.1.

Autominder is a system to help users remember the tasks
that need to be completed. This system differs from the
COACH, in that it provides reminders of activities at a
high level as opposed to providing prompts about how to



complete the activity itself. It models its client’s daily
plans, tracks their execution by reasoning about the client’s
observable behaviour, and makes decisions about whether
and when it is most appropriate to issue reminders (Pollack
2006). The Autominder has been deployed on three sepa-
rate platforms: the robotic assistant Pearl, a robotic walker
and on a handheld PDA.

The PROACT system infers tasks being completed based
on sensor inputs. This system has three components: body
worn RFID sensors, a probabilistic engine that infers activ-
ities given observations from these sensors, and a model
creator that easily creates probabilistic models of activi-
ties (Philipose et al. 2004). Recent work in the same direc-
tion has investigated how common sense models of every-
day activities can be built automatically using data mining
techniques (Pentney, Philipose, and Bilmes 2008).

The Assisted Cognition project (Kautz et al. 2002) was
initiated to explore the use of artificial intelligence as a
tool to increase the independence and quality of life of
Alzheimers patients. Opportunity Knocks (Liao et al.
2007), a system designed to provide directional guidance to
a user navigating through a city, was developed in the As-
sisted Cognition project.

Partially observable Markov decision processes
(POMDPs) provide a rich framework for plan-
ning under uncertainty (Åström 1965). For
instance, in mobile robotics (Pollack 2006;
Montemerlo et al. 2002), in spoken-dialog sys-
tems (Williams and Young 2006), and in assistive
technology (Mihailidis et al. 2008).

3. Modeling Assistance
A typical task requiring assistance consists of seven princi-
pal elements. We discuss these elements here in the con-
text of the handwashing task for people with dementia (e.g.
Alzheimer’s disease), who typically require assistance from
a human caregiver to wash their hands. A person with AD
loses short-term memory, and therefore has difficulty in re-
calling what they are doing, in recognising necessary objects
like the soap, and in perceiving affordances.

3.1 Seven elements of assistance
The seven key elements are as follows.
Task, T : A characterisation of the domain in which the task
is taking place in terms of a set of high-level variables. For
example, handwashing can be described by task states that
describe whether the hands are wet or dry, dirty, soapy or
clean. These variables need to be specified for each task,
but they characterise the world at a sufficiently high level to
make this accessible to end users.
Behavior, B: The task states are changed by the user’s be-
havior, B. Common behaviors during handwashing may be
things like rinsing hands or using soap. The user’s behavior
evolves depending on the ability and the task as well as the
system’s action, A. The behaviors are the most difficult to
manually specify, but can be learned from data.
Ability, Y : variables describe the cognitive or physical state
of the user. This may include the level of dementia and the
current responsiveness, or perhaps the level of frustration
the user is experiencing with the system, their overall level
of health, or the physical ability with respect to the task.

Action, A: The actions of system modify the behavior, abil-
ity, and the task. These actions could be verbal prompts,
calls to human caregivers or other response systems, or
physical changes to the environment. During handwashing,
these actions are typically verbal prompts or reminders.
Observations, O: Task and behavior variables generate ob-
servations, K and V , respectively. These observations are
generated from either non-invasive sensors, such as cameras
(in which case the observations are video streams), micro-
phones (audio streams), and environmental switches such as
thermostats, or from invasive sensors, such as buttons, man-
ual switches, locks, EEGs, etc.
Parameters, Θ: describe the dynamics and the observation
function, and govern how the first five elements interact.
Reward, R: Each state-action-observation combination has
some value, given by a reward (or cost) function. The reward
function’s job is to specify the relative values of each pos-
sible outcome. The system will take actions that optimise
over the reward function in the long term.

Our goal is to design a model of the interactions between
these elements, to build a method for customisation of the
model, and to optimize an automated strategy for assistance
by maximising (over the actions) some notion of utility over
the possible outcomes. The model must be able to deal with
uncertainty in the effects of actions and in sensor measure-
ments, it must be able to tailor to specific individuals and cir-
cumstances (adaptivity and customisability), it must be able
to trade off various objective criteria (e.g., task completion,
caregiver burden, user frustration and independence), and it
must be easy to specify. A partially observable Markov de-
cision process (POMDP) fulfills these constraints.

3.2 POMDPs
A discrete-time POMDP consists of: a finite set S of states;
a finite set A of actions; a stochastic transition model Pr :
S × A → ∆(S), with Pr(t|s, a) denoting the probability
of moving from state s to t when action a is taken; a fi-
nite observation set O; a stochastic observation model with
Pr(o|s) denoting the probability of making observation o
while the system is in state s; and a reward assigning reward
R(s, a, t) to state transition s to t induced by action a. Fig-
ure 1(a) shows the POMDP as a Bayesian network. Since
the system state is not known with certainty, a policy, π,
maps either belief states (i.e., distributions over S) or action-
observation histories into choices of actions. A policy is
computed to maximize some aggregate measure of utility
over time. One such measure is the expected discounted sum
of rewards,

∑
t γ

trt, where rt is the reward obtained at time
t, and γ ∈ [0, 1] is a discount factor that makes large and
distant (in time) rewards equivalent to small and immediate
rewards. We will not delve into details of POMDP solution
methods, but note that current research has enabled the ap-
proximate solution of very large POMDPs, and we refer to
(Lovejoy 1991) for an overview of POMDP concepts and
algorithms.

3.3 POMDP model of Assistance
The general POMDP we present models the task as a con-
sequence of the behavior of the user, which is a reaction
to the actions of the caregiver, conditioned by the ability of
the user. The behaviours and the task are not directly ob-
servable, but can be inferred from some observations from



sensors. All these dependencies are conditioned on the pa-
rameters of the model.

We claim that the task will be simple to specify, and can
be defined by a non-specialised person, while the ability
will require expert knowledge, but will tend to generalise
across tasks. On the other hand, the behaviors will be much
more difficult to specify, but can be learned from data di-
rectly (Hoey et al. 2005), including a model of how they
are related to the observations. The rewards must be speci-
fied by end users, and finding a suitable reward function is a
very challenging problem, typically addressed by preference
elicitation methods. The actions, observations, rewards and
parameters of the model can be specified by end users, so
long as we provide appropriate abstractions for them to en-
code these elements.
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Figure 1: Two time slices of (a) a general POMDP and (b)
a factored POMDP for modeling interactions with cognitive
assistive technology. The parameters are denoted Θ, and
are not shown in (b) for clarity.

Figure 1(b) shows the same model, except that the state,
S, has been factored into three sets of variables: task (T ),
ability (Y ) and behavior (B). Here we describe each of these
sets, as well as the actions of the system, A, and the obser-
vations from which the state of the model is inferred.

Jointly, S = {T,B, Y } is known as the state. The transi-
tion function can be factored as
Pr(S′|S,A) = Pr(T ′, B′, Y ′|T,B, Y,A)

= Pr(T ′|B′, T, A)Pr(B′|Y ′B, T,A)Pr(Y ′|Y,A)
Notice that the task state is independent of the ability, Y ,
given the behaviour, B. The idea is that changes in the task
states are caused by the behaviors of the user (and possibly
the system actions), independently of the user’s ability given
the behaviors. The observations O = {K,V } are gener-
ated by the task and behavior variables, T and B, respec-
tively, through some observation functions Pr(K|T ) and
Pr(V |B).

POMDPs can be used to monitor a person’s progress in a
task by using Bayes’ rule to update a belief state, b(s), that
gives a probability that the model is in state s. The progres-
sion of this belief state through time is what the POMDP at-
tempts to optimise by taking actions that lead to belief states
with high reward values.

To compute an approximate policy, we used Symbol-
icPerseus (Poupart 2005)1. It implements a factored, struc-
tured point-based approximate solution technique based on
the Perseus algorithm (Spaan and Vlassis 2005).

3.4 System elements
We now return to the main goal of our work, to provide cus-
tomisable, adaptive and general purpose solutions for assis-
tance. To allow for customisation, we explicitly model the
triadic relationship between a client (person needing assis-
tance), a carer (actor) and a piece of technology with artifi-
cial intelligence capabilities (agent). This triad is modeled
as a two-level system, where actor controls agent to assist
client while simultaneously reducing actor load, maintain-
ing client safety and promoting client independence. The
challenge of modeling such a triad is the differing levels of
expertise. We wish to give actor the ability to customise
agent, but without the need for extensive training. The cus-
tomisation should be simple and effective, and the end result
should be helpful for actor and adaptive to client.
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Figure 2: System framework for assistance showing three
layers: Environment, customisation, and artificial intelli-
gence (agent) layers.

The framework in Figure 2 is divided into three layers.
The environment layer on the left includes the client in need
of assistance, an actor (e.g. a human assistant), and a set of
sensors that measure various elements of the environment.
The actor and client can be one and the same, or two differ-
ent people. The customization layer in the middle includes
three elements that can be specified by end users: a cus-
tomisation interface uses a suitable level of abstraction to
give access to the POMDP parameters and temporal mod-
els, a set of input mappings from environment sensor inputs
to abstract observations, and a set of output mappings from
abstract actions to signals in the environment. We will show
examples of these customizations in Sections 4.3 and 4.4.
The third layer is the AI layer on the right, and includes the
POMDP model parameters, Θ, and policy, and a belief mon-
itor which maps observations to belief states.

The AI layer also includes a method for abstracting over
time. This is an important component, as the sensor mea-
surements may be occurring at a very fast rate (e.g. 30

1see www.cs.uwaterloo.ca/∼ppoupart/software



frames per second in video), whereas the POMDP oper-
ates on event-driven time. Updates in the POMDP need
to happen at realistic and natural time frames for the be-
haviours. For example, during handwashing, it takes only
a few seconds to turn on the water, but 10-30 seconds to
rinse the soap. The simplest possible method for tem-
poral abstraction is a function, timeout(s), which gives a
timeout (a number of seconds) for each state. This func-
tion is consulted by the belief monitor after each new obser-
vation is received from the input mappings, by computing
a final timeout value, τ , based on the current belief state,
b(s). This timeout can be computed as a weighted average,
τ =

∑
s b(s) · timeout(s), or as the most likely state’s

timeout, τ = timeout(arg maxs b(s)). The belief moni-
tor then updates the POMDP whenever (1) the belief state
would change significantly after the update, (2) some obser-
vation changes, or (3) the timeout is reached.

4. Applications
This section presents five applications of the model we have
presented above. The first two are focused on the POMDP
model and integrated system for two specific assistance sce-
narios: handwashing for dementia and stroke rehabilitation.
These systems, however, include little or no customisability
by users, but instead focus on adaptivity and demonstrating
the POMDP method for two different tasks. The next two
application areas are a device for art therapy and a method
for building POMDP prompting systems directly from prior
knowledge. These applications include user customisation
as a central issue. The last application demonstrates how the
same model can be used for hierarchical control in assistive
systems. Table 1 details the various elements of the four ap-
plications: their state variables go (task, behaviour and abil-
ity), system actions, input/output mappings, and their cus-
tomisation abilities.

4.1 Prompting for ADL: COACH
COACH is a real-time system for assisting persons with de-
mentia during handwashing. The COACH system has been
designed and built over the past ten years through a se-
ries of four prototypes, each relaxing restrictive assumptions
present in its predecessor (Mihailidis, Fernie, and Barnebel
2001; Boger et al. 2005; Hoey et al. 2010b). There is a
single sensor in the most recent prototype: a video camera.
The video is fed to an input mapping that is pre-defined as a
computer vision algorithm that tracks the two hands and the
towel, and then outputs the locations of these objects discre-
tised into a small set of regions. The POMDP includes a set
of eight plansteps as task variables, a set of six simple be-
haviours, and models the user’s responsiveness, awareness,
and overall dementia level. The POMDP actions are to do
nothing, to call for human assistance, or to give prompts for
each planstep at one of three levels of specificity. Specific
prompts are more costly than generic prompts, as they de-
crease feelings of independence in users (Mihailidis, Fernie,
and Barnebel 2001). The output mapping converts the hu-
man assistance call to a real call for a caregiver to assist the
user, and converts the actions to audio-visual prompts de-
pending on the specificity level. Figure 3(a) shows the sys-
tem working, with audio-visual prompting. The camera is
out of sight on the ceiling above the sink.

(a) (b)

Figure 3: (a) COACH handwashing assistant (b) iSTRETCH
haptic robotic device.

The input mappings are given by a computer vision al-
gorithm that tracks hands and towel. We use a mixed-
state data-driven Bayesian sequential estimation method us-
ing flocks of color features (Hoey et al. 2010b), which al-
low objects to be robustly tracked over long periods of time,
through large changes in shape and through partial occlu-
sions. The tracker locations are discretised into a fixed set
of regions around each element of interest in the sink area.
The timeout function is based on the most likely belief, and
is also dependent on the client’s estimated level of dementia.

The handwashing task is modelled as a POMDP with
9 state variables, 3 observation variables, and 25 actions.
There are 207360 states and 198 observations (Hoey et al.
2010b). The task variable is a set of plansteps that break
the handwashing task down into eight steps (i.e. the differ-
ent steps of handwashing that need to be completed, such
as turning on the water, using the soap, etc). The user be-
haviours cause transitions in the plansteps. The user be-
haviors can be one of six activities: using soap, at wa-
ter, at tap, at sink, drying, or away. User ability is mod-
elled using three factors: dementia level = [low,med,high],
giving the user’s overall functional ability at handwashing
(low dementia level means more demented, lower ability);
awareness = [never,no,yes], telling whether the user is aware
of what they are doing in the task; and responsiveness =
[none,max,med,min], giving what type of prompts the user
is responsive to (Hoey et al. 2010b).

The COACH can provide three levels of prompts to assist
the user through the required activity steps. The system has
20 actions, 18 of which comprise prompts for six different
plan tasks (water on/off, use soap, wet hands, rinse hands,
dry hands) at three levels of specificity (general, moderate,
specific) (Hoey et al. 2010b). General prompts gently cue
the user, while specific prompts are designed to get the user’s
attention and provide a detailed description of the task. The
wording of the prompts was chosen based on prior experi-
ence, and was fixed. The other two actions are the ’null’
action and ’call caregiver.’ The latter action ends the pro-
cess and is presumed to result in successful task completion.
The COACH does not provide any ability to customise, as it
has been developed for a particular task and user group.

The reward function gives a large positive reward for the



COACH iSTRETCH ePAD SNAP
task plansteps (a-k) game state screen state cup position,

cup contents,
box condition

behaviour use soap, rinse,
taps on/off, dry

time to target, control,
compensation

interactive, active,
intermittent, inactive

cup to ws, open box,
tb to cup, close box

ability awareness,
responsiveness,
dementia level

fatigue, range, learning rate engagement recognition, recall,
affordance

sensors video camera time, posture, device rotation touch screen, video camera RFID in cup,
box-lid switch,
RFID in teabag

system
actions

use soap, rinse,
taps on/off, dry

set range, set resistance, stop high interactivity,
medium interactivity,
low interactivity

prompt recognition,
prompt recall,
prompt affordance

input
mapping

computer vision
tracking of hands and
towel, fixed regions

time limits, control, compensation interactivity level virtual sensors

output
mapping

audio-visual prompts,
specificity levels,
caregiver calls

resistance mapping,
distance mapping, game state

interactivity level of prompts audio-visual prompts,
direct indications

customis-
ability

none input/output mappings, parameters input/output mappings,
parameters

input/output mappings,
parameters,
POMDP structure

Table 1: Table showing properties of each application, broken down into state variables, actions, input/output mappings, and
customisability. Null actions and behaviors are not shown.

user completing the task (getting hands washed) and smaller
positive rewards for intermediate steps. Prompting actions
are costly, with more specific prompts being more costly,
due to increased invasiveness leading to decreased indepen-
dence feelings in the client. Calling for a human caregiver
to assist is the most costly action.

The COACH system was tested in an eight-week trial with
our target users: six persons with moderate to severe demen-
tia in a long-term care facility in Toronto, Canada. The sub-
jects washed their hands once a day, with assistance given
by our automated system, or by a human caregiver, in al-
ternating two-week periods. Our clinical findings (i.e. the
effect of the system on users) are reported in (Mihailidis et
al. 2008), whilst our technical findings, with more technical
details are reported in (Hoey et al. 2010b).

Learning of behaviours has been investigated in the con-
text of the COACH handwashing system. Given a set of
data, we wish to learn automatically what behaviours are
present and how these behaviours are related to the task.
Behaviours are modeled as patterns of motion and im-
age appearance over short time intervals, using a dynamic
Bayesian network (DBN) similar to a hidden Markov model
(HMM). An unsupervised method is used to cluster these
behaviours into groups that are simultaneously recognisable
(present in the data) and valuable for detecting states in the
task and predicting rewards (Hoey and Little 2007). The
method has been applied to a large training set of handwash-
ing data, and we have shown how relevant behaviours can
be automatically extracted (Hoey et al. 2005). We have
also more recently investigated supervised learning of be-
haviours (Peters, Wachsmuth, and Hoey 2009).

4.2 Stroke Rehabilitation: iSTRETCH
Stroke is the leading cause of physical disability and third
leading cause of death in most countries around the world.
The consequences of stroke are devastating with approx-
imately 75% of stroke sufferers being left with a perma-
nent disability. It is generally agreed that intensive, repet-
itive, and goal-directed rehabilitation improves motor func-
tion and cortical reorganization in stroke patients with both
acute and long-term (chronic) impairment (Fasoli, Krebs,
and Hogan 2004). However, this recovery process is slow
and labor-intensive, usually involving extensive interaction
between one or more therapists and one patient. Rehabilita-
tion robots can partially automate these interventions, pro-
vide intensive and reproducible movement training, and be
used for assessment by therapists.

The system we describe in this section models the stroke
rehabilitation task as an assistance task to autonomously fa-
cilitate upper-limb reaching rehabilitation for moderate level
stroke patients, to tailor the exercise parameters for each in-
dividual, and to estimate user fatigue. The system consists
of a haptic robotic device coupled to a POMDP model that
tracks a user’s progress over time, and adjusts the level of
difficulty based on the user’s current abilities. More details
on this system can be found in (Kan, Hoey, and Mihailidis
2008; Lam et al. 2008).

The robotic device, as detailed in (Lam et al. 2008) and
shown in Figure 3(b), was built by Quanser Inc., a Toronto-
based robotics company. It features a non-restraining plat-
form for better usability and freedom of movement, and has
two active and two passive degrees of freedom, which al-
low the reaching exercise to be performed in 3D space. The
robotic device also incorporates haptic technology, which
provides feedback through sense of touch. Encoders in the
end-effector of the robotic device provide data to indicate



hand position and shoulder abduction/internal rotation (i.e.
compensation) during the exercise. Unobtrusive trunk sen-
sors provide data to indicate trunk rotation compensation.
The virtual environment provides the user with visual feed-
back on hand position and target location.

The input mappings convert the time it takes the user to
reach the target into three ranges: did not reach, slow or nor-
mal; and whether the user demonstrates sufficient control
and does not compensate. The task state is only related
to the virtual game, and encodes things such as whether
the user has completed a level. The behaviours model the
time it takes the user to reach the target, the amount of con-
trol they exhibit while reaching (the amount of ’wiggle’ in
the device as measured by the end-effector encoders), and
whether they compensate or not (measured by the trunk sen-
sors). The user’s abilities are modeled as a product of three
factors: their range at each resistance level, their level of fa-
tigue, and their learning rate (some users rehabilitate faster
than others). There are 10 possible actions the system can
take. These are comprised of nine actions of which each
is a different combination of setting a target distance d ∈
{d1, d2, d3}, and resistance level r ∈ {none,min,max},
and one action to stop the exercise when the user is fatigued.

The dynamics of all variables were specified manually us-
ing simple parametric functions of the user’s fatigue and the
difference between the system’s setting of resistance and dis-
tance and the user’s range. For example, if the user is not
fatigued and the system sets a target at the user’s range, then
the user might have a 90% chance of reaching the target.
However, if the target is set further, or if the user is fatigued,
then this chance might decrease to 50%. The functions have
simple parameters that can be specified by therapists, giving
them customisation of the POMDP model. More details can
be found in (Kan, Hoey, and Mihailidis 2008).

The output can also be customised as mappings from lev-
els of resistance and distance to actual resistance and dis-
tances on the haptic device. The idea is that, during weekly
visits to a therapist, these mappings are reset based on the
monitoring data from the previous week. The POMDP then
starts from its initial state, and again guides the user through
to the maximum resistance and distance levels, but the start-
ing and ending points are physically different.

The reward function was constructed to motivate the sys-
tem to guide the user to exercise at maximum target dis-
tance and resistance level, while performing the task with
maximum control and without compensation. Thus, the sys-
tem was given a large reward for getting the user to reach
the furthest target distance (d=d3) at maximum resistance
(r=max). Smaller rewards were given when targets were set
at or above the user’s current range, and when the user was
performing well. However, no reward was given when the
user was fatigued, failed to reach the target, had no control,
or showed signs of compensation during the exercise.

The system has been tested in a pilot study with a sin-
gle patient and one therapist. The patient was right-side
hemiparetic, had a stroke onset of 227 days (7 months
and 14 days) before enrolment, scored 4 on the arm sec-
tion of the Chedoke-McMaster Stroke Assessment (CMSA)
Scale (Gowland et al. 1993), was able to move to some
degree but still had impaired movements as determined by
their therapist, and could understand and respond to simple
instructions. In each session, the therapist reviewed each

POMDP decision and either agreed or disagreed with it (in
which case the therapist made the decision). Each session
lasted for approximately one hour and was completed three
times a week for two weeks. The therapist agreed with both
the target distance and resistance level decisions made by
the POMDP 94% and 90% of the time, respectively, but only
43% of the time for the stop decision. The POMDP wanted
to stop the exercise to let the user take a break more often
than the therapist wanted, but this could be changed by e.g.
setting the cost for the stop action to be higher.

4.3 Art Therapy: ePAD
Engagement with visual artworks is also known to have
benefits for the promotion of quality of life in older
adults (Rusted, Sheppard, and Waller 2006). However, many
older adults have difficulty motivating themselves to engage
in a creative activity for a reasonable period of time. These
difficulties are compounded when the older adult has a pro-
gressive illness, such as Alzheimer’s disease.

The tool we have created is a creative arts touch-screen
interface that presents a user with activities like painting,
drawing, or collage. The tool was developed with a user-
centered design methodology in collaboration with a group
of creative arts therapists. The tool is customisable by
therapists, allowing them to design and build personalized
therapeutic/goal-oriented creative activities for each client.
The customised application attempts to maintain a client’s
engagement.

client interfacetherapist interface

widgets properties

design

Figure 4: Art Therapist interface and client application.

The therapist uses the designer tool, which is a screen
split into three sections: widgets, design, and properties (see
Figure 4). The therapist can drag any widget onto the de-
sign area, configure it to their needs with a mouse , and
set properties and actions for the system. Once done, the
therapist exports the newly created application for use by
the client (Figure 4 on the right). When using the newly
created application, a user does some visual art-work on a
touch screen. A therapist is present, and has a (possibly
mobile) interface, but can leave the client for short peri-
ods of time (e.g. to interact with another client in a group
session). The outputs of the device are a video stream
from a web-camera watching the user’s face, and the in-
terface actions (finger movements on the screen). These
are passed to a therapist-defined set of input mappings, that
map each behaviour of a user on the screen to a category of
involvement∈ {interactive,active,intermittent,inactive}, de-
fined as the amount of engagement a behaviour requires. A
second input mapping uses a computer vision algorithm to
detect if a client is looking at the screen, a strong indicator of
engagement. Images are taken from a standard web camera,



and a Haar-like feature recognition method is used to detect
a single face in the scene (Viola and Jones 2004).

There are two types of behaviours we ex-
pect to see in clients of this application. The
behaviour∈{interactive,active,intermittent,inactive} is
whether the user is actively doing something on the in-
terface, and is inferred from observations of their finger
interactions. The gesture variable is a set of gestures that
indicate that a user is engaged with the device, and are
inferred from the video stream. For example, the gestures
could be gaze directions ({looking,not looking}), indicating
if a person is looking at the screen.

The user ability model is given by two factors: The user’s
engagement∈{yes,confused,no} is the key element of this
model, as maintaining engagement is the primary purpose
of the device. A user can be engaged (yes), or disengaged
partially (confused) or completely (no). The user’s respon-
siveness to the system’s actions, respond is factored into a
set of variables: {respond a1, . . . , respond aM}, giving
responsiveness to each of the system’s action interactivity
levels a1, . . . , aM , respectively.

The actions the system can take are to do nothing (a0), or
to perform some intervention (a1, . . . , aM ), given as a level
of interactivity, defined as the amount of involvement it re-
quires from a user. The generic action is then returned to
the application as an action for the system to take at that
level of interactivity, using a set of therapist defined output
mappings. The actions range from adding shapes or images
to the canvas, to animating buttons, or playing audio files.
The therapist can change the interactivity level ∈ {low, high,
stimulate} for each action. The trade-off is that a very inter-
active prompt may get a disengaged user involved, but may
be a disruptive action for an already engaged user, causing
them to disengage.

The dynamics of the POMDP hinges on the user’s en-
gagement, which changes dynamically over time as a func-
tion of the system’s actions, and their previous behaviours.
The user’s responsiveness comes into play when the system
takes an action. If they are responsive to the interactivity
level of the action, the effect of the action is to increase their
engagement.

The reward function is based solely on the user’s engage-
ment, with +10,-1,-2 if the user is engaged, confused or not
engaged, respectively. System actions are costly (-0.5), but
only if the user is engaged. More details on this system can
be found in (Blunsden et al. 2009), and simulated examples
of this system in use can be found in (Hoey et al. 2010c).

4.4 Syndetic Assistance Processes: SNAP
Our final application area is focused almost entirely on the
customisation of the POMDP prompting system. Our long-
term goal is to design mechanisms for end-users (clients,
caregivers, family members) to specify situated prompting
systems for a specific need and task, and to be able to use
the powerful decision making (AI) and computer vision and
sensing tools that we are developing. Eventually, an end-
user will, when confronted with a new problem needing a so-
lution, be able to design and customise a situated prompting
system with a POMDP back-end such as described above.

The key to such a development is the formalisation of a
model of assistance (as above), and of a method for trans-
lating a real-world task and need into such a model. We

begin by combining human factors research for task analy-
sis (Wherton and Monk 2009), ubiquitous sensing of an en-
vironment (Olivier et al. 2009) (a kitchen), and the POMDP
assistance model above. We will use an example in this
case of a person needing assistance in making a cup of tea.

The task analysis technique, as described in (Wherton
and Monk 2009), breaks a particular task down into a set
of goals, states, abilities and behaviours. The technique
involves an experimenter video-taping a person being as-
sisted during the task, and then transcribing and analysing
the video using a syndetic modeling technique. The end-
result is an Interaction Unit (IU) analysis that uncovers the
states and goals of the task, the user’s cognitive abilities, and
the user’s actions. For example, one element of the state in
tea-making is that the cup contains a teabag, a goal of the
client. The client’s action is to place the teabag in the cup,
but this requires three key client abilities: to recall that they
are making tea, to recognise the box of tea, and to perceive
the affordances of the teabag for making tea, as shown in
Table 2. This model of cognitive abilities is defined a priori
by experts in the psychology of dementia, but generalises
across tasks, as mentioned in Section 3.3.

The IU analysis can be converted to a POMDP model by
mapping the states to task variables, the recall, recognition
and affordance elements to ability variables, and the actions
to behaviours. In the associated POMDP, the abilities are re-
lated to the behaviours in the same way as in the framework
above: each behaviour is dependent on a list of relevant abil-
ities. That is, in order for the client to open the box, he/she
must be able to recall the step (recall that they are trying to
put the teabag in the cup), recognise the box, and see the
affordance of opening the box.

The system actions are the things the system can do to
help the user. We define one one system action for each
necessary ability in the task. The actions correspond to a
prompt or signal that will help the user with this particular
ability, if missing. For example, to help with recognition of
the cup, a light could be shone on it, or an audio prompt
could be delivered.

The observations are specified by a ubiquitous sensing ex-
pert, and are related to each state (task) variables or user
behaviour. For example, in the ambient kitchen, there are
sensors in the counter-tops to detect if a cup is placed on
them, and sensors in the teabags to detect if they are placed
in the cup. The sensor noise is measured independently (as
a miss/false positive rate for each state/sensor combination).

The dynamics and initial state are produced directly from
the IU analysis. We take this to be deterministic, as any
uncertainty will be introduced by the user’s abilities (so we
assume a perfectly able user is able to always successfully
complete each step). Each action improves its associated
cognitive ability. For example, the ’prompt recognition cup’
action (e.g a light shone on the cup) makes it more likely
that the user can recognise the cup if they can’t already.

The reward function specifies the goal states . In the tea
making example, the system gets a big reward if the teabag
is in the cup at the end and the box is closed, and smaller
rewards if the teabag is in the cup but the box is open, and if
the cup is empty by the box is open. The actions are costly
because we want to let a user do it themselves if they can.

We have developed software for the specification of situ-
ated prompting systems using the SNAP method, and have



IU Goals Task States Abilities Behaviours
1 Final cup empty on tray, box closed Rn cup on tray, Rl step No Action
2 Final, cup TB cup empty on tray, box closed Af cup on tray WS Move cup tray→WS
3 Final, cup TB cup empty on WS, box closed Rl box contains TB,

Af box closed
Alter box to open

4 Final, cup TB cup empty on WS, box open Af TB in box cup Move TB box→cup
5 Final cup tb on WS, box open Af box open Alter box to closed

Final cup tb on WS, box closed

Table 2: IU analysis of the first step in tea making. Rn=recognition, Rl=Recall, Af=Affordance, tb=teabag, ws=work surface.

tested the method in a kitchen using tea making (Hoey et al.
2010a). Our future plans include testing on other tasks, and
advancing the specification towards end-users.

4.5 Hierarchical Control
Hierarchical control for situated prompting systems poses a
number of challenges, primarily due to the interleaved and
concurrent nature of sub-goals. The cognitive modeling ap-
proach of (Wherton and Monk 2009), as explored in Sec-
tion 4.4, defines a user’s mental state as a goal stack, onto
which sub-goals must be pushed by a person. Persons with
dementia have difficulty pushing sub-goals onto this stack,
and often lose track of which sub-goal they are completing
(leading to a sub-goal being popped from the stack). The
pushing of a sub-goal onto this stack is a user behaviour, but
a fundamentally different one from other physical acts (e.g.
scooping some sugar), or psychological acts (such as recog-
nising the teacup), both of which only serve to immediately
further the following behaviour on the part of the user.

Therefore, we can imagine a higher level POMDP con-
troller whose job is only to deal with a particular level of
user sub-goals. Once a user has pushed a particular sub-goal
onto their stack, this high-level controller passes off con-
trol to a lower-level sub-goal controller that guides the user
through the individual steps related to that sub-goal. If the
person loses track of what they are doing in that sub-goal,
the lower-level controller will attempt to prompt them to get
them back on track. If they do not respond to such prompts,
the higher-level controller will start to believe that the per-
son has lost the sub-goal from their stack (the belief in their
ability to recall the sub-goal will decrease), and will step
in and issue an appropriate reminder of that sub-goal, veto-
ing any actions recommended by the lower-level controllers.
Such higher level controllers can be arbitrarily nested, as the
sub-goals and recall abilities they deal with can be defined at
any level of abstraction. This is a key element of deploying
such technology on a larger scale, in which multiple ADL
prompting systems act in concert for assistance at home.

Such a hierarchical controller is an instance of the assis-
tance POMDP described in Section 3.3, which we refer to as
a composite controller. The systems we have described pre-
viously are atomic controllers in the sense that they receive
observations directly from the environment, perform actions
directly in the environment (e.g. audio prompts), and are
self-contained prompting systems for individual sub-tasks.
The composite controllers, on the other hand, receive obser-
vations from other controllers (either atomic or composite),
and rely on the sub-goals for the majority of actions. Each
composite controller has a set of N sub-controllers, denoted
C1, C2, . . . , CN , and has the following structure:

• The observations for the composite controller include K,
whether each subgoal is completed or not according to
its belief state, and V , the index of the subgoal in which
user activity or an exogenous event (indicated by a sensor
change without a user action) has been observed, or 0 if
no activity has been observed and there was a timeout.

• The behaviour variable, B, gives the sub-goal the user is
currently attempting, as reported by the sub-controllers.
The behaviour can be none meaning that a timeout was
observed (no specific user actions were taken).

• The ability variables are one for each recall ability of each
sub-goal, and condition what a user is expected to do next.

• The task variables include variables denoting whether that
sub-goal has been completed yet. Subgoals complete at
some finite rate if the user behaviour corresponds cor-
rectly to the current control sub-goal and all pre-requisites
are fulfilled. Finally, a control variable gives the current
sub-goal that should be being attempted by the user. Note
that this may be different from the behaviour (if the user
is doing the wrong thing).

• The reward function for this controller corresponds to the
ordering of goals to complete the task.

• Sub-goal pre-requisites are encoded in the composite con-
troller as behaviour relevance functions: they give the sit-
uations in which each behaviour is relevant, and will be
zero for behaviours and situations that depend on previ-
ous subgoals according to the prerequisites.
A composite controller simply runs in parallel (event-

driven) time with the current sub-goal in control, and makes
two significant contributions:

1. It has a veto power over the current control sub-goal: if
it decides to take an action, the sub-controller is forced
to “do nothing”. These actions will be taken in situations
when the composite controller does not believe the sub-
controller will be able to complete.

2. It decides on the sub-goal in control by consulting it’s own
control variable and choosing the most likely control sub-
goal.

These two contributions allow the composite controller to
have some degree of control over the achievement of value.
It can decide to take action to steer a user towards a control
goal that they are not currently attempting.

5. Conclusions
This paper has described a general purpose framework
for the specification, customisation and use of decision-
theoretic prompting systems for persons with cognitive and



physical disabilities. The method is based on the partially
observable Markov decision process, and combines ele-
ments allowing for user customisation, system adaptivity to
users, and general-purpose sensing abilities. This paper has
given a detailed presentation of the method, and four case
studies of applications of the method to situated prompting
systems. Our future work is to refine these methods to al-
low for more complete end-user customisation, and to bring
these types of models into the homes of persons with cogni-
tive and physical disabilities wishing to stay at home.
Acknowledgements The authors thank the American
Alzheimer’s Association for generous funding of this re-
search. The authors also wish to thank Patrick Olivier for
use of the Ambient kitchen.

References
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